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On a generalization of the Beiter Conjecture

by

Bartłomiej Bzdęga (Poznań)

1. Introduction. Let Φn be the nth cyclotomic polynomial, i.e. the
unique monic polynomial irreducible over integers, whose roots are all prim-
itive nth roots of unity. We assume that n = p1 . . . pw and 2 < p1 < p2 <
· · · < pw are primes, since Φ2n(x) = Φn(−x) for odd n and Φnp(x) = Φn(x

p)
for a prime p dividing n. In this case we call the number w = ω(n) the order
of Φn.

Let An denote the maximal absolute value of a coefficient of Φn. We say
briefly that An is the height of Φn. For w ∈ {0, 1, 2}, determining An is easy
and we have A1 = Ap1 = Ap1p2 = 1. For w = 3 it is known that Ap1p2p3 ≤ 3

4p1
(see [1]). The Corrected Beiter Conjecture states that Ap1p2p3 ≤ 2

3p1 (see [4]
and references given there for details). The constant 2/3 is best possible if
the conjecture is true.

For cyclotomic polynomials of any order we set

Mn =
w−2∏
i=1

p2
w−1−i−1
i ,

where the empty product, which occurs if w ≤ 2, equals 1. P. T. Bateman,
C. Pomerance and R. C. Vaughan [2] proved that An ≤Mn. In [3] the present
author proved that An ≤ CwMn, where C2−w

w converges to approximately
0.95 with w →∞. However, so far no good general class of Φn for which An
is close to CwMn has been known.

It has not even been known whether Mn gives the optimal order for the
upper bound on An. For example we have Ap1...p5 ≤ C5p

7
1p

3
2p3, but it has not

been clear whether maybe Ap1...p5 ≤ C ′5p
8
1p

2
2p3 for some other constant C ′5.

All known constructions of Φn with large height required most prime factors
of n to be of almost the same size.
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One of the main purposes of this paper is to show that Mn is optimal,
i.e. in the upper bound on An it cannot be replaced by any smaller product
of the form pα1

1 . . . pαw
w in the sense described below.

For a fixed w we define the following strict lexicographical order on Rw:

(α1, . . . , αw) ≺ (β1, . . . , βw)

⇔ αw = βw, αw−1 = βw−1, . . . , αk+1 = βk+1 and αk < βk for some k ≤ w.

For α = (α1, . . . , αw) and n = p1 . . . pw we set M (α)
n = pα1

1 . . . pαw
w . Note

that if α ≺ β are fixed and pi is large enough compared to p1 . . . pi−1 for all
i ≤ w, then M (α)

n < M
(β)
n .

We say thatM (α)
n is the optimal bound on An for a fixed w if there exists

a constant bw such that An ≤ bwM (α)
n for all odd squarefree n with ω(n) = w

and α is smallest possible in the sense of the order ≺.
We have to explain what it means that pi is large enough compared to

p1 . . . pi−1 for all i ≤ w. Let h : R+ → R+ be any function, preferably
growing fast. We say that a sequence of primes p1, . . . , pw is h-growing if
pi ≥ h(p1 . . . pi−1) for i = 1, . . . , w (an empty product equals 1). With a
small abuse of notation we will also write that the number n = p1 . . . pw is
h-growing.

The following theorem is the main result of this paper.

Theorem 1. For every w ≥ 3, ε > 0 and h : R+ → R+ there exists an
h-growing n = p1 . . . pw such that An > (1− ε)cwMn, where

Mn =
w−2∏
i=1

p2
w−1−i−1
i and cw =

1

w
·
(
2

π

)3·2w−3

·
(w−1∏
k=3

k2
w−1−k

)−1
.

By this theorem and the already mentioned result from [3], Mn is the
optimal bound on An. Furthermore,

lim
w→∞

c2
−w

w =

(
2

π

)3/8

·
∞∏
k=3

k−2
−k−1 ≈ 0.71.

Let us define the wth Beiter constant in the following natural way:

Bw = lim sup
ω(n)=w

(An/Mn).

For example, we know that B0 = B1 = B2 = 1 and 2/3 ≤ B3 ≤ 3/4. If the
Corrected Beiter Conjecture is true, then B3 = 2/3.

For all w we have

c+ o(1) < B2−w

w < C + o(1), w →∞,
with c ≈ 0.71 and C ≈ 0.95. It would be interesting to know the asymptotics
of Bw. For example, we expect that the following natural conjecture is true.

Conjecture 2. The limit limw→∞B
2−w

w exists.



Generalization of the Beiter Conjecture 135

2. Preliminaries and the binary case. For n > 1 we define the value

Ln = max
|z|=1

|Φn(z)|.

It was already considered by several authors [2, 5, 6] while estimating An. If
Sn denotes the sum of the absolute values of the coefficients of Φn, then for
n > 1 we have

An ≥
Sn

degΦn + 1
≥ Ln

n
.

We express |Φn(z)| as a real function of x = arg(z) for |z| = 1. For all
n ≥ 1 let

Fn(x) =
∏
d|n

(
sin

d

2
x

)µ(n/d)
,

where µ is the Möbius function. It is readily seen (see proof of Lemma 3
below) that this expression serves to define a continuous function of the real
variable x. Moreover, |Fn(x)| = |Fn(x + 2π)| and Fnp(x) = Fn(px)/Fn(x)
for any prime p not dividing n.

Lemma 3. For n > 1 we have |Φn(eix)| = |Fn(x)|.

Proof. By elementary computations |1 − z| = 2
∣∣sin 1

2x
∣∣. Then we use

the well known formula Φn(z) =
∏
d|n(1 − zd)µ(n/d). Note that Φn(eix) is a

bounded continuous function of x, so if the product Fn(x0) is not defined for
some x0 (which happens only for finitely many values of 0 ≤ x0 < 2π), then
we can replace it by its limit as x→ x0.

A consequence of Lemma 3 is that Fn(x0) = 0 if and only if x0 = 2πt0/n
for some t0 coprime to n. Also, we have

Ln = max
|z|=1

|Φn(z)| = max
0≤x<2π

|Fn(x)|

as long as n > 1. Additionally, we set L1 = max0≤x<2π |F1(x)| = 1.
It is easy to determine Lp1 = p1. Let us consider the case w = 2.

Theorem 4. Let p1 < p2 be primes and let a be the unique integer such
that p1 | p2 + 2a and |a| < p1/2. Then

Lp1p2 ≥
4(p1 − 2)p2
π2|2a+ 1|

.

Proof. Set

x =

(
1 +

1

p1
+

2a+ 1

p1p2

)
π.
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Then∣∣∣∣sin p1p2x2

∣∣∣∣ = ∣∣∣∣sin p1p2 + p2 + 2a+ 1

2
π

∣∣∣∣ = 1,∣∣∣∣sin x2
∣∣∣∣ = ∣∣∣∣cos( 1

2p1
+

2a+ 1

2p1p2

)
π

∣∣∣∣ ≥ 1− 1

p1
− |2a+ 1|

p1p2
≥ 1− 2

p1
,

where we have used the inequality cos t ≥ 1− 2
π ·|t| for |t| ≤ π/2. Furthermore,∣∣∣∣sin p1x2

∣∣∣∣ = ∣∣∣∣sin(p1 + 1

2
+

2a+ 1

2p2

)
π

∣∣∣∣ = ∣∣∣∣sin 2a+ 1

2p2
π

∣∣∣∣ ≤ |2a+ 1|π
2p2

,∣∣∣∣sin p2x2
∣∣∣∣ = ∣∣∣∣sin(p22 +

p2 + 2a

2p1
+

1

2p1

)
π

∣∣∣∣ = ∣∣∣∣sin π

2p1

∣∣∣∣ ≤ π

2p1
,

where we have used the inequality |sin t| ≤ |t| for t ∈ R. By the above
inequalities we obtain

Lp1p2 ≥ |Fp1p2(x)| =
∣∣∣∣sin(x/2) sin(p1p2x/2)sin(p1x/2) sin(p2x/2)

∣∣∣∣ ≥ 4(p1 − 2)p2
π2|2a+ 1|

.

3. Derivative of Fn. It is not difficult to prove that Fn is a differentiable
function. Let fn(x) be its derivative. Define

Dn = min
x:Fn(x)=0

|fn(x)|.

The aim of this section is to prove the following theorem.

Theorem 5. For all positive integers w and all ε > 0 there exists a
function hw,ε : R+ → R+, depending only on w and ε, such that
n

2
(Lp1Lp1p2 . . . Lp1...pw−1)

−1 ≤ Dn < (1 + ε)
n

2
(Lp1Lp1p2 . . . Lp1...pw−1)

−1

for all hw,ε-growing n = p1 . . . pw.

In order to prove this theorem we will need some lemmas.

Lemma 6. Let p be a prime not dividing n. If Fnp(x1) = 0, then

fnp(x1) =
pfn(x1p)

Fn(x1)
.

Proof. We have x1=2πt1/(np) for some t1 coprime to np, so Fn(px1)=0
and Fn(x1) 6= 0. Using the equality Fnp(x) = Fn(px)/Fn(x) and the quotient
rule we obtain

fnp(x1) =
pfn(px1)Fn(x1)− Fn(px1)fn(x1)

(Fn(x1))2
=
pfn(x1p)

Fn(x1)
.

Lemma 7. We have
Dnp ≥ pDn/Ln.
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Moreover, for all ε > 0 there exists a function hε : R+ → R+, depending
only on ε, such that

Dnp < (1 + ε)p
Dn

Ln
for all p > hε(n).

Proof. Let x0 and x1 be such that Fn(x0) = Fnp(x1) = 0, |fn(x0)| = Dn

and |fnp(x1)| = Dnp. Since x1 = 2t1π/(np) for some t1 coprime to np, we
have px1 = 2t1π/n. Therefore Fn(px1) = 0 and hence |fn(px1)| ≥ Dn. By
applying this inequality and Lemma 6 we obtain

Dnp = |fnp(x1)| =
p|fn(px1)|
|Fn(x1)|

≥ pDn

Ln
.

To obtain the opposite inequality, let

x0 =
2t0π

n
and x′1 =

x0+2tπ

p
=

2(t0+tn)π

np
with any t 6≡ − t0

n
(mod p).

Then Fnp(x′1) = 0 and fn(px′1) = Dn. Again by Lemma 6,

Dnp ≤ |fnp(x′1)| =
p|fn(px′1)|
|Fn(x′1)|

= p
Dn∣∣Fn(x0+2tπ

p

)∣∣ .
By choosing an appropriate t we can have

∣∣Fn(x0+2tπ
p

)∣∣ as close to Ln as we
wish when p→∞.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 5. Fix ε > 0 and let ε′ = w
√
1 + ε − 1. Let hε′ be the

function given by Lemma 7. If n = p1 . . . pw is hε′-growing, then

pi
Dp1...pi−1

Lp1...pi−1

≤ Dp1...pi < (1 + ε′)pi
Dp1...pi−1

Lp1...pi−1

for i = 1, . . . , w (empty product equals 1). By these inequalities,
nD1

L1Lp1Lp1p2 . . . Lp1...pw−1

≤ Dn < (1 + ε′)w
nD1

L1Lp1Lp1p2 . . . Lp1...pw−1

.

Note that (1 + ε′)w = 1 + ε, L1 = 1 and D1 = 1/2. So the conclusion of the
theorem holds with hw,ε = hε′ = h w√1+ε−1, which clearly depends only on w
and ε.

4. Proof of the main result. In the following lemma we give a lower
bound on Lnp which depends on the residue class of p modulo n.

Lemma 8. Let ε > 0 and n = p1 . . . pw be fixed. Choose xM ∈ [0, 2π)
such that Fn(xM ) = Ln, and x0 = 2t0π/n for which Fn(x0) = 0 and |fn(x0)|
= Dn. Let

b = min
k∈Z

∣∣∣∣nxM2π − pt0 + nk

∣∣∣∣.
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Then
Lnp > (1− ε)Ln

np

2bπDn

for every p large enough. Furthermore, if p1 > w and r is an integer coprime
to n such that

∣∣nxM
2π − r

∣∣ is smallest possible, then

Lnp > (1− ε)Ln
1

π(w + 1)
· np
Dn

for every sufficiently large p ≡ r/t0 (mod n).

Proof. We have Fnp(x) = Fn(px)/Fn(x), so

Lnp = max
0≤x<2π

∣∣∣∣Fn(px)Fn(x)

∣∣∣∣ ≥ max
k∈Z

|Fn(xM + 2kπ)|∣∣Fn(xM+2kπ
p

)∣∣ =
Ln

mink∈Z
∣∣Fn(xM+2kπ

p

)∣∣ .
Let k0 be an integer for which |(xM + 2k0π)/p − x0| is smallest possible.
Then

min
k∈Z

∣∣∣∣Fn(xM + 2kπ

p

)∣∣∣∣ ≤ ∣∣∣∣Fn(xM + 2k0π

p

)∣∣∣∣
∼ |fn(x0)| ·

∣∣∣∣xM + 2k0π

p
− x0

∣∣∣∣ (as p→∞)

= Dn
2π

np

∣∣∣∣nxM2π − t0p+ k0n

∣∣∣∣
= Dn

2bπ

np
.

Therefore
Lnp > (1 + o(1))

Ln

Dn
2bπ
np

∼ Ln
np

2bπDn

as p→∞, which completes the proof of the first statement.
For p ≡ r/t0 (mod n) we have

b = min
k∈Z

∣∣∣∣nxM2π − pt0 + nk

∣∣∣∣ = ∣∣∣∣nxM2π − r
∣∣∣∣ ≤ w + 1

2

since, in view of p1 > w, at most w consecutive integers are not coprime
to n.

Simple calculations show that Theorem 4 gives a better lower bound for
Lp1p2 than Lemma 8. Therefore we use Theorem 4 in the proof of the main
result. As An ≥ Ln/n for n > 1, Theorem 1 is an immediate consequence of
the following theorem.

Theorem 9. For every w ≥ 3, ε > 0 and h : R+ → R+ there exists an
h-growing n = p1 . . . pw such that Ln > (1−ε)cwnMn, where cw and Mn are
defined in Theorem 1.
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Proof. We prove this by induction on w = ω(n). The induction starts
with w = 2.

Our inductive assumption is that for all ε′ > 0 and a function h : R+ →
R+ there exists an h-growing n = p1 . . . pw such that Lp1p2 > (1− ε′) 4

π2 p1p2
and Lp1...pi > (1 − ε′)cip1 . . . piMp1...pi for 3 ≤ i ≤ w. By Theorem 4 it is
true for w = 2 with p1 | p2 − 2 (note that the second part of the inductive
assumption is empty when w = 2).

Now we show the inductive step. Let w ≥ 2. Without loss of generality
we may assume that h satisfies the requirements of Theorem 5 and h(1) ≥ w.
By Lemma 8 and Dirichlet’s theorem on primes in arithmetic progressions,
there exists pw+1 > h(p1 . . . pw) for which

Lp1...pw+1 > (1− ε′)Ln
npw+1

π(w + 1)Dn
.

By Theorem 5,

Dn > (1− ε′)−1n
2
· 1

Lp1Lp1p2 . . . Lp1...pw−1

.

For given ε > 0 we choose ε′ = 1− w+1
√
1− ε. By the above inequalities

and the inductive assumption,

Lp1...pw+1 > (1− ε′)2 2pw+1

π(w + 1)
Lp1Lp1p2 . . . Lp1...pw

> (1− ε′)w+1 2pw+1

π(w + 1)
p1

4

π2
p1

w∏
i=3

(cip1 . . . piMp1...pi)

= (1− ε)
(

8

π3(w + 1)

w∏
i=3

ci

)(
pw+1

w∏
i=1

(p1 . . . piMp1...pi)
)
.

The exponent of pk in
∏w
i=1(p1 . . . piMp1...pi) for k ≤ w equals

w − k + 1 +

w∑
i=k+2

(2i−k−1 − 1) = 2w−k,

so

pw+1

w∏
i=1

(p1 . . . piMp1...pi) = p1 . . . pw+1Mp1...pw+1 .

It remains to evaluate the constant by using a similar method:

8

π3(w + 1)

w∏
i=3

ci =
8

π3(w + 1)

w∏
i=3

(
1

i

(
2

π

)3·2i−3( i−1∏
k=3

k2
i−1−k

)−1)
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=
1

w + 1

(
2

π

)3·2w−2

1

3 · 4 · . . . · w

( w∏
i=3

i−1∏
k=3

k2
i−1−k

)−1
=

1

w + 1

(
2

π

)3·2w+1−3(w+1−1∏
t=3

t2
w+1−1−t

)−1
= cw+1

for w ≥ 2.
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