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1. Introduction

1.1. General notation and background. In this paper, k will always
be a number field and k a fixed algebraic closure of k. Let Ωk be the set of
places of k. If v ∈ Ωk, we denote by kv the completion of k at v. By a variety
X over k, we will mean a reduced, separated scheme of finite type over k.
We say that a variety is nice if it is smooth, projective, and geometrically
integral. If l/k is any field extension, we write Xl for X ×Spec(k) Spec(l);

when l = k, we simply write X for X ×Spec(k) Spec(k).
Let X be a variety over k. If l is any field containing k, we denote by

X(l) := HomSpec(k)(Spec(l), X)

the set of l-rational points of X. There is a diagonal embedding X(k) ⊂
X(Ak), where X(Ak) is the set of adelic points of X, which is endowed with
the restricted product topology. We remark that if X is proper (e.g. if X is
projective), then X(Ak) =

∏
v∈Ωk X(kv).

Given a linear algebraic group G over k, a k-scheme Y with a G-action
µ : Y ×G → Y , and a G-morphism f : Y → X, we say that Y is a (right)
G-torsor over X if f is faithfully flat and if the morphism Y ×G→ Y ×X Y
given by (y, g) 7→ (y, µ(y, g)) is an isomorphism.

Let Lk := {G : G is a linear algebraic group over k}/∼, where G1 ∼ G2

if and only if G1 is k-isomorphic to G2 as algebraic k-groups. If S ⊂ Lk,
we write “(f, Y,G) ∈ S(X)” to mean “f : Y → X is a G-torsor over X
with G ∈ S”; when the emphasis on f is not needed, we just write “(Y,G)”
instead of “(f, Y,G)”. The pointed set H1(X,G) := Ȟ1

fppf(X,G), which is a

group wheneverG is abelian, classifiesG-torsors overX up to k-isomorphism
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[Sko01, §2.2]; we usually denote by [Y ] the k-isomorphism class in H1(X,G)
of the G-torsor f : Y → X.

Given a G-torsor f : Y → X over X and a 1-cocycle τ ∈ Z1(k,G), we
can twist Y by τ : we can construct a Gτ -torsor f τ : Y τ → X over X, where
Gτ and Y τ are “twisted” versions of G and Y (see [Sko01, Chapter 2] for
more details); we remark that, up to k-isomorphism, this construction only
depends on the class [τ ] ∈ H1(k,G). For more on the theory of torsors, we
refer the reader to [Sko01, Chapter 2].

For any (f, Y,G) ∈ S(X), we write

X(Ak)f :=
⋃

[τ ]∈H1(k,G)

f τ (Y τ (Ak)),

and for any S ⊂ Lk, we write

X(Ak)S :=
⋂
G∈S

⋂
[Y ]∈H1(X,G)

X(Ak)f .

The Brauer group functor Br : Schop
k → Ab is given by Y 7→ Ȟ2

ét(Y,Gm),

and the Brauer group of X is simply Br(X). The algebraic Brauer group of
X is given by Br1(X) := ker(Br(X) → Br(X)), and one can check that
Br1 : Schop

k → Ab is a subfunctor of Br. Recall that the Brauer–Manin
pairing 〈−,−〉BM : X(Ak) × Br(X) → Q/Z is defined by ((xv), α) 7→∑

v∈Ωk invv α(xv), where invv : Br(kv) → Q/Z, for v ∈ Ωk, is the invari-
ant map coming from local class field theory. The Brauer–Manin set is then
given by

X(Ak)Br :=
⋂

α∈Br(X)

{(xv) ∈ X(Ak) : 〈(xv), α〉BM = 0}.

We define the algebraic Brauer–Manin set X(Ak)Br1 similarly, by taking
the intersection over α ∈ Br1(X) instead. We have X(k) ⊂ X(Ak)Br ⊂
X(Ak)Br1 ⊂ X(Ak), where the first inclusion follows from global class
field theory and the continuity of 〈−, α〉BM : X(Ak) → Q/Z for each
α ∈ Br(X).

More generally, let O : Schop
k → Sets be any functor from the opposite

category of schemes over k to the category of sets. Let W ∈ Schk. For each
α ∈ O(W ), there is a commutative diagram

W (k) W (Ak)

O(k) O(Ak)

evα evα

where the horizontal maps are the diagonal maps and the vertical maps are
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the evaluation maps. We set

W (Ak)O :=
⋂

α∈O(W )

{(wv) ∈W (Ak) : evα((wv)) ∈ Im(O(k)→ O(Ak))}.

Hence, for any subset S ⊂ Lk, we can define

(1.1) X(Ak)S,O :=
⋂
G∈S

⋂
[Y ]∈H1(X,G)

⋃
[τ ]∈H1(k,G)

f τ (Y τ (Ak)O).

Let Fk ⊂ Lk be the set of finite algebraic groups over k (up to k-
isomorphisms). Following the refinements studied in [Sto07], we consider
the chain of inclusions FAb

k ⊂ FSol
k ⊂ Fk, where FAb

k and FSol
k are, re-

spectively, the sets of (k-isomorphism classes of) commutative and solvable
finite linear algebraic groups over k. By taking S = Fk and O = Br or
O = Br1 in (1.1), we get, respectively, the étale-Brauer set, usually denoted
by X(Ak)ét,Br, and the algebraic étale-Brauer set, denoted by X(Ak)ét,Br1 .
Similarly, by taking S = FSol

k or S = FAb
k and O = Br, we obtain sets

that we will denote by X(Ak)Sol,Br and X(Ak)Ab,Br, respectively; by taking

S = FSol
k or S = FAb

k and O = Br1, we obtain sets that we will denote by

X(Ak)Sol,Br1 and X(Ak)Ab,Br1 , respectively.

1.2. Motivation. Let k be a number field. In general, a family {Xω}
of nice varieties over k can have interesting arithmetic properties depend-
ing on the interplay between the set X(Ak) of adelic points and the set
X(k) of rational points, for all X ∈ {Xω}. For example, we say that {Xω}
satisfies the Hasse principle if X(Ak) 6= ∅ implies that X(k) 6= ∅, for all
X ∈ {Xω}; we remark that the opposite implication is clear, as we always
have X(k) ⊂ X(Ak). Another example, if one is more interested in density
properties, is the following: we say that {Xω} satisfies weak approximation
if X(k) 6= ∅ and X(k) = X(Ak), for all X ∈ {Xω}.

Often, however, some of these arithmetic properties fail to hold, since
X(Ak) is, in some sense, too big to detect whichever feature we are looking
for. (To give an idea, it is common to have X(Ak) 6= ∅ but X(k) = ∅—a clear
failure of the Hasse principle.)

When this happens, we can try to refine X(Ak) by cutting out obstruc-
tion sets X(Ak)O ⊂ X(Ak) in a suitable way, where “suitable” depends
on the context. For example, if we are considering the Hasse principle, we
need the inclusion X(k) ⊂ X(Ak)O to hold; we then say that there is an
O-obstruction to the Hasse principle if X(Ak) 6= ∅ and X(Ak)O = ∅, and
that the O-principle holds if X(Ak)O 6= ∅ implies X(k) 6= ∅ (i.e. if the Hasse
principle holds with “X(Ak)” replaced by “X(Ak)O”). Similarly, if we are

interested in weak approximation, we want X(k) ⊂ X(Ak)O; we then say
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that there is an O-obstruction to weak approximation if X(Ak)O 6= X(Ak),
and that the O-weak approximation holds if X(k) 6= ∅ and X(k) = X(Ak)O

(assuming X(Ak)O = X(Ak)O).

Obstruction sets are thus useful objects to study, as they help us mea-
sure how far varieties are from satisfying interesting arithmetic properties
concerning rational points. The general study of these objects took off in the
1970s with the work of Manin [Man71] and is still a very active area of re-
search in arithmetic geometry—see, for example, [Har96], [Sko99], [Poo10],
[HS13] for some more recent developments.

There are two different, somewhat competing, approaches in defining ob-
struction sets: we can either make use of the Brauer group, as is the case
for e.g. X(Ak)ét,Br, or use the more classical “pure” descent on torsors un-
der linear algebraic groups (as is the case for e.g. X(Ak)Lk), as introduced
by Colliot-Thélène and Sansuc [CTS87]. An interesting task, then, is to try
to reconcile these different approaches, that is, to provide a “translation”
between obstruction sets defined in a “Brauer-type” language and obstruc-
tion sets defined in a “descent-type” language. There are some important
results in the literature in this direction, whenever X is a nice variety over a
number field k: Skorobogatov has shown that X(Ak)Br1 = X(Ak)Mk , where
Mk ⊂ Lk is the set of (k-isomorphism classes of) linear algebraic groups
of multiplicative type over k (see [Sko99, Theorem 3]; a less general result,
requiring PicX to be torsion-free, had been proven by Colliot-Thélène and
Sansuc [CTS87]); a result by Harari [Har02, Théorème 2(ii)], together with
a result of Gabber (cf. [dJ]) and [Sko01, Proposition 5.3.4], implies that
X(Ak)Br = X(Ak)Ck , where Ck ⊂ Lk is the set of (k-isomorphism classes of)
connected linear algebraic groups over k; the articles by Demarche [Dem09]
and Skorobogatov [Sko09] show that X(Ak)ét,Br = X(Ak)Lk .

Now, any linear algebraic group can be decomposed into simpler building
blocks: finite étale algebraic groups, connected linear algebraic groups, re-
ductive linear algebraic groups, solvable linear algebraic groups, semisimple
linear algebraic groups, linear algebraic tori, and unipotent linear algebraic
groups. A natural question then is:

Question 1.1. If S ⊂ Lk is the set of any of the above building blocks,
what is (if any) the translation of X(Ak)S in “Brauer-type” terms?

Symmetrically, one can also ask:

Question 1.2. Given any natural enough Brauer-type obstruction set
(such as, for example, X(Ak)Br, X(Ak)ét,Br, X(Ak)Sol,Br1 , and so on), what
is (if any) its translation in pure “descent-type” terms?
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The above mentioned results answer these questions for all linear alge-
braic groups of multiplicative type (symmetrically, for the algebraic Brauer–
Manin set), for all connected linear algebraic groups (symmetrically, for the
Brauer–Manin set), and for all linear algebraic groups (symmetrically, for the
étale-Brauer set). The aim of this article is to answer Questions 1.1 and 1.2
in some other cases: for unipotent, reductive, and solvable linear algebraic
groups, and for the Brauer-type obstruction sets X(Ak)Sol,Br, X(Ak)ét,Br1 ,
and X(Ak)Sol,Br1 .

1.3. Main results and structure of the paper. In §2, we give some
properties of linear algebraic groups. In §3 and §4, we follow closely tech-
niques and ideas from [Dem09], [Sko09], and [Sto07] to prove the following
comparison theorem for obstruction sets.

Theorem (Theorem 3.1). Let X be a nice variety over k. Let O :
Schop

k → Sets be any functor such that X(Ak)O ⊂ X(Ak)Br1, and let
Sk ⊂ Lk be subject to Conditions 1, 2 and 3 in §3. Then

X(Ak)Fk,O = X(Ak)Ext(Fk,Sk),

where Ext(Fk,Sk) ⊂ Lk is the subset of linear algebraic groups over k that
can be written as extensions of elements in Fk by elements in Sk (up to
k-isomorphisms). The same result holds if we replace “Fk” by “FSol

k ”.

In §5, by applying Theorem 3.1, we are able to translate the natural
“Brauer-type” obstruction sets X(Ak)Sol,Br, X(Ak)ét,Br1 , and X(Ak)Sol,Br1

into a pure “descent-type” language—see, respectively, Theorem 5.1, Corol-
lary 5.10, and Corollary 5.10.

Let Uk ⊂ Lk be the set of (k-isomorphism classes of) unipotent linear
algebraic groups over k. In §6, we prove the following.

Theorem (Theorem 6.1). Let X be a smooth, proper, geometrically in-
tegral variety over k. Let A ⊂ B ⊂ Lk be such that B ⊂ Ext(A,Uk). (Here,
Ext(A,Uk) ⊂ Lk is the set of (k-isomorphism classes of ) linear algebraic
groups over k that can be written as extensions of elements in A by elements
in Uk.) Then X(Ak)A = X(Ak)B.

From Theorem 6.1, we then get a series of corollaries (cf. Corollar-
ies 6.8, 6.10, 6.12, 6.14, 6.15, 6.17). In particular:

(1) X(Ak)Uk = X(Ak) (Corollary 6.8).
(2) X(Ak)Lk = X(Ak)Rk (Corollary 6.10). Here, Rk ⊂ Lk is the set of

(k-isomorphism classes of) reductive linear algebraic groups over k.
(3) X(Ak)Sol,Br1 = X(Ak)Solk (Corollary 6.14). Here, Solk ⊂ Lk is the set

of (k-isomorphism classes of) solvable linear algebraic groups over k.
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Finally, in §7, we summarise the relations between the different obstruc-
tion sets considered in this paper.

2. Extensions of linear algebraic groups. Linear algebraic groups
play an essential role in this paper, so we start by recalling some of their
basic properties. Although some of these properties hold for more general
fields, throughout this section we will just consider linear algebraic groups
over fields of characteristic 0; this will spare us many technical complications
(not needed in this paper anyway).

Let K be a field of characteristic 0.

Definition 2.1. An (algebraic) K-group is a group object in the cate-
gory VarK of varieties over K. A linear algebraic K-group is a group object
in the category AffVarK of affine varieties over K. If G1, G2 are algebraic
K-groups, a map φ : G1 → G2 is a morphism of algebraic K-groups if it is
a K-morphism of K-varieties which is also a homomorphism of groups.

Remark 2.2. In characteristic 0, any algebraic group is always smooth
(see [Car62]). Smooth affine algebraic groups are the same as closed al-
gebraic subgroups of GLn for some n—hence the name “linear algebraic
groups”.

Example 2.3. The multiplicative group Gm,K = (Spec(K[x, x−1]), ·)
and the additive group Ga,K = (Spec(K[x]),+) are linear algebraicK-groups
that can be represented, respectively, as{(

x 0

0 x−1

)
: x ∈ K×

}
⊂ GL2(K) and

{(
1 x

0 1

)
: x ∈ K

}
⊂ GL2(K).

2.1. Closure properties of linear algebraic groups. For conve-
nience, we recall some definitions and, without proofs, some “closure” prop-
erties of algebraic groups over K.

(C1) Let G be a K-group. By a (closed) K-subgroup H of G, written
H ≤K G, we mean a K-group H (with multiplication and identity
induced from those of G) that is also a K-closed subvariety of G
(with respect to the Zariski topology).

(C2) Let 1 → A → B → C → 1 be a short exact sequence of algebraic
K-groups. Then B is affine if and only if A and C are [DGA, VI.B,
9.2(viii)]. Hence, since we are in characteristic 0, B is linear if and
only if A and C are linear.

(C3) If G is an algebraic K-group and H is a normal (closed) K-
subgroup of G, then G/H exists and is an algebraic K-group
[DGA, VI.A, Théorèmes 3.2 and 5.2], which is linear if G is linear.
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(C4) Let G be a K-group. We denote by G0 the connected component
of the identity of G. This is a (closed) normal K-subgroup of G
of finite index, whose cosets are the connected (equivalently, irre-
ducible) components of G (see [Bor91, (1.2)]). Note that if G is a
linear algebraic K-group, then so is G0.

(C5) Let G be a K-group. Then the radical R(G) of G is the largest
connected solvable normal (closed)K-subgroup ofG; the setRu(G)
of all unipotent elements of R(G) is the unipotent radical of G,
which is the largest connected unipotent normal closedK-subgroup
of G. Note that R(G) = R(G0) and Ru(G) = Ru(G0).

(C6) Let G, G′ be K-groups, and let φ : G → G′ be a morphism of
K-groups. Then φ(G) is a (closed) normalK-subgroup ofG′ [Spr98,
Proposition 2.2.5], and similarly ker(φ) is a (closed) K-subgroup
of G.

(C7) If G is a connected linear algebraic K-group, then its commutator
DG is a connected linear K-subgroup of G [Spr98, Corollary 2.2.8].

Fix an algebraic closure K of K.

Definition 2.4. A linear algebraic group G over K is

(D1) finite ifG(K) is finite (this definition uses the fact that charK = 0);
(D2) connected if its underlying topological space is connected in the

Zariski topology;
(D3) solvable if its derived series G ⊃ DG ⊃ D2G ⊃ · · · has DiG trivial

for some i ∈ Z≥0;
(D4) reductive if its geometric unipotent radical is trivial, i.e. Ru(G0

K
) =

Ru(G0)K is trivial; note that we do not require G to be connected;
(D5) semisimple if its geometric radical is trivial, i.e. R(G0

K
) = R(G0)K

is trivial; again we do not require G to be connected;
(D6) of multiplicative type if GK is K-isomorphic to a closed subgroup

of GN
m,K

for some N ∈ Z≥0;

(D7) a torus if GK is K-isomorphic to GN
m,K

for some N ∈ Z≥0;

(D8) unipotent if GK admits a (finite) composition series over K such
that each successive quotient is isomorphic (over K) to a closed
subgroup of Ga,K ; equivalently (cf. [DGA, XVII, Théorème 3.5]),
if G admits a (finite) central series over K such that each successive
quotient is isomorphic (over K) to Ga (here we use the fact that
charK = 0); equivalently, if G = Ru(G). In particular, if G is
unipotent, then G is connected. Note that “being unipotent” is
a geometric property, i.e. is stable under base-extending K (cf.
[DGA, XVII, Proposition 2.2(i)]).
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We define the following sets:

LK = {G : G is a linear algebraic K-group}/∼,
FK = {G ∈ LK : G is finite},
CK = {G ∈ LK : G is connected},
AbK = {G ∈ LK : G is commutative},
SolK = {G ∈ LK : G is solvable},
MK = {G ∈ LK : G is of multiplicative type},
TK = {G ∈ LK : G is a torus},
RK = {G ∈ LK : G is reductive},
RRK = {G ∈ RK : H ≤K G⇒ H ∈ RK},
UK = {G ∈ LK : G is unipotent},

where G1 ∼ G2 if and only if G1 is K-isomorphic to G2 as a K-group.

Notation. For any S ⊂ LK , we write SSol for S∩SolK , SAb for S∩AbK ,
and so on. Also, by abuse of notation we write “G ∈ S” to mean “[G] ∈ S”.

Recall that, if A, B, and G are linear algebraic groups over K, we say
that G is an extension of A by B if G fits into a short exact sequence
1→ B → G→ A→ 1 of linear algebraic K-groups.

Definition 2.5. Let A,B ⊂ LK . We define

Ext(A,B) = {G ∈ LK : G is an extension of A by B

for some A ∈ A, B ∈ B}.

Remark 2.6. If G ∈ Ext(A,B), then, by definition, G fits into a short
exact sequence 1 → B → G → A → 1 for some B ∈ B and A ∈ A. If
(f, Y,G) ∈ Ext(A,B)(X), then f naturally decomposes into (Y,B) ∈ B(Z)
and (Z,A) ∈ A(X), where Z := Y/B is the push-forward of f : Y → X
along the morphism G→ A (see [Sko01, §2.2] for more details).

It might be worth mentioning that some of the sets defined above can
be recast in terms of extensions of linear algebraic groups. For example, it
is easy to check that LK = Ext(FK , CK); perhaps less obviously, RRK =
Ext(FK , TK) (cf. Lemma 5.9).

2.2. Some properties of extensions. We describe here some proper-
ties of Ext(A,B) for the special cases when A = FK , FSol

K , or FAb
K .

In general, we say that some S ⊂ LK is closed

(E1) under taking direct products if S1, S2 ∈ S implies S1 ×K S2 ∈ S;
(E2) under taking (closed) K-subgroups if S ∈ S and H ≤K S imply

H ∈ S;
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(E3) under taking K-twists if whenever S ∈ S and S′ ∈ LK are such
that S′

K
∼= SK as K-groups, then S′ ∈ S;

(E4) under “base changing/restricting” if S ∈ S and L/K a finite field
extension imply RL/K(SL) ∈ S, where RL/K denotes the Weil
restriction.

Remark 2.7. The sets FK , FSol
K , and FAb

K have all the properties above.
Note, however, that FAb

K is not closed under extensions, while both FK and
FSol
K are.

Lemma 2.8. If B ⊂ LK is closed under taking closed K-subgroups, then
so is Ext(FK ,B). The same is true with “FK” replaced by “FSol

K ” or “FAb
K ”.

Proof. Let G ∈ Ext(FK ,B), and say it fits into the short exact sequence

1→ B
β−→ G

α−→ A→ 1 for some A ∈ FK and B ∈ B. Let H ≤K G. Consider
the short exact sequence

1→ β(B) ∩H β′−→ H
α′−→ α(H)→ 1,

where α′ and β′ are the obvious maps. This is indeed exact at the ends,
and to see exactness at the middle, just notice that β(B)∩H ∼= ker(α)∩H
∼= ker(α′). Since α is a K-homomorphism, it follows that α(H) ≤K A,
and hence α(H) ∈ FK . Moreover, by assumption, B is closed under taking
K-subgroups, meaning that β(B) ∩ H ∈ B. Hence, H ∈ Ext(FK ,B). The
same proof works also if we replace “FK” by “FSol

K ” or “FAb
K ”.

Lemma 2.9. If B ⊂ LK is closed under taking direct products, then so
is Ext(FK ,B). The same is true with “FK” replaced by “FSol

K ” or “FAb
K ”.

Proof. Easy.

Lemma 2.10. Suppose Ext(FK ,B) is closed under taking direct prod-
ucts and closed K-subgroups. Let G,G′, G′′ ∈ Ext(FK ,B), and suppose
φ′ : G′ → G and φ′′ : G′′ → G are morphisms of algebraic K-groups. Then
G′×GG′′ ∈ Ext(FK ,B), where the fibred product is with respect to φ and φ′.
The same is true with “FK” replaced by “FSol

K ” or “FAb
K ”.

Proof. This follows from the assumption that Ext(FK ,B) is closed un-
der taking (closed) K-subgroups and direct products, since G′ ×G G′′ ∼=
ker(φ : G′×KG′′ → G) with φ((g′, g′′)) = φ′(g′)φ′′−1(g′′) by Yoneda’s lemma,
and so G′×GG′′ is a closed K-subgroup of G′×KG′′. The same proof works
also if we replace “FK” by “FSol

K ” or “FAb
K ”.

Let L/K be a finite field extension. Recall that, for any quasi-projective
L-scheme W , the Weil restriction RL/K(W ) exists and represents the con-
travariant functor T 7→ W (T ×K L) from SchK to Set. We list here some
of the properties of RL/K (see [Vos11, Chap. 1, §3.12]).
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(W1) If X is a K-variety, there is a functorial bijection

HomK(X,RL/K(X ×K L)) ∼= HomL(X ×K L,X ×K L).

This gives, by considering idX×KL : X ×K L → X ×K L on the
right-hand side, the canonical embedding ι : X → RL/K(X×KL).

(W2) If X is affine (respectively, smooth) variety over L, then RL/K(X)
is also affine (respectively, smooth). If G is an L-group, then
RL/K(G) is a K-group. Moreover, RL/K(G) is connected if and
only if G is connected, and if G is commutative, then so is
RL/K(G).

(W3) Given a short exact sequence 1→ G′ → G→ G′′ → 1 of algebraic
L-groups,

1→ RL/K(G′)→ RL/K(G)→ RL/K(G′′)→ 1

is a short exact sequence of algebraic K-groups. In other words,
the functor RL/K(−) preserves short exactness.

Lemma 2.11. If B ⊂ LK is closed under “base changing/restricting”
and under taking (closed) K-subgroups, then Ext(FK ,B) is closed under
K-twists. The same is true with “FK” replaced by “FSol

K ” or “FAb
K ”.

Proof. We need to show that if G ∈ Ext(FK ,B) and G̃ ∈ LK is such
that G̃K

∼= GK (over K), then G̃ ∈ Ext(FK ,B). Consider the short exact
sequence

1→ B
b−→ G

a−→ A→ 1.

Let G̃ be a K-twist of G, so that G̃K
∼= GK over K. In particular, there is

a finite field extension L/K such that GL ∼= G̃L. Let φ : GL
∼−→ G̃L be an

L-isomorphism of these L-groups with ϕ : G̃L
∼−→ GL as inverse. Since group

schemes represent functors of fppf group sheaves, short exact sequences of
group schemes are stable under base change. This gives a short exact se-

quence 1 → BL
bL−→ GL

aL−→ AL → 1, which, using the L-isomorphisms φ
and ϕ above, in turn gives the short exact sequence

(2.1) 1→ BL
φ◦bL−−−→ G̃L

aL◦ϕ−−−→ AL → 1.

ApplyingRL/K(−) to (2.1) gives a short exact sequence of algebraicK-groups

1→ RL/K(BL)
β−→ RL/K(G̃L)

α−→ RL/K(AL)→ 1.

Now, by assumption RL/K(BL) ∈ B, and clearly RL/K(AL) ∈ FK . More-

over, ι : G̃→ RL/K(G̃L) is an embedding. Hence, we can consider the short
exact sequence

1→ RL/K(BL) ∩ ι(G̃)
β′−→ ι(G̃) ∼= G̃

α′−→ α(ι(G̃))→ 1,

where α′ and β′ are the obvious maps. Since B is closed under taking (closed)



Obstruction sets and extensions of groups 161

K-subgroups, and since α(ι(G̃))≤K RL/K(AL), meaning that α(ι(G̃))∈FK ,

we find that G̃ ∈ Ext(FK ,B), as required. The same proof works also if we
replace “FK” by “FSol

K ” or “FAb
K ”.

Let G be an abstract group. By the constant K-group G̃ induced by G
we mean the disjoint union of copies of Spec(K), indexed by G, together
with the obvious group structure induced by G. If W is a K-scheme, by
a (left) action of the abstract group G on W we mean a group homomor-
phism φ : G→ AutK(W ). One can show that the group homomorphisms
φ : G→ AutK(W ) defining an action of G on W correspond precisely to the
K-morphisms φ̃ : G̃ ×W → W defining an action of G̃ on W ; we will use
these two notions of “action” interchangeably. For this reason, with abuse of
notation, we will denote by “G” both the abstract group G and the constant
K-group induced by G.

Lemma 2.12. Suppose that B ⊂ LK is closed under direct products and
1 ∈ B. Let G ∈ Ext(FK ,B). Let F be a finite abstract group and, by abus-
ing notation, let F ∈ FK be the induced constant finite K-group. Let F
act on G|F | (the direct product of G with itself |F | times) by permuting
the coordinates, and let φ : F → AutK(G|F |) be the group homomorphism
coming from this action. Then G|F | oφ F ∈ Ext(FK ,B). The same is true
with “FK” replaced by “FSol

K ”.

Proof. Let φ : F → AutK(G|F |) denote the morphism induced by the
action of F (with F seen as a subgroup of the symmetric group S|F |, by
Cayley’s theorem). Since G ∈ Ext(FK ,B), we see that G fits, say, into the
short exact sequence

1→ B
b−→ G

a−→ A→ 1,

where B ∈ B and A ∈ FK . By Lemma 2.9, we know that G|F | is in
Ext(FK ,B) and fits into the exact sequence

1→ B|F |
b|F |:=(b,...,b)−−−−−−−−→ G|F |

a|F |:=(a,...,a)−−−−−−−−→ A|F | → 1

with A|F | ∈ FK and B|F | ∈ B. Since a|F | : G|F | → A|F | is surjective and
its kernel ker(a|F |) = (ker(a), . . . , ker(a)) ∼= B|F | is φ-characteristic (i.e.
φ(ker(a|F |)) = ker(a|F |)) as φ just acts by permuting the coordinates, there
is a ϕ : F → AutK(A) making the following diagram commute:

A|F |

G|F | G|F |

A|F |
ϕ

a|F | a|F |

φ
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In particular, for any f ∈ F and g ∈ G|F |, we have

(2.2) a|F |(φf (g)) = ϕf (a|F |(g)),

where φf := φ(f) and ϕf := ϕ(f).

Since, by assumption, 1 ∈ B, we find that F is in Ext(FK ,B), as it fits

into the short exact sequence 1 → 1 → F
id−→ F → 1. Now consider the

sequence

1→ B|F | oφ 1︸ ︷︷ ︸
∼=B|F |

(b|F |,1)−−−−→ G|F | oφ F
(a|F |,id)−−−−−→ A|F | oϕ F → 1,

where B|F | oφ 1 ∼= B|F | ∈ B and A|F | oϕ F ∈ FK , since FK is closed

under extensions. Clearly, (b|F |, 1) is a K-group homomorphism. One can
check that (a|F |, id) is also a K-group homomorphism, given our choice of ϕ
and (2.2). Finally, it is clear that the sequence is exact. The same proof
works if we replace “FK” by “FSol

K ”.

3. Statement of the first result. Let k be a number field and let X
be a nice variety over k. We define

(3.1) X(Ak)Fk,O :=
⋂
F∈Fk

⋂
[Z]∈H1(X,F )

⋃
[τ ]∈H1(k,F )

f τ (Zτ (Ak)O),

where O : Schop
k → Sets is any functor such that X(Ak)O ⊂ X(Ak)Br1 ;

the “solvable” and “abelian” versions of X(Ak)Fk,O are defined by replacing
“Fk” by “FSol

k ” and “FAb
k ”, respectively. We suppose further that there

exists a set Sk ⊂ Lk such that the following three conditions hold:

Condition 1. Sk is contained in Ck, closed under k-twists, and such
that, for any nice k-variety W , we have W (Ak)O ⊂W (Ak)Sk .

Condition 2. For any nice variety W ′ over k, we have W ′(Ak)Ext(Fk,Sk)

⊂ W ′(Ak)O. The “solvable” and “abelian” versions of this condition are
obtained by replacing ”Fk” by “FSol

k ” and “FAb
k ”, respectively.

Condition 3. Ext(Fk,Sk) is closed under taking closed k-subgroups,
under taking k-twists, under taking direct products, and such that the
conclusion of Lemma 2.12 (with B = Sk) holds. The “solvable” and
“abelian” versions of this condition are obtained by replacing ”Fk” by “FSol

k ”
and “FAb

k ”, respectively.

The following theorem is then a generalisation of the results in [Dem09]
and [Sko09].
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Theorem 3.1. Let X be a nice variety over k. Let X(Ak)Fk,O be defined
as above, and assume Conditions 1–3 hold. Then

X(Ak)Fk,O = X(Ak)Ext(Fk,Sk).

If we consider the “solvable version” of X(Ak)Fk,O, and the “solvable ver-
sions” of Conditions 1–3 hold, then the result is also true if we replace “Fk”
by “FSol

k ”.

4. Proof of Theorem 3.1. We will prove the “standard version” of the
theorem; for the “solvable version”, the proof is identical, modulo replacing
“Fk” by “FSol

k ” when necessary. Most of the results in this section are just
restatements of results in [Dem09] and [Sko09]; we often sketch the proofs
of these results, for the reader’s convenience. We remark, however, that we
use a finesse—Proposition 4.14—not present (and not needed) in [Dem09]
and [Sko09], which gives us flexibility in the applications of Theorem 3.1
(see §5).

4.1. Proof that X(Ak)Ext(Fk,Sk) ⊃ X(Ak)Fk,O. In this subsection, it
suffices to assume that Sk satisfies Conditions 1 and 3 (without Lemma 2.12).

Lemma 4.1. Let X be a smooth, projective variety over a number field k.
Let (f, Z, F ) ∈ Fk(X). Then Z is smooth and projective.

Proof. This follows as f is finite and étale.

Definition 4.2. Let (Y,G), (Z,H) ∈ Lk(X). An X-torsor morphism
f = (φ, ψ) : (Y,G) → (Z,H) is a pair (φ, ψ) where φ : Y → Z is an
X-morphism and ψ : G → H is a homomorphism, compatible in the sense
that the diagram

X

Y Z

Y ×X GX Z ×X HX

φ× ψ

φ

commutes. We say that the X-torsor morphism f = (φ, ψ) is surjective if φ
(equivalently, ψ) is surjective.

Remark 4.3. If f = (φ, ψ) : (Y,G)→ (Z,H) is surjective, then Y → Z
is a (kerψ)-torsor over Z.

Proposition 4.4 ([Dem09, Lemme 3]). Let X be a nice variety over a
number field k. Let (Pv) ∈ X(Ak)Fk,O and (f, Z, F ) ∈ Fk(X). Then there
exist:

(i) an F ′ ∈ Fk,
(ii) an (X ′, F ′) ∈ Fk(X) with X ′ geometrically integral,
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(iii) a 1-cocycle σ ∈ Z1(k, F ),
(iv) a morphism of X-torsors (φ, ψ) : (X ′, F ′)→ (Zσ, F σ),

such that (Pv) lifts to some (Qv) ∈ X ′(Ak)O.

Proof. The proof is similar to the one in [Dem09] with “Br” and “ét, Br”
replaced by “O” and “Fk,O”, respectively.

The next proposition, which allows us to lift cocycles, is essentially due
to Demarche [Dem09, Proposition 4], with the caveat that, while he requires
(Pv) ∈ X(Ak)ét,Br, we take (Pv) ∈ X(Ak)Fk,O.

Proposition 4.5 (Demarche, [Dem09, Proposition 4]). Let X be a nice
variety over a number field k. Let (Pv) ∈ X(Ak)Fk,O and (f, Y,G) ∈ Lk(X).
Let

1→ H → G→ F → 1

be a short exact sequence in Lk with H ∈ Ck and F ∈ Fk. Denote the
pushforward of f : Y → X under the morphism G→ F by (Z,F ) ∈ Fk(X).
Let σ ∈ Z1(k, F ) be the cocycle coming from Proposition 4.4 applied to the
torsor Z → X and the point (Pv). Then the class [σ] ∈ H1(k, F ) lifts to a
class [τ ] ∈ H1(k,G).

Remark 4.6. Let H ∈ Ck. Since H contains a k-point (the identity), it
is also geometrically connected (see [Gro65, 4.5.14]).

Proof. roof of Proposition 4]demarche2009, the only place where De-
marche uses the fact that (Pv) ∈ X(Ak)ét,Br is in a passage of the proof of
“Le lemme 7 implique la proposition 4”. In this passage, Demarche wants
to prove the existence of some torsor of type λ′ (cf. Remark 5.3 for more
on the type of a torsor). To do so, he appeals to [Sko01, Corollary 6.1.3(1)].
Indeed, he knows that (Pv) lifts to some (Qv) ∈ X ′(Ak)Br for some nice X ′;
this means in particular that X ′(Ak)Br1 6= ∅. But X ′ is proper and geo-
metrically integral (and, in particular, k[X ′]∗ = k

∗
), and ∅ 6= X ′(Ak)Br1 =⋂

λX
′(Ak)Brλ (see [Sko01] for the definitions). Hence, since X ′(Ak)Brλ′ 6= ∅,

the required torsor of type λ′ exists by [Sko01, Corollary 6.1.3(1)].
In our case, (Pv) ∈ X(Ak)Fk,O. By Proposition 4.4, (Pv) lifts to some

(Qv) ∈ X ′(Ak)O for some nice X ′. Hence, ∅ 6= X ′(Ak)O ⊂ X ′(Ak)Br1 (where
the inclusion holds by assumption on O), and since X ′ is proper and geo-
metrically integral, we can appeal to [Sko01, Corollary 6.1.3(1)] as well to
conclude that the relevant torsor of type λ′ exists. All the rest of the proof
of [Dem09, Proposition 4] remains unchanged.

We have an analogue of [Dem09, Théorème 1].

Theorem 4.7. Let X be a nice variety over k. Then

X(Ak)Fk,O ⊂ X(Ak)Ext(Fk,Sk).
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Proof. Let (Pv) ∈ X(Ak)Fk,O. We fix G ∈ Ext(Fk,Sk) and (g, Y,G) ∈
Ext(Fk,Sk)(X). Then G fits, say, into the short exact sequence 1 → S →
G → F → 1 for some F ∈ Fk and S ∈ Sk. By pushing forward g along
G→ F , we can decompose Y → X into (Y, S) ∈ Sk(Z) and (Z,F ) ∈ Fk(X).
By applying Proposition 4.4 to (Z,F ) and (Pv), we get an F ′ ∈ Fk, an
(X ′, F ′) ∈ Fk(X) with X ′ geometrically integral, a 1-cocycle ρ ∈ Z1(k, F ),
and an X-torsor morphism φ : X ′ → Z ′ such that (Pv) lifts to a point
(Qv) ∈ X ′(Ak)O. Hence, we have the commutative triangle

X

ZρX ′

fρ F ρ
F ′

f ′

φ

We now apply Proposition 4.5 to the X-torsor (g, Y,G), the short exact
sequence 1 → S → G → F → 1 (note here that S ∈ Ck, as Sk ⊂ Ck by
Condition 1), and (Pv) ∈ X(Ak)Fk,O to conclude that [ρ] ∈ H1(k, F ) lifts
to some [µ] ∈ H1(k,G). It follows that the Gµ-torsor gµ : Y µ → X can
be decomposed naturally into the Sµ-torsor Y µ → Zρ and the F ρ-torsor
Zρ → X.

Now consider the fibred product Y µ ×Zρ X ′. This is naturally an Sµ-
torsor over X ′, and we remark that (p2, Y

µ ×Zρ X ′, Sµ) ∈ Sk(X ′) as Sk is
closed under k-twists. The following diagram summarises the constructions
so far:

X

ZρX ′

Y µY µ ×Zρ X ′

fρ F ρ
F ′

f ′

φ

Sµ

p1

p2 Sµ

Gµgµ

Note that, since X is smooth and projective and X ′ → X is finite and
étale, X ′ is also smooth and projective; moreover, since X ′ is geometrically
connected, it follows that X ′ is nice. Hence, we can use Condition 1 to
deduce that

X ′(Ak)O ⊂
⋃

[ν]∈H1(k,Sµ)

pν2
(
(Y µ ×Zρ X ′)ν(Ak)

)
.

In particular, there is some ν ∈ Z1(k, Sµ) such that (Qv) lifts to (Rv) ∈
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(Y µ ×Zρ X ′)ν(Ak). Then, arguing as in [Dem09, Théorème 1], we conclude
that

(Pv) ∈
⋃

[τ ]∈H1(k,G)

gτ (Y τ (Ak)).

Since (Pv) ∈ X(Ak)Fk,O, G ∈ Ext(Fk,Sk), and (g, Y,G) were arbitrary, we
get

X(Ak)Fk,O ⊂ X(Ak)Ext(Fk,Sk),

as required.

Remark 4.8. In this section, we only use Conditions 1 and 3 without
Lemma 2.12, and these hold if we replace “Fk” with “FAb

k ”. Hence, we can

also conclude that X(Ak)F
Ab
k ,O ⊂ X(Ak)Ext(FAb

k ,Sk).

4.2. Proof that X(Ak)Ext(Fk,Sk) ⊂ X(Ak)Fk,O. In this subsection, we
assume that Sk satisfies Conditions 1–3.

Proposition 4.9 (based on [Sto07, Proposition 5.17]). Let X be a
smooth, proper variety over a number field k. Let (Y, F ) ∈ Fk(X). For
any (Pv) ∈ X(Ak)Ext(Fk,Sk), there exists a twist (Y ′, F ′) ∈ Fk(X) of (Y, F )
with the following property. For any surjective X-torsor morphism (φ, ψ) :
(Z,G) → (Y ′, F ′), where (Z,G) ∈ Ext(Fk,Sk)(X), there exists a twist
Z ′ → Y ′ of (Z, kerψ) ∈ Ext(Fk,Sk)(Y ′) such that (Pv) lifts to a point
in Z ′(Ak).

Proof. We follow closely the first part of the proof of [Sto07, Propo-
sition 5.17], modifying it when needed.

Let P ∈ X(Ak)Ext(Fk,Sk). Let (Y, F ) ∈ Fk(X). Since X is proper, by
[Sko01, Proposition 5.3.2] there are only finitely many twists (Y σ, F σ) of
(Y, F ) such that Y σ(Ak) 6= ∅. Moreover, since P ∈ X(Ak)Ext(Fk,Sk) and
Fk ⊂ Ext(Fk,Sk), we know that P lifts to some point in some Y σ(A). Let
Y1, . . . , Ys be the finitely many twists of (Y, F ) such that P lifts to some
adelic point in them.

Let τ(j) ⊂ {1, . . . , s} be the set of indices i such that, for every (Z,G) ∈
Ext(Fk,Sk)(X) mapping to Yj → X, there is a twist Zξ that lifts P and
induces a twist of Yj that is isomorphic to Yi. Following Stoll, one can show
that

(i) τ(j) 6= ∅ (using Condition 3);
(ii) if i ∈ τ(j), then τ(i) ⊂ τ(j);

(iii) for some j, we have j ∈ τ(j).

We can take Y ′ to be Yj , where j ∈ τ(j).

Remark 4.10. For the above proof to make sense, we need Fk ⊂
Ext(Fk,Sk).
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Lemma 4.11 (Skorobogatov, [Sko09, Corollary 2.7]). Let Y be a proper
variety over k, and let (g, Z,G) ∈ Lk(Y ). Then the set Y (Ak)g is closed
in Y (Ak).

The following proposition is essentially due to Skorobogatov.

Proposition 4.12 (Skorobogatov, [Sko09, Proposition 2.3]). Let X be
a variety over k. Let (Y, F ) ∈ Fk(X) and (Z,G) ∈ Ext(Fk,Sk)(Y ). Then
there exist a (V,G′) ∈ Ext(Fk,Sk)(X) and a surjective X-torsor morphism
(θ, ψ) : (V,G′) → (Y, F ) such that there is a surjective Y -torsor morphism
(Θ,Ψ) : (V, kerψ)→ (Z,G) with kerΨ ∈ Ext(Fk,Sk).

Proof. As in the proof of [Sko09, Proposition 2.3], let

V := RY/X(Z)×X Y ,

where RY/X(Z) is the Weil restriction (which exists since Y → X is fi-
nite étale, cf. [BLR90, §7.6]), and let θ : V → Y be the second projection.
Consider the group Gm oρ F (k), where m = |F (k)| and ρ is the action
of the constant group F (k) on Gm by permutation of coordinates. Since
G ∈ Ext(Fk,Sk), by Condition 3 we also have Gm ∈ Ext(Fk,Sk). Moreover,
since F (k) ∈ Fk is a constant group acting on Gm by permuting the coor-
dinates, and since we are assuming Condition 3, by Lemma 2.12 we know
that Gm oρ F (k) ∈ Ext(Fk,Sk).

Now consider the k-twist of Gm oρ F (k) given by

G′ := RF/Spec k(GF ) oφ F ,

where φ is the action induced by ρ (and where RF/Spec k(GF ) exists: again
cf. [BLR90, §7.6]). Since, by Condition 3, Ext(Fk,Sk) is closed under taking
k-twists, it follows that G′ ∈ Ext(Fk,Sk). Following the proof of [Sko09,
Proposition 2.3], one can show that V → X is a G′-torsor, that θ and the
natural projection ψ : G′ → F together give a surjective X-torsor morphism
(θ, ψ) : (V,G′) → (Y, F ), and that there exists a surjective Y -torsor mor-
phism (Θ,Ψ) : (V, kerψ) → (Z,G). Moreover, since Ext(Fk,Sk) is closed
under taking (closed) k-subgroups (by Condition 3), we also deduce that
kerψ ∈ Ext(Fk,Sk).

We can now prove that X(Ak)Ext(Fk,Sk) is “well-behaved” with respect
to torsors under groups in Fk. Our proof is almost verbatim that of [Sko09,
Theorem 1.1].

Theorem 4.13. For any F ∈ Fk and any [Z] ∈ H1(X,F ), we have

X(Ak)Ext(Fk,Sk) =
⋃

[τ ]∈H1(k,F )

f τ (Zτ (Ak)Ext(Fk,Sk)).
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Proof. The inclusion “⊃” follows by pulling back torsors. Indeed, sup-
pose that

(Pv) ∈
⋃

[τ ]∈H1(k,F )

f τ (Zτ (Ak)Ext(Fk,Sk)),

say (Pv) = f τ ((Qv)) for some (Qv) ∈ Zτ (Ak)Ext(Fk,Sk) and [τ ] ∈ H1(k, F ).
If (g, Y,G) ∈ Ext(Fk,Sk)(X), by pulling back (g, Y,G) ∈ Ext(Fk,Sk)(X)
along f τ : Zτ → X we obtain the torsor (p1, Z

τ×XY,G) ∈ Ext(Fk,Sk)(Zτ ).
Since (Qv)∈Zτ (Ak)Ext(Fk,Sk) and G ∈ Ext(Fk,Sk), there is a [µ]∈H1(k,G)
such that (Qv) lifts to some (Rv) ∈ (Zτ ×X Y )µ(Ak) = (Zτ ×X Y µ)(Ak). By
the commutativity of the obvious pullback diagram, we conclude that (Pv)
is in gµ(Y µ(Ak)). Since (g, Y,G) ∈ Ext(Fk,Sk)(X) was arbitrary, it follows
that (Pv) ∈ X(Ak)Ext(Fk,Sk).

For the other inclusion, let (Pv) ∈ X(Ak)Ext(Fk,Sk). Let (f̃ , Z̃, F̃ ) ∈
Fk(X) be the twist of (f, Z, F ) ∈ Fk(X) coming from Proposition 4.9. It is
clear that we only need to show that (Pv) lifts to a point in Z̃(Ak)Ext(Fk,Sk).
Suppose not. Then

f̃−1((Pv)) ⊂
⋃

(g′,W ′,G′)∈Ext(Fk,Sk)(Z̃)

Z̃(Ak) \ Z̃(Ak)g
′
,

where the cover on the right-hand side is an open cover since each Z̃(Ak)g
′

is closed in Z̃(Ak), by Lemma 4.11. Using compactness, we have

f̃−1((Pv)) ⊂
n⋃
i=1

Z̃(Ak) \ Z̃(Ak)gi

for some (gi,Wi, Gi) ∈ Ext(Fk,Sk)(Z̃). Let (g,W,G) ∈ Ext(Fk,Sk)(Z̃) de-
note the fibred product of the gi’s over Z̃; here G ∈ Ext(Fk,Sk), since
Ext(Fk,Sk) is closed under finite fibred products. It is clear from the con-
struction that f̃−1((Pv)) ∩ Z̃(Ak)g = ∅. By Proposition 4.12, there is a tor-
sor (V,L) ∈ Ext(Fk,Sk)(X) and a surjective X-torsor morphism (θ, ψ) :
(V,L) → (Z̃, F̃ ) such that there exists a surjective Z̃-torsor morphism
(V, kerψ) → (W,G). To get the required contradiction, one can then ar-
gue just as in [Sko09, proof of Theorem 1.1].

Proposition 4.14. Let X be a nice variety over k. If X(Ak)Fk 6= ∅,
then

X(Ak)Fk,O =
⋂
F∈Fk

⋂
[Z]∈H1(X,F )

Z nice

⋃
[τ ]∈H1(k,F )

f τ (Zτ (Ak)O),

that is, we can restrict our attention to nice X-torsors [Z] ∈ H1(X,F ) only.

Proof. The inclusion “⊂” is clear, so we just prove the opposite inclusion.
Let (Pv) ∈

⋂
F

⋂
[Z]nice

⋃
[τ ] f

τ (Zτ (Ak)O). Fix F ∈ Fk and [f : Z → X] ∈
H1(X,F ). We need to show that (Pv) ∈

⋃
[τ ]∈H1(k,F ) f

τ (Zτ (Ak)O). Consider
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(Z,F ) ∈ Fk(X). Let Z0 be a connected component of Z, and let F 0 ≤k F
be its stabiliser. Then we have an X-torsor morphism (Z0, F 0) → (Z,F ),
given by inclusion.

By the notion of cofinal coverings in [Sto07] and by Lemma 5.7 in [Sto07],
using our assumption that X(Ak)Fk 6= ∅, we know there exist an F ′ ∈ Fk
and an (f ′,W, F ′) ∈ Fk(X) with W geometrically connected such that there

is an X-torsor morphism (W,F ′) → (Z0, F 0). Hence, by composition, we
get an X-torsor morphism

(W,F ′)→ (Z0, F 0)→ (Z,F )

with W geometrically connected. We can then apply [Sto07, Lemma 5.6] to
conclude that there exists a twist (f τ , Zτ , F τ ) ∈ Fk(X) of (f, Z, F ) such
that there is an X-torsor morphism

(W,F ′)→ (Zτ , F τ )

with W geometrically connected. Since W is also smooth and projective (cf.
Lemma 4.1), W is nice, and the same is true for all its twists.

Without loss of generality (twisting if necessary), we can assume that
(Pv) lifts to some point in W (Ak)O. We can then use [Sto07, Lemma 5.6]
and the functoriality of O to deduce that (Pv) ∈

⋃
τ∈H1(k,F ) f

τ (Zτ (Ak)O).
Since F and f were arbitrary, we conclude that⋂

F

⋂
[Z] nice

⋃
[τ ]

f τ (Zτ (Ak)O) ⊂ X(Ak)Fk,O.

Hence,
⋂
F

⋂
[Z] nice

⋃
[τ ] f

τ (Zτ (Ak)O) = X(Ak)Fk,O, meaning that we can
restrict our attention to nice torsors only.

Proof of Theorem 3.1. By Theorem 4.7, X(Ak)Fk,O ⊂ X(Ak)Ext(Fk,Sk).
If X(Ak)Ext(Fk,Sk) = ∅, then trivially X(Ak)Ext(Fk,Sk) ⊂ X(Ak)Fk,O, and

we are done. So suppose X(Ak)Ext(Fk,Sk) 6= ∅. In particular, this implies that
X(Ak)Fk 6= ∅. By Theorem 4.13, for any [Z] ∈ H1(X,F ) and F ∈ Fk,

X(Ak)Ext(Fk,Sk) =
⋃

[τ ]∈H1(k,F )

f τ (Zτ (Ak)Ext(Fk,Sk)).

Hence,

X(Ak)Ext(Fk,Sk) =
⋂
F∈Fk

⋂
[Z] nice

⋃
[τ ]

f τ (Zτ (Ak)Ext(Fk,Sk))

⊂
⋂
F∈Fk

⋂
[Z] nice

⋃
[τ ]

f τ (Zτ (Ak)O) = X(Ak)Fk,O,

where the inclusion in the second line comes from Condition 2, and the final
equality comes from Proposition 4.14 (and the fact that X(Ak)Fk 6= ∅).

A similar proof holds if we replace “Fk” by “FSol
k ”.
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Remark 4.15. Proposition 4.14 makes Theorem 3.1 robust enough for
applications. Indeed, we usually only have Condition 2 as we have stated
it, and not a more general version as, for example, is the case of the proof
of X(Ak)Desc ⊂ X(Ak)ét,Br in [Sko09]: there, as a corollary to a result by
Gabber, one has W (Ak)Lk ⊂W (Ak)ét,Br for all smooth, projective varieties
over k (cf. [Sko09, Lemma 2.8]). Proposition 4.14 tells us that, in fact, our
version of Condition 2 is sufficient.

5. Some applications of Theorem 3.1

5.1. The étale-Brauer set and its variations. Let X be a nice va-
riety over k. Consider the “solvable” étale-Brauer set

X(Ak)Sol,Br :=
⋂

F∈FSol
k

⋂
[Z]∈H1(X,F )

⋃
[τ ]∈H1(k,F )

f τ (Zτ (Ak)Br).

In our terminology, O = Br. As we have seen in the introduction, for any
nice variety W over k we have W (Ak)Br = W (Ak)Ck . Hence, in our setting,
we can take Sk = Ck. As Condition 1 is clear, we only need to check that the
“solvable versions” of Conditions 2 and 3 hold. The latter condition is easy
to see by the closure properties of FSol

k , and the former holds since Ck ⊂
Ext(FSol

k , Ck). Hence, by applying the “solvable version” of Theorem 3.1, we
can deduce the following.

Theorem 5.1. Let X be a nice variety over k. Then

X(Ak)Sol,Br = X(Ak)Ext(FSol
k , Ck).

5.2. The algebraic étale-Brauer set and its variations. Let X be
a nice variety over k. Consider the algebraic étale-Brauer set

X(Ak)ét,Br1 :=
⋂
F∈Fk

⋂
[Z]∈H1(X,F )

⋃
[τ ]∈H1(k,F )

f τ (Zτ (Ak)Br1).

In our terminology, O = Br1.

Theorem 5.2 ([Sko01, Theorem 6.1.1]). Let Z be a variety over a num-
ber field k such that k[Z]∗ = k

∗
. Then

(5.1) Z(Ak)Br1 =
⋂

λ:Ŝ↪→Pic(Z)

⋃
type(Y,f)=λ

f(Y (Ak)),

where Ŝ ranges over the finitely generated Gal(k/k)-submodules of Pic(X).

Remark 5.3. We recall that the type λ of a torsor (f, Y, S) ∈ Mk(Z)
is defined by χ([Y ]) =: λ, where χ is the map in the fundamental exact
sequence due to Colliot-Thélène and Sansuc (see [Sko01])

0→ H1(k, S)→ H1(Z, S)
χ−→ HomGalk(Ŝ,PicZ)

∂−→ H2(k, S)→ H2(Z, S),
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where Ŝ := Homk-groups(S,Gm,k) is the module of characters of S. We re-
mark that there is an anti-equivalence of categories{

algebraic linear k-groups

of multiplicative type

}
↔

{
finitely generated Z-modules with

a continuous action of Gal(k/k)

}
given by the functor S 7→ Ŝ, with inverse M 7→ Spec(k[M ]Gal(k/k)).

In particular, Theorem 5.2 tells us that, for any nice variety W over k, we
have W (Ak)Mk = W (Ak)Br1 . A sensible idea would be to take Sk =Mk, but
unfortunatelyMk 6⊂ Ck, so Condition 1 fails. We take instead Sk = Tk ⊂ Ck,
and consider Ext(Fk, Tk). Since our aim is to apply Theorem 3.1, we check
that Conditions 1–3 hold for our choice of Sk.

Condition 1. This holds since Tk ⊂ Ck, the k-twist of an algebraic torus
is again an algebraic torus (“being an algebraic torus” is a geometric condi-
tion), and since Theorem 5.2 (implying that W (Ak)Br1 ⊂W (Ak)Tk) holds.

Condition 2. As we have seen, W (Ak)Mk ⊂ W (Ak)Br1 . But, by defini-
tion of groups of multiplicative type,

Mk = Ext(Fk, Tk) ∩ Abk ⊂ Ext(FSol
k , Tk) ⊂ Ext(Fk, Tk),

where, in the first inclusion, we have used the fact that Tk ⊂ Abk ⊂ Solk
and that Solk is closed under taking quotients. Hence, Condition 2 and its
“solvable version” also hold.

Condition 3. Notice that Tk is clearly closed under taking finite direct
products, and it contains the trivial group. By Lemma 2.9, Ext(Fk, Tk)
is closed under taking direct products; moreover, the hypotheses of Lem-
ma 2.12 hold (with B = Tk), so its conclusion also holds. The same is true for
Ext(FSol

k , Tk). Hence, it remains to check that Ext(Fk, Tk) and Ext(FSol
k , Tk)

are closed under taking closed k-subgroups and k-twists.

Lemma 5.4. We have

Ext(Fk, Tk) = Ext(Fk,Mk) and Ext(FSol
k , Tk) = Ext(FSol

k ,Mk).

Proof. For the first equality, the inclusion “⊂” is clear. For the other
inclusion, let G ∈ Ext(Fk,Mk) fit into the short exact sequence 1→M →
G → F → 1 with F ∈ Fk and M ∈ Mk. But M contains a maximal
subtorus T (cf. [DGA, SGA3.IV, §1.3]), which is a normal subgroup of G
(since T is characteristic in M) and with G/T ∈ Fk. Hence, G fits into the
short exact sequence

1→ T → G→ G/T → 1

with T ∈ Tk and G/T ∈ Fk.
We now prove the second equality. Using the closure properties of solv-

able groups, we have Ext(FSol
k , Tk) = Ext(Fk, Tk)∩Solk and Ext(FSol

k ,Mk) =
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Ext(Fk,Mk)∩Solk. But we have just seen that Ext(Fk, Tk) = Ext(Fk,Mk);
by intersecting both sides with Solk, the result follows.

Lemma 5.5. Ext(Fk, Tk) is closed under taking k-subgroups. The same
holds for Ext(FSol

k , Tk).

Proof. Let G ∈ Ext(Fk, Tk) and let H ≤k G be a k-subgroup of G.
Suppose that G fits into a short exact sequence 1 → T → G → F → 1,
where T ∈ Tk and F ∈ Fk. Then H ∩ T ∈ Mk and H/(T ∩H) ∈ Fk, so H
fits into the short exact sequence

1→ H ∩ T → H → H/(H ∩ T )→ 1,

that is, H ∈ Ext(Fk,Mk). By Lemma 5.4, we deduce that H ∈ Ext(Fk, Tk).
An analogous proof gives the result for Ext(FSol

k , Tk), once we notice that
G ∈ Ext(FSol

k , Tk) implies that G is solvable, since solvable groups are closed
under extensions; hence, H is also solvable and thus H/(T ∩H)∈FSol

k .

Lemma 5.6. Mk is closed under taking k-subgroups and under “base
changing/restricting”.

Proof. The first statement is clear, by definition of groups of multiplica-
tive type. For the second statement, let M ∈ Mk and let l/k be a finite
extension. Since “being a group of multiplicative type” is a geometric con-
dition, Ml ∈ Ml. Moreover, since Ml = Ext(Fl, Tl) ∩ Abl and the Weil
restriction preserves tori, commutative groups, finite groups, and short ex-
act sequences, it follows that Rl/k(Ml) ∈ Ext(Fk, Tk) ∩ Abk =Mk.

Lemma 5.7. Ext(Fk, Tk) is closed under k-twists. The same is true for
Ext(FSol

k , Tk).

Proof. By Lemma 5.6, we can apply Lemma 2.11 with B = Mk to
conclude that Ext(Fk,Mk) is closed under taking k-twists. By Lemma 5.4,
we have Ext(Fk,Mk) = Ext(Fk, Tk), hence the result. The same proof works
for Ext(FSol

k , Tk) as well.

Hence, Condition 3 and its “solvable version” hold.

Since all the hypotheses in the statement of Theorem 3.1 are satisfied,
we have just proved the following.

Theorem 5.8. Let X be a nice variety over a number field k. Then

X(Ak)ét,Br1 = X(Ak)Ext(Fk, Tk).

Similarly,

X(Ak)Sol,Br1 = X(Ak)Ext(FSol
k , Tk).
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Lemma 5.9. Ext(Fk, Tk) = RRk. In particular, Ext(FSol
k , Tk) = RRSol

k .

Proof. We follow [Mey10, proof of Lemma 2.2]. We first prove that if
G ∈ Ext(Fk, Tk), then G ∈ Rk; since Ext(Fk, Tk) is closed under tak-
ing k-subgroups, it then follows that G ∈ RRk. So let G ∈ Ext(Fk, Tk)
with short exact sequence 1 → T → G → F → 1. Then G0/T is triv-
ial, being finite and connected, meaning that T = G0. It follows that
Ru(G) = Ru(G0) = Ru(T ) is trivial. Hence, G ∈ Rk, as required.

For the converse implication, suppose that G ∈ Lk \ Ext(Fk, Tk). Then
clearly G0 6∈ Tk. If G0 6∈ Rk, then we are done. So suppose that G0 ∈ Rk. Its
commutator DG0 is a connected linear k-subgroup, which is reductive and
semisimple (since G0 is reductive), and non-trivial, since otherwise G0 ∈ Tk,
a contradiction. Since DG0 is connected and semisimple, it contains a k-
subgroup of type A1 [Spr98, Theorem 7.2.4]. But groups of type A1 all have
non-reductive k-subgroups, so we are done.

The last claim is clear, since Ext(FSol
k , Tk) = Ext(Fk, Tk) ∩ Solk.

Corollary 5.10. Let X be a nice variety over a number field k. Then

X(Ak)ét,Br1 = X(Ak)Ext(Fk, Tk) = X(Ak)Ext(Fk,Mk) = X(Ak)RRk .

Similarly,

X(Ak)Sol,Br1 = X(Ak)Ext(FSol
k , Tk) = X(Ak)Ext(FSol

k ,Mk) = X(Ak)RR
Sol
k .

Proof. Clear from Theorem 5.8, Lemma 5.4, and Lemma 5.9.

6. Interlude

Theorem 6.1. Let X be a nice variety over k. Let A ⊂ B ⊂ Lk be such
that B ⊂ Ext(A,Uk). Then X(Ak)A = X(Ak)B.

Before we can prove the above theorem, we need to recall some prelimi-
nary results.

Let A ⊂ B be as in the statement of Theorem 6.1 and let G ∈ B ⊂
Ext(A,Uk), say fitting into the short exact sequence 1→ UG→G→ AG→ 1
with UG ∈ Uk and AG ∈ A. We want to show that H1(K,G) ∼= H1(K,AG)
as pointed sets for K = k and K = kv, for all v ∈ Ωk.

Since we are dealing with pointed sets, showing that ker(H1(K,G) →
H1(K,AG)) is trivial is not enough to conclude injectivity. Fortunately, UG is
a normal K-subgroup of G, meaning that we can use the following result.

Proposition 6.2 ([Ser01, §I.5.5, Corollary 2]). Let [τ ] ∈ H1(K,G).

Then the elements of H1(K,G) with the same image in H1(K,AG) as [τ ]
are in bijection with the elements of the quotient of H1(K,U τG) by the action
of the group H0(K,AτG).
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Corollary 6.3. The map of pointed sets H1(K,G) → H1(K,AG) is
injective.

Proof. Since UK is closed under K-twists (as “being unipotent” is a ge-
ometric property), U τG ∈ UK . But H1(K,U τ ) is trivial (cf. [Ser01, §III.2.1,
Proposition 6]), meaning that the quotient of H1(K,U τG) by the action of
the group H0(K,AτG) is also trivial. The result then follows from Proposi-
tion 6.2.

The surjectivity of H1(K,G) → H1(K,AG) follows from a “vanishing”
theorem for unipotent K-liens by Douai (see [Bor93, Corollary 4.2]), which
requires some knowledge of non-abelian second Galois cohomology. We refer
the reader to [FSS98, (1.2) and (5.1)], and to [Bor93] for more details on
the construction of K-liens and on the theory of non-abelian cohomology.

Finally, since H1(K,G) → H1(K,AG) preserves base points, we have
the following.

Corollary 6.4. For K = k or K = kv, for any place v, we have
H1(K,G) ∼= H1(K,AG) as pointed sets.

Proof of Theorem 6.1. Let G ∈ B. Since B ⊂ Ext(A,Uk), it follows that
G fits into a short exact sequence

1→ UG → G→ AG → 1,

where UG ∈ Uk and AG ∈ A. Fix [g : Y → X] ∈ H1(X,G). We can push
forward Y along p : G→ AG to obtain [ag : Z → X] ∈ H1(X,AG).

The inclusion X(Ak)g ⊂ X(Ak)ag is easy. For the opposite inclusion, let
(xv) ∈ X(Ak)ag , so that [Z]((xv)) ∈ Im(H1(k,AG) →

∏
v∈Ωk H

1(kv, AG)).

Our aim is to show that [Y ]((xv)) ∈ Im(H1(k,G) →
∏
v∈Ωk H

1(kv, G)),
as, using the functorial description of obstructions, this would indeed imply
that (xv) ∈ X(Ak)g.

By Corollary 6.4, for any field K containing k,

(6.1) p∗ : H1(K,G)
∼−→ H1(K,AG)

is an isomorphism of pointed sets, where p∗ is induced by the projection
p : G → AG. In particular, (6.1) holds for K = k or K = kv, for any place
v ∈ Ωk.

Now, for each place v ∈ Ωk, we have the commutative diagram

H1(X,AG)

H1(kv, G)H1(X,G)

H1(kv, AG) H1(k,AG)

H1(k,G)
x∗v resv

resv

pX∗
x∗v

p∗p−1
∗ p∗p−1

∗
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From the left square, we deduce that

p∗([Y ](xv)) = pX∗ [Y ](xv) = [Z](xv) ∈ Im(H1(k,AG)→ H1(kv, AG)).

But H1(k,AG) = p∗(H
1(k,G)) and H1(kv, AG) = p∗(H

1(kv, G)), by (6.1).
This fact and the commutativity of the right square in the above diagram
together imply that

p∗([Y ](xv)) ∈ Im
(
p∗(H

1(k,G))→ p∗(H
1(kv, G))

)
= p∗

(
Im(H1(k,G)→ H1(kv, G))

)
.

By applying p−1
∗ , we get [Y ](xv) ∈ Im(H1(k,G) → H1(kv, G)); taking the

product over all places v ∈ Ωk then gives the required result.
Hence, X(Ak)ag ⊂ X(Ak)g, and so

(6.2) X(Ak)ag = X(Ak)g.
Intersecting over all torsors in H1(X,G) and all G ∈ B gives

(6.3)
⋂
G∈B

⋂
[Y ]∈H1(X,G)

X(Ak)ag =
⋂
G∈B

⋂
[Y ]∈H1(X,G)

X(Ak)g.

For any G ∈ A ⊂ B, we have G = AG and g = ag. Hence, the left-hand side
of (6.3) can be rewritten as⋂
G∈B

⋂
[g:Y→X]
∈H1(X,G)

X(Ak)ag = X(Ak)A ∩
( ⋂
G∈B\A

⋂
[ag :Z→X]
∈H1(X,AG)

X(Ak)ag
)

︸ ︷︷ ︸
⊃X(Ak)A

= X(Ak)A.

Since the right-hand side of (6.3) is, by definition, X(Ak)B, we conclude that
X(Ak)A = X(Ak)B, as required.

Remark 6.5. In Theorem 6.1, we use Uk just to guarantee that
H1(K,G) ∼= H1(K,AG) as pointed sets for K = k and K = kv, for all
v ∈ Ωk (cf. (6.1)). In theory, we can get a result similar to Theorem 6.1
if we replace Uk with any other S ⊂ Lk such that (6.1) holds for K = k
and K = kv, for all v ∈ Ωk: for example, when k is a totally imaginary
number field, a good candidate for such an S is the set of semisimple sim-
ply connected linear algebraic groups over k—see [Ser01, §3.1] and [Bor93,
Corollary 5.1].

Example 6.6. Any G ∈ Abk can be written as G = U × M , where
U ∈ Uk and M ∈Mk (cf. [Mil12, 1.21]). Hence,Mk ⊂ Abk ⊂ Ext(Mk,Uk),
implying that X(Ak)Mk = X(Ak)Abk .

Corollary 6.7. Let G ∈ Lk. Then X(Ak)H
1(X,G) = X(Ak)H

1(X,RG),
where RG := G/Ru(G).

Proof. Let A = {RG} and B = {G,RG} in Theorem 6.1.
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Corollary 6.8. Let X be a nice variety over k. ThenX(Ak)Uk =X(Ak).

Proof. Let A = {1} and B = Uk. Clearly Uk ⊂ Ext({1},Uk) = Uk,
and so the hypotheses of Theorem 6.1 are satisfied. Therefore, X(Ak)Uk =
X(Ak){1} = X(Ak), as required.

Remark 6.9. Since H1(K,U) is trivial for all U ∈ Uk, for K = k and
K = kv for all v ∈ Ωk (cf. [Ser01, §III.2.1, Proposition 6]), we deduce
that (6.1) in the proof of Corollary 6.8 holds without having to resort to
non-abelian second Galois cohomology.

Since linear algebraic unipotent groups over k give no obstruction, and
since reductive groups are, in a sense, the “opposite” of unipotent groups,
the following should not be too surprising.

Corollary 6.10. Let X be a nice variety over k. Then X(Ak)Lk =
X(Ak)Rk .

Proof. Let A = Rk and B = Lk. It is clear that Lk = Ext(Rk,Uk).
This means that the hypotheses of Theorem 6.1 are satisfied. Therefore,
X(Ak)Lk = X(Ak)Rk , as required.

6.1. Some corollaries. The above also suggests the following proposi-
tion.

Proposition 6.11. Let B ⊂ Lk be such that B/Ru(B) ∈ B, for any
B ∈ B. Let X be a nice variety over k. Then X(Ak)B = X(Ak)B∩Rk .

Proof. Let A = B ∩Rk ⊂ B. By assumption B/Ru(B) ∈ B ∩Rk for any
B ∈ B, so we can apply Theorem 6.1 to conclude the proof.

Note that, for example, B = Rk, Ck,Abk,Solk all satisfy the hypotheses
of Proposition 6.11, as they are all closed under taking quotients. Hence, we
can immediately deduce the following.

Corollary 6.12. X(Ak)Ck = X(Ak)Ck∩Rk .

Remark 6.13. The above could have also been deduced in the following
way. Let PGL :=

⋃
n≥1 PGLn. For X nice over k, we know that X(Ak)Ck =

X(Ak)Br = X(Ak)PGL: the latter equality is [Sko01, Proposition 5.3.4], while
the former follows from [Har02]. Since Rk ∩ Ck ⊂ Ck, it follows immediately

that X(Ak)Ck ⊂ X(Ak)Ck∩Rk . Now, for any n ≥ 1, PGLn is both connected
and reductive. It follows that PGL ⊂ Rk ∩Ck, meaning that X(Ak)Ck∩Rk ⊂
X(Ak)PGL = X(Ak)Ck . Hence, X(Ak)Ck = X(Ak)Ck∩Rk .

Corollary 6.14. X(Ak)Solk =X(Ak)Solk∩Rk. In particular,X(Ak)Sol,Br1

= X(Ak)Solk .
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Proof. By Proposition 6.11, the former statement is obvious, so we just
need to prove the latter. We show that Ext(FSol

k , Tk) = Solk ∩ Rk. Let
G ∈ Solk ∩ Rk. Then G0 is reductive, connected, and solvable. Hence,
G0 ∈ Tk. Moreover, since G ∈ Solk, we have G/G0 ∈ FSol

k . Conversely, let
G ∈ Ext(FSol

k , Tk). Then G ∈ Solk, as the solvable groups are closed under
extensions, and G ∈ Rk by Lemma 5.9. Hence, Ext(FSol

k , Tk) = Solk ∩ Rk.
From Corollary 5.10 and the fact that X(Ak)Solk = X(Ak)Solk∩Rk , we then
deduce the required result.

Corollary 6.15. X(Ak)Ext(FSol
k , Ck) = X(Ak)Ext(FSol

k , Ck)∩Rk .

Proof. Let G ∈ Ext(FSol
k , Ck). We need to check that G/Ru(G) is in

Ext(FSol
k , Ck). We know that G fits into a short exact sequence

1→ C → G→ F → 1,

where C ∈ Ck and F ∈ FSol
k . Notice that C = G0. Indeed, by definition of G0,

we have C ⊂ G0, and since C is normal in G, it follows that C is also normal
in G0. Consider the short exact sequence 1→ G0 → G→ G/G0 → 1, where
G/G0 ∈ Fk. This induces the short exact sequence

1→ G0/C → G/C ∼= F → G/G0 → 1;

since G0/C is connected and injects into the finite group F , it must be
trivial, i.e. C = G0. Hence, G fits into the short exact sequence

1→ G0 → G→ F → 1.

Now, since Ru(G) is, by definition, a connected normal subgroup of G,
it follows that Ru(G) is normal in G0. Hence, we get the short exact se-
quence

1→ G0/Ru(G)→ G/Ru(G)→ F → 1,

where G0/Ru(G)∈ Ck and F ∈FSol
k , meaning that G/Ru(G)∈ Ext(FSol

k , Ck).
By Proposition 6.11, the result follows.

Remark 6.16. Analogously, X(Ak)Ext(FAb
k ,Ck) = X(Ak)Ext(FAb

k ,Ck)∩Rk ,
and similarly for any subset of Fk extended by Ck.

Corollary 6.17. X(Ak)Tk = X(Ak)Abk∩Ck = X(Ak)Solk∩Ck .

Proof. Since both Solk and Ck are closed under quotients, so is their
intersection, meaning that we can apply Proposition 6.11 to deduce that
X(Ak)Solk∩Ck = X(Ak)Solk∩Ck∩Rk = X(Ak)Tk . Similarly, by noticing that
Tk = Ck ∩ Rk ∩ Abk and that the abelian groups are also closed under
quotients, we get the other equality in the statement.
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7. A network of obstructions

7.1. Summary. For any nice variety X over k, Figure 1 summarises
the relations between some of the obstruction sets mentioned in this paper.
The rest of this section is to remind the reader of why all the inclusions in
Figure 1 can be strict.

X(k)

X(Ak)Lk/Rk/ét,Br

X(Ak)Ext(FSol
k , Ck)/Sol,Br

X(Ak)Ck/Ck∩Rk/PGL/Br

X(Ak)RRk/ét,Br1

X(Ak)RR
Sol
k /RSol

k /Solk/Sol,Br1

X(Ak)RR
Ab/Abk/Mk/Br1

X(Ak)Fk

X(Ak)F
Sol
k

X(Ak)F
Ab
k

X(Ak)∅/Uk

Fig. 1

Proposition 7.1. In general, X(k) ( X(Ak)Lk/Rk/ét,Br for X a nice
variety over k.

Proof. This is the content of Poonen’s paper [Poo10].

Proposition 7.2. In general, X(Ak)RR
Ab/Abk/Mk/Br1 ( X(Ak)∅/Uk for

X a nice variety over k.

Proof. See [BSD75] for an example over k = Q.

Remark 7.3. More strongly, in general, X(Ak)Tk/C
Ab
k /CSolk ( X(Ak)∅/Uk .

Indeed, let X be the (nice) degree 4 del Pezzo surface over k = Q in
[BSD75]. We know that X(Ak)Br1 = ∅ but X(Ak) 6= ∅. Moreover, since X
is geometrically rational, π1(X) = 0, meaning that there are no non-trivial
finite torsors over X. In particular, X(Ak)Ext(Fk, Tk) = X(Ak)Tk . Hence,

∅ = X(Ak)Br1 = X(Ak)Mk = X(Ak)Ext(Fk, Tk)∩Abk = X(Ak)Tk 6= X(Ak).

Proposition 7.4. In general, for X a nice variety over k,

(a) X(Ak)Ab,Br1 ( X(Ak)RR
Ab/Abk/Mk/Br1;

(b) X(Ak)Ab,Br ( X(Ak)Ck/Ck∩Rk/PGL/Br;
(c) the column in Figure 1 with endpoints given by X(Ak)RRk/ét,Br1 and

X(Ak)RR
Ab/Abk/Mk/Br1 can be strictly contained in the column with

endpoints X(Ak)Fk and X(Ak)F
Ab
k ;

(d) X(Ak)Ck/Ck∩Rk/PGL/Br 6⊂ X(Ak)Ab,Br1;

(e) X(Ak)F
Sol
k 6⊂ X(Ak)RR

Ab/Abk/Mk/Br1.
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Proof. Let Y = Ya,b,c and X = Ya,b,c/〈ι〉 be, respectively, the (nice) K3
and Enriques surfaces over k = Q from [VAV11]. Then (f, Y, F ) ∈ FAb

k (X),
where F = Z/2Z.

(a), (b), (d). Using Kummer theory and following [VAV11], it is not dif-
ficult to show that

⋃
[τ ]∈H1(X,F ) f

τ (Y τ (Ak)Br1)) = ∅, meaning, in particular,

that X(Ak)Ab,Br1 = ∅. Moreover, in [BBM+], the authors have shown that
X(Ak)Br 6= ∅.

(c), (e). Note that Ya,b,c(Ak)Fk = Ya,b,c(Ak) 6= ∅ and Ya,b,c(Ak)ét,Br1 =
Ya,b,c(Ak)Br1 = ∅.

Proposition 7.5. In general, for X a nice variety over k,

(a) X(Ak)F
Sol
k ( X(Ak)F

Ab
k ;

(b) X(Ak)RR
Ab/Abk/Mk/Br1 6⊂ X(Ak)Fk .

Proof. (a), (b). Let X be the (nice) bielliptic surface over k = Q from

Skorobogatov’s counterexample (see [Sko01, Chapter 8]). ThenX(Ak)F
Sol
k = ∅

(cf. [HS02, §5.1]), but X(Ak)Br 6= ∅.
Proposition 7.6. In general, for X a nice variety over k,

(a) the column in Figure 1 starting with X(Ak)Lk/Rk/ét,Br can be strictly
contained in the column starting with X(Ak)RRk/ét,Br1;

(b) X(Ak)RRk/ét,Br1 6⊂ X(Ak)Ck/Ck∩Rk/PGL/Br.

Proof. (a), (b). In [HVA13], the authors have constructed a (nice) K3
surface X over k = Q such that X(Ak)Br = ∅ but X(Ak)Br1 6= ∅. Now,
since any K3 surface is simply connected, we have π1(X) = 0. In particular,
X(Ak)ét,Br = X(Ak)Br and X(Ak)ét,Br1 = X(Ak)Br1 .

Proposition 7.7. The row in Figure 1 starting with X(Ak)Lk/Rk/ét,Br

can be strictly contained in the row starting with X(Ak)Ext(FSol
k , Ck)/Sol,Br,

for X a nice variety over k.

Proof. Let G be a finite, perfect (i.e. with G = DG), non-abelian, simple
group; in particular, G is not solvable. Let X and k be as in the conclu-
sion of [Har00, Corollary 6.1]. Since G = π(X) and G is simple, it fol-

lows that X(Ak)F
Sol
k = X(Ak), as there are no non-trivial finite solvable

covers of X. This implies that X(Ak)Sol,Br1 = X(Ak)Br1 and X(Ak)Sol,Br

= X(Ak)Br. Since G is perfect, Br(X) = 0 (cf. [Har00, remark after Corol-
lary 6.1]), meaning that X(Ak)Br = X(Ak)Br1 and Br(X)/Br(k) is finite.
By taking k large enough, we can assume that Br(X)/Br(k) is trivial, and
thus X(Ak)Br = X(Ak). Hence,

X(Ak)Sol,Br1 = X(Ak)Br1 = X(Ak)Sol,Br

= X(Ak)Br = X(Ak)F
Sol
k = X(Ak).
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But, by construction of X, we have X(Ak)Fk ( X(Ak). Since X(Ak)ét,Br

⊂ X(Ak)ét,Br1 ⊂ X(Ak)Fk , the result follows.

We conclude with an open question.

Question 7.8. What are, if they exist, the translations of X(Ak)Ab,Br

and X(Ak)Ab,Br1 in pure “descent-type” terms?
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