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Topological algebras of random elements

by
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Abstract. Let L0(Ω;A) be the Fréchet space of Bochner-measurable random vari-
ables with values in a unital complex Banach algebra A. We study L0(Ω;A) as a topo-
logical algebra, investigating the notion of spectrum in L0(Ω;A), the Jacobson radical,
ideals, hulls and kernels. Several results on automatic continuity of homomorphisms are
developed, including versions of well-known theorems of C. Rickart and B. E. Johnson.

1. Introduction. The study of random elements in various finite- and
infinite-dimensional vector spaces has a long history, encompassing such ar-
eas as random-matrix theory [10], [13], the theory of random operators [2],
and probability theory on Banach spaces [2], [21]–[30]. In the present paper,
we focus on the case when the elements are chosen from a Banach algebra
A, investigating how the theory of Banach algebras reflects on the space of
random elements of A.

Inspiration for the present work stems from the earlier work of the au-
thors. If T is a compact Hausdorff space, papers [4], [5], [32] can be viewed
as studying the space C(T ;L0(C)) of continuous functions with random val-
ues, whereas the current work deals with the space L0(Ω;C(T )) of random
continuous functions. It is easy to see that

L0(Ω;C(T )) ⊂ C(T ;L0(C)).

On the other hand, automatic continuity of random derivations was consid-
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ered in detail in the work of the second author and A. R. Villena [33], [34],
motivating our interest here in automatic continuity of homomorphisms.

Let (Ω,F , µ) be a probability space and A be a complex Banach al-
gebra. To avoid trivialities, we shall take µ to be nonatomic and complete.
For simplicity, we will assume throughout the paper that A has an identity e,
although much of what we say below can be modified to hold for the nonuni-
tal case by relating it to the unital case in the standard way by adjoining
a unit. We wish to study the algebra L0(Ω;A) of all equivalence classes of
Bochner-measurable functions (sometimes called Effros measurable, as in [8])
from Ω to A, with the topology of convergence in measure.

After a short review in Section 2 of the needed properties of the space
L0(Ω;X) when X is a Banach space, we begin to study L0(Ω;A) as a topo-
logical algebra. In particular, we observe that the set of invertible elements
is not open (Prop. 2.1), in contrast to the case of a Banach algebra. This in
turn explains why maximal (left/right/two-sided) ideals in L0(Ω;A) are not
closed but dense.

We examine the notion of spectrum for such algebras in Section 3. Easy
examples (Examples 3.1) show that the classical notion of spectrum of an
element a ∈ L0(Ω;A) as those complex numbers λ for which a − λ is not
invertible in L0(Ω;A) can lead to an empty or noncompact spectrum. This
leads us to exploit the “stochastic spectrum”

σs(a) = {λ ∈ L0(Ω) : a(ω)− λ(ω) /∈ InvA a.s.}

and the corresponding “stochastic spectral radius” and “stochastically quasi-
nilpotent” elements. Both are defined in the obvious way, and the spectral
radius is shown to exist as a random variable (Prop. 3.4). This leads to
a study of the Jacobson radical. Since maximal ideals are not closed, the
radical is somewhat mysterious. Nevertheless, in the important case when A
is separable, we prove (Theorem 3.10) that the natural conjecture holds:

RadL0(Ω;A) = L0(Ω; RadA).

This has two interesting consequences: Although all maximal ideals are dense
in L0(Ω;A), the radical is closed. And L0(Ω;A) is semisimple if and only if
A is.

Section 4 is devoted to the ideal theory of L0(Ω;A). When A is simple, we
prove that the closed ideals in L0(Ω;A) are the obvious ones, namely those
determined by the characteristic functions of measurable sets (Theorem 4.3).
When A is a commutative Banach algebra, there are appropriate notions of
hulls and kernels in the theory of ideals of L0(Ω;A). The section concludes
by showing that if X is a separable compact Hausdorff space, then hulls
determine unique closed ideals in L0(Ω;C(X)), and that spectral synthesis
holds for a large class of ideals (Theorem 4.7).
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Finally, in Section 5, we develop in the current context versions of
the celebrated theorems on automatic continuity of homomorphisms due to
C. Rickart (Theorem 5.2) and B. E. Johnson (Theorem 5.7).

For the general theory of Banach algebras, see, for example, [3], [9],
or [19].

2. The spaces L0(Ω;X) and L0(Ω;A). For a Banach space X, and
with respect to the Borel σ-algebra on X, the space L0(Ω;X) consists of all
(equivalence classes of) almost-sure limits of F-measurable simple functions,
or equivalently, all F-measurable functions with separable range. Note that
the classical Pettis Measurability Theorem [20], [14, Sec. 3.5], [11, Sec. II.1]
asserts that L0(Ω;X) consists of all (equivalence classes of) functions with
separable range which are “weakly measurable”, and it is well known that
these two conditions imply F-measurability.

The restriction to the class of Bochner-measurable functions, as op-
posed to all (equivalence classes of) Borel-measurable functions from Ω to
X stems from the well-known fact that if X is not separable, then the sum
of two Borel-measurable functions and the norm function need not be Borel-
measurable. Elements of L0(Ω;X) will be denoted x,y, and so on. Recall
that for x ∈ L0(Ω;X), the norm function ‖x(·)‖ is measurable, and a metric
on L0(Ω;X) that induces its topology is given by

d(x1,x2) = E[min{‖x1 − x2‖, 1}] =
�

Ω

min{‖x1 − x2‖, 1} dµ.

This metric enjoys the following properties:

(i) (translation invariance) d(x+ z,y + z) = d(x,y);
(ii) (subadditivity) d(x+ y, 0) ≤ d(x, 0) + d(y, 0);
(iii) (monotonicity) d(λx,λy) ≤ d(x,y) if λ ∈ L0(Ω) with 0 ≤ λ ≤ 1.

It is also well known that L0(Ω;X) is a Fréchet topological vector space
which is not locally convex, and if A is a Banach algebra with identity, then
L0(Ω;A) is a topological algebra with identity. If we denote L0(Ω,C) by
L0(Ω), then L0(Ω;X) = L0(Ω)⊗X, the completion being in the topological
vector space topology of L0(Ω;X), and we may consider L0(Ω;X) as a
module over L0(Ω). Note that if (Ω′,F ′, ν) is a probability space, Y is a
Banach space, ψ : Ω′ → Ω is a measurable map, ϕ : X → Y is continuous,
and x ∈ L0(Ω;X), then

ϕ ◦ x ◦ ψ ∈ L0(Ω
′;Y ).

Recall that a subset E of L0(Ω;X) is bounded in the topological vector
space sense if and only if for every ε > 0 there exists Mε > 0 such that

µ[‖x‖ ≥Mε] < ε, x ∈ E.
Such sets are usually called stochastically bounded.
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In the obvious way, we may embed X and C in L0(Ω;X) as constant
random variables, while if A is as above, we may embed L0(Ω) in L0(Ω;A)
as multiples of the identity. This embeds X and L0(Ω) as closed subspaces
of L0(Ω;X) and L0(Ω;A), respectively, since it is clear that the relative
topologies on X and L0(Ω) are the given ones. We will denote (embedded)
elements L0(Ω) as λ,η, . . . , while scalars and elements of X are in light
face. In particular, the characteristic (indicator) function of a set Ω0 ⊂ Ω is
denoted by χΩ0

.
We shall need some terminology from the theory of multi-valued functions

and their selections. If X is a topological space, a multifunction (or relation)
F : Ω → X is called closed if F (ω) is closed in X for all ω ∈ Ω. The
graph of F, i.e. the relation itself, is the set Gr(F ) = {(ω, x) : x ∈ F (ω)}.
By a (measurable) selection for F we mean an element f ∈ L0(Ω;X) such
that f(ω) ∈ F (ω) for all ω ∈ Ω. We shall call F measurable if Gr(F ) is
F × B(X)-measurable, where B(X) denotes the Borel σ-algebra of X.

If F is a multifunction as above, the closure F is the multifunction
given by F (ω) = F (ω), where bar denotes closure. If {Fι}ι∈I is a family
of such multifunctions, define the multifunction

⋃
ι Fι in the obvious way:

(
⋃
ι Fι)(ω) = (

⋃
ι Fι(ω)). A standard reference on measurable relations and

selections is [1, Chapter 8].
Let B be a complex algebra with unit e, and let InvB denote the set of

invertible elements of B. In our Banach algebra A, InvA is open and inver-
sion is continuous on InvA. It is easy to see that an element a ∈ L0(Ω;A)
is invertible in L0(Ω;A) if and only if a ∈ InvA a.s. The relationship be-
tween invertibility and the topology on L0(Ω;A) is given by the following
proposition.

Recall that if a ∈ InvA and ‖x− a‖ < ‖a−1‖−1, then x ∈ InvA. And if
a, b ∈ InvA are such that ‖b− a‖ ≤ 1

2‖a
−1‖−1, then

‖b−1 − a−1‖ ≤ 2‖a−1‖2‖b− a‖.

Proposition 2.1. Let a ∈ InvL0(Ω;A) and ε > 0.

(i) There is a neighborhood U of a in L0(Ω;A) such that

µ[b ∈ InvA] > 1− ε

for all b ∈ U. On the other hand, no open set in L0(Ω;A) consists
entirely of invertible elements.

(ii) There is a neighborhood V of a in L0(Ω;A) such that if

b ∈ (InvL0(Ω;A)) ∩ V,

then µ[‖b−1−a−1‖≥ ε] < ε. Thus the inversion map on InvL0(Ω;A)
is continuous.
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Proof. (i) Choose M > 2/ε such that µ(Ω0) > 1− ε/2, where
Ω0 = {ω : ‖a−1(ω)‖ < M}.

Let
U = {b ∈ L0(Ω;A) : µ[‖b− a‖ ≥ 1/M ] < 1/M}.

Then for all b ∈ U,
µ[b ∈ InvA] ≥ µ(Ω0 ∩ [‖b− a‖ < 1/M ]) ≥ µ(Ω0)− 1/M

> 1− ε/2− 1/M > 1− ε.
The second assertion is clear, since any invertible element of L0(Ω;A) can
be modified on a set of arbitrarily small positive measure so as not to be
invertible.

(ii) Let Ω0 be as in (i) and

V = {b ∈ L0(Ω;A) : µ[‖b− a‖ ≥ ε/2M2] < ε/2}.
If b ∈ (InvL0(Ω;A)) ∩ V and ω ∈ Ω0, then outside of a set of measure at
most ε/2,

‖b−1 − a−1‖ ≤ 2‖a−1‖2‖b− a‖ < 2M2

(
ε

2M2

)
= ε.

Thus
µ[‖b−1 − a−1‖ ≥ ε] ≤ µ(Ωc

0) + ε/2 < ε.

3. The spectrum and the radical. For a complex algebra B with
unit e, recall that the spectrum of an element b in B is the set

σB(b) = {λ ∈ C : a− λe /∈ InvB}.
When B is a Banach algebra, it is well known that for b in B, σB(b) is a
compact, nonempty set in C. But for a in L0(Ω;A) neither of these properties
is guaranteed, as shown by the following examples.

Examples 3.1. (1) For many algebras A and every probability space we
are considering, there exist {an}∞n=1 ⊂ A and {Ωn}∞n=1 disjoint subsets of Ω
of positive measure such that

∞⋃
n=1

σA(an) = C and
∞⋃
n=1

Ωn = Ω.

If we set
a(ω) = an, ω ∈ Ωn, n = 1, 2, . . . ,

then for every n ∈ N and λ ∈ σA(an), µ[λ ∈ σA(a)] > 0, so σL0(Ω;A)(a) = C.
(2) Let a ∈ A be such that σA(a) = {1} (e.g., a = e). If ϕ is a measurable

function which maps Ω onto C in such a way that

µ[ϕ = λ] = 0
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for all λ ∈ C, and if a(ω) = ϕ(ω)a, then a− λ ∈ InvL0(Ω;A) for all λ ∈ C,
so σL0(Ω;A)(a) = ∅.

To overcome these difficulties, we introduce the following definition. The
notation parallels that of [10] for random matrices.

Definition 3.2. For a ∈ L0(Ω;A), the stochastic spectrum of a is the
set σs(a) of “random spectral elements,” i.e.,

σs(a) = {λ ∈ L0(Ω) : a(ω)− λ(ω) /∈ InvA a.s.}
= {λ ∈ L0(Ω) : λ(ω) ∈ σA(a(ω)) a.s.}.

It follows easily from Proposition 3.3 below that every element of σL0(Ω;A)(a)
agrees with an element of σs(a) on a set of positive probability. In particular,
for a as in Example 3.1(1),

σs(a) = {λ ∈ L0(Ω) : λ(ω) ∈ σA(an), ω ∈ Ωn, n = 1, 2, . . .},

while in Example 3.1(2), σs(a) = {ϕ}.

Although σL0(Ω;A)(a) may be empty, σs(a) cannot be empty, as we will
point out. We would like the natural choice of spectrum to be nonempty, so
it seems appropriate to use the stochastic spectrum as our working notion
of spectrum in L0(Ω;A).

If Λ is a set of F-measurable, C- or A-valued functions and ω ∈ Ω, let
Λ(ω) = {λ(ω) : λ ∈ Λ}.

Proposition 3.3. For any a ∈ L0(Ω;A), we have σs(a) 6= ∅. In fact,
there is a countable set Λ ⊂ σs(a) such that Λ(ω) is dense in σs(a(ω)) a.s.

Proof. Recall that the spectrum function is upper semicontinuous on A,
meaning that for any open set U in C, {a : σA(a) ⊂ U} is open. So for
any such U and a ∈ L0(Ω;A), we have {ω : σA(a(ω)) ⊂ U} ∈ F . Thus
σA(a(·)) is a measurable multifunction in the sense of [18]. The classical
theorem of Kuratowski and Ryll-Nardzewski [18] now says that there exists
a measurable selection for this multifunction, so σs(a) 6= ∅. The second
assertion follows from the generalization of the above theorem which appears
in [15, Theorem 5.6].

Remark 3.4. There is another natural notion of spectrum on L0(Ω;A),
namely the full spectrum

σ(a) = {λ ∈ L0(Ω) : a− λ /∈ InvL0(Ω;A)}
= {λ ∈ L0(Ω) : µ({ω : λ(ω) ∈ σ(a(ω)}) > 0}.

Clearly σ(a) contains both σL0(Ω;A)(a) and σs(a). Although it has a certain
aesthetic appeal, it seems to be unwieldy and does not lead to the results we
are seeking.
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Definition 3.5. Let r(a) denote the spectral radius of an element a
in A, i.e.

r(a) = sup{|λ| : λ ∈ σA(a)}.
For a ∈ L0(Ω;A) define the stochastic spectral radius of a to be the function

r(a)(ω) = r(a(ω)) a.s.

Corollary 3.6. For a ∈ L0(Ω;A), r(a) is a random variable, and as
random variables,

r(a) = sup{|λ| : λ ∈ σs(a)} = lim
n→∞

‖an‖1/n a.s.

Proof. Proposition 2.3 implies that r(a) is the supremum of a count-
able family of random variables, hence is measurable. By the spectral radius
formula, the corollary follows.

The notion of spectrum leads naturally to a discussion of radicals and
semisimplicity. Recall that for any algebra B with identity, its Jacobson rad-
ical RadB is the intersection of all maximal left (or equivently right) ideals
in B and is the largest ideal contained in the set QN(B) of quasinilpotent el-
ements (or topologically nilpotent elements in the case of a Banach algebra),
i.e. elements with spectrum {0} or empty. Equivalently,

RadB = {x ∈ B : bx− e ∈ Inv(B) ∀b ∈ B}
= {x ∈ B : xb− e ∈ Inv(B) ∀b ∈ B}.

(See [3, Prop. 26.16], and for each ideal J, note that J ⊂ q-Inv(B) means
J ⊂ QN(B).) In particular, when B is commutative, RadB = QN(B). In
the case of L0(Ω;A) we can say more.

Definition 3.7. Let

QNs(L0(Ω;A)) = {a ∈ L0(Ω;A) : σs(a) = {0}}
= {a ∈ L0(Ω;A) : r(a) = 0 a.s.}.

Lemma 3.8. Let X and Y be topological spaces and Φ : X → Y be a
closed, upper semicontinuous multifunction. If F is a closed set in Y, then
the map Ψ(x) = Φ(x) ∩ F, x ∈ X, is upper semicontinuous.

Proof. Let x0 ∈ X and U be a neighborhood of Ψ(x0). Then U ∪ F c is
a neighborhood of Φ(x0). Hence there is a neighborhood V of x0 such that
for all x ∈ V, Φ(x) ⊂ U ∪ F c, so Ψ(x) = Φ(x) ∩ F ⊂ U.

Lemma 3.9. Let a ∈ L0(Ω;A). Then a ∈ QNs(L0(Ω;A)) if and only if
a− λ ∈ Inv(L0(Ω;A)) for all λ ∈ Inv(L0(Ω)).

Proof. If a ∈ QNs(L0(Ω;A)) and λ ∈ Inv(L0(Ω)), then clearly λ /∈
σA(a) a.s., so a − λ ∈ Inv(L0(Ω;A)). Conversely, if a /∈ QNs(L0(Ω;A)),
then for some 0 < ε < 1 we have µ(Ωε) > 0, where Ωε = {ω : r(a(ω)) ≥ ε}.
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By Lemma 3.8 and the selection theorem [18], we can find λε ∈ L0(Ω) such
that λε(ω) ∈ σA(a(ω)) and |λε(ω)| ≥ ε for all ω ∈ Ωε. If

λ(ω) =

{
λε(ω), ω ∈ Ωε,
1, ω /∈ Ωε,

then λ ∈ Inv(L0(Ω)) but a− λ /∈ Inv(L0(Ω;A)).

Theorem 3.10. Let A be a Banach algebra with identity. Then

RadA ⊂ L0(Ω; RadA) ⊂ RadL0(Ω;A) ⊂ QNs(L0(Ω;A)) ⊂ QN(L0(Ω;A)).

If A is separable, then RadL0(Ω;A) = L0(Ω; RadA).

Proof. Suppose a ∈ RadL0(Ω;A) and a − λ is not left-invertible in
L0(Ω;A). Then a and a − λ are in a maximal left ideal of L0(Ω;A), so
λ /∈ Inv(L0(Ω)). By Lemma 3.9,

RadL0(Ω;A) ⊂ QNs(L0(Ω;A)),

so RadL0(Ω;A) is the largest ideal in L0(Ω;A) contained in QNs(L0(Ω;A)).
Since clearly L0(Ω; RadA) is an ideal of L0(Ω;A) (see below) contained in
QNs(L0(Ω;A)), it is contained in the radical. The remaining containments
are obvious.

For each a ∈ A, let E(a) = {b ∈ A : ba−e /∈ Inv(A)}. Thus E(a) is closed
in A and empty if and only if a ∈ RadA. Let

E = {(a, b) ∈ A×A : b ∈ E(a)}.

Then E is closed in A×A, so if a ∈ L0(Ω;A), it follows that

F = {(a(ω), b) : ω ∈ Ω, b ∈ Ea(ω)}

is a product-measurable subset of Ω ×A.
Now suppose a /∈ RadA on a set of positive measure. By conditioning

on such a set, let us assume that set is all of Ω. That means E(a(ω)) 6= ∅
for all ω ∈ Ω. Thus F becomes a closed multifunction which is product
measurable and such that each F (ω) is nonempty. By [15, Theorem 5.7]
(cf. [1, Theorem 8.1.4]), if A is separable this implies that there is a selection
b for F, which means ba− e /∈ InvL0(Ω;A).

Corollary 3.11. If L0(Ω;A) is semisimple, then A is semisimple; the
converse holds whenever A is separable or commutative.

As for Banach algebras, we have the following observation.

Lemma 3.12. Let B be a closed, unital subalgebra of A. Then

RadL0(Ω;A) ∩ L0(Ω;B) ⊂ RadL0(Ω;B).
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Proof. The set RadL0(Ω;A) ∩ L0(Ω;B) is an ideal in L0(Ω;B) (see
below), and

QNs(L0(Ω;B)) = QNs(L0(Ω;A)) ∩ L0(Ω;B).

Since RadL0(Ω;B) is the largest ideal in QNs(L0(Ω;B)), the lemma fol-
lows.

Corollary 3.13. If A is a C∗-algebra, then L0(Ω;A) is semisimple.

Proof. It is well known that every C∗-algebra is semisimple (see e.g. [19,
Prop. 2.3.17, 2.3.18], [9, Cor. 3.2.13]). If A is a C∗-algebra and

a ∈ RadL0(Ω;A),

then a is a.s. separably valued, so there is a separable, unital C∗-subalgebra
B of A such that a ∈ L0(Ω;B). But then a ∈ RadL0(Ω;B) by Lemma 3.12,
so by Theorem 3.10(ii) a ∈ RadL0(Ω;B) = {0}.

Definition 3.14. Let A be commutative. For ϕ in the Gelfand space ΦA,
denote also by ϕ the homomorphism ϕ : L0(Ω;A)→ L0(Ω) given by

ϕ(a)(ω) = ϕ(a(ω)) a.s.

Call this ϕ a stochastic character. For a ∈ L0(Ω;A), set â(ϕ) = ϕ(a) for
all ϕ ∈ ΦA. Thus a 7→ â is a continuous homomorphism from L0(Ω;A) to
L0(Ω;C(ΦA)).

Corollary 3.15. Let A be commutative. The map a 7→ â is injective
if and only if A is semisimple.

4. Ideals, hulls, and kernels. If I is an ideal in L0(Ω;A), then I ∩A
is a (perhaps trivial) ideal in A. Conversely, if J is an ideal in A, then
L0(Ω; J) = {a : a ∈ J a.s.} is an ideal in L0(Ω;A). For I and J as above,
we have L0(Ω; J) ∩ A = J ; and if J is closed in A, then L0(Ω; J) is closed
in L0(Ω;A), since every Cauchy sequence in L0(Ω;A) has a subsequence
converging a.s. On the other hand, if I is closed, then I ∩A is closed.

In general, the ideal structure of L0(Ω;A) is complicated. For instance,
one can develop many variations on the theme of the following example.

Example 4.1. Let Ω = [0, 1], µ be ordinary Lebesgue measure, and It,
0 < t < 1, be closed ideals in A such that Is ⊂ It if s < t. Let

J =
⋂

0<t<1

{a : a(ω) ∈ It, 0 ≤ ω ≤ t}.

Then J is a closed ideal in L0(Ω;A).

In one case, however, we have a complete answer, based on the following
lemma.
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Lemma 4.2. Suppose that A is simple, and let I be a nontrivial closed
ideal in L0(Ω;A). Then I contains an element which is invertible on a set
of positive probability.

Proof. Let 0 6= a ∈ I. Since a is measurable, all the values of a lie in
a closed, separable subspace A0 of A. Let a1, a2, . . . be a countable dense
subset of A0, and for 1 ≤ i, n < ∞ let B(i, n) be the closed ball of radius
1/n about ai. There exists ε > 0 such that

µ({ω : ‖a(ω)‖ ≥ ε}) > 0.

Set F0 = {a : ‖a‖ ≥ ε} and Ω0 = {ω : a(ω) ∈ F0}. Suppose that

F0 ⊃ F1 ⊃ · · · ⊃ Fn
have been defined so that diamFj ≤ 1/j and µ(Ωj) > 0, where

Ωj = {ω : a(ω) ∈ Fj}, j = 1, . . . , n.

Since the balls B(i, n + 1), i = 1, 2, . . . , cover A0, we can choose in+1 such
that if we set Fn+1 = Fn ∩ B(in+1, n + 1) and Ωn+1 = {ω : a(ω) ∈ Fn+1},
then µ(Ωn+1) > 0. Thus we obtain a decreasing sequence {Fn} of nonvoid
closed subsets of F0 and measurable sets Ωn = {ω : a(ω) ∈ Fn} of positive
probability such that diamFn → 0.

Let a0 ∈
⋂∞
n=1 Fn. Since a0 6= 0, there exist b1, . . . , bm, c1, . . . , cm ∈ A

such that b1a0c1 + · · ·+ bma0cm = e. It follows that

x(a) = b1ac1 + · · ·+ bmacm

is invertible for all a in some neighborhood of a0. In particular, for some j,
x(a) is invertible for all a ∈ Fj , so b1ac1+ · · ·+bmacm is the desired element
of I.

Theorem 4.3. Let A be simple, and let I be a closed ideal in L0(Ω;A).
Then there exists ΩI ∈ F such that

I = L0(Ω;A)χΩI
= {a ∈ L0(Ω;A) : a = 0 on X \ΩI}.

Proof. By Lemma 4.2 there exist 0 6= a ∈ I and Ωa ∈ F such that
µ(Ωa) > 0 and a(ω) is invertible for all ω ∈ Ωa. It follows from the continuity
of inversion in A that χΩa

∈ I, so L0(Ω;A)χΩa
⊂ I.

Now, if Ω1, Ω2 ∈ F are such that χΩ1
,χΩ2

∈ I, then clearly χΩ1∪Ω2
∈ I.

And if Ω1 ⊂ Ω2 ⊂ · · · are such χΩn
∈ I for all n and Ω0 =

⋃
nΩn, then

χΩ0
= lim

n→∞
χΩn

∈ I.

It follows that there exists ΩI ∈ F such that χΩI
∈ I and

µ(ΩI) = sup{µ(E) : E ∈ F , χE ∈ I}.
Since χE /∈ I for all E ⊂ Ω \ ΩI with µ(E) > 0, the theorem follows from
Lemma 4.2.
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For the remainder of this section, A will be assumed commutative. Recall
that if E is a closed set in ΦA, then the kernel of E is the closed ideal of
elements a ∈ A such that â(ϕ) = 0 for all ϕ ∈ E. And if I is a closed ideal
in A, then the hull of I is the closed set

{ϕ ∈ ΦA : â(ϕ) = 0 for all a ∈ I}.
Our goal is to introduce the corresponding notions for the algebras L0(Ω;A).

Definition 4.4. Let E : Ω → ΦA be a closed multifunction. By the
kernel of E we shall mean the set

I(E) = {a ∈ L0(Ω;A) : â(ϕ)(ω) = 0 for all ϕ ∈ E(ω) a.s.}.
On the other hand, if I is a closed ideal in L0(Ω;A), then a hull for I is a
closed multifunction Z = Z(I) : Ω → ΦA satisfying:

(i) (vanishing) For all a ∈ I, â(ϕ)(ω) = 0 for all ϕ ∈ Z(ω) a.s.
(ii) (maximality) If W is a closed multifunction in Φ satisfying (i), then

W ⊂ Z (i.e., W (ω) ⊂ Z(ω)) a.s.
Proposition 4.5. If E : Ω → ΦA is a closed multifunction, then I(E)

is a closed ideal in L0(Ω;A). If I is a closed ideal in L0(Ω;A) such that a
hull Z(I) exists, then the hull is unique up to null sets. If J is a closed ideal
in L0(Ω;A) with hull Z(J), then I(Z(J)) ⊃ J, while if E is as above and
if Z(I(E)) exists, then Z(I(E)) ⊃ E.

The proof is straightforward and left to the reader.

Theorem 4.6. Let A be a commutative Banach algebra.

(i) Suppose that A is (completely) regular and ΦA is separable. If

E : Ω → ΦA

is a proper, closed, measurable multifunction, then I(E) 6= {0}.
(ii) If I is a (topologically) countably generated, closed ideal in L0(Ω;A),

then Z(I) exists and is measurable.

Proof. (i) By a proper multifunction E we mean here that

µ[E 6= ΦA] > 0.

Without loss of generality, we may assume that E 6= ΦA on all of Ω. Let
{ϕn}∞n=1 be a countable dense set in ΦA. For each n,

En = {ω : ϕn /∈ E(ω)} ∈ F
and

⋃
nEn = Ω. Hence µ(En0) > 0 for some n0. Since ΦA is compact and

metrizable, [15, Theorem 3.5] implies that the function

f(ω) = dist(ϕn0 , E(ω))

is measurable. It follows that there exist E′ ∈ F and ε > 0 such that
µ(E′) > 0 and f(ω) ≥ ε for all ω ∈ E′. By hypothesis, we can find a0 ∈ A
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such that â0(ϕ0) = 1 and â0(ϕ) = 0 if d(ϕ,ϕ0) ≥ ε, where d denotes a metric
on ΦA. So if

a(ω) =

{
a0, ω ∈ E′,
0, ω /∈ E′,

then 0 6= a ∈ I(E).
(ii) Let a1,a2, . . . be generators of I. Then ân ∈ L0(Ω;C(ΦA)), so let

Z(an) = â−1n (0), n = 1, 2, . . ., defined up to null sets. Since convergence of
a sequence in L0(Ω;A) to some a implies convergence a.s. of a subsequence
to a, it is easy to see that Z(I) =

⋂
n∈N Z(an). Now, up to a µ-null set,

each ân takes values in a separable subset of C(ΦA), and the range of any
function in C(ΦA) is separable. Thus neglecting a null set, there is a separable
topological quotient space Y of ΦA with quotient map π : ΦA → Y and a
sequence fn ∈ L0(Ω;C(Y )) such that ân = fn ◦ π a.s., for n = 1, 2, . . . .
And since ΦA is compact, so is Y, hence Y is metrizable. An easy exercise
shows that the map f 7→ Z(f) = f−1(0) is upper semicontinuous on C(Y ).
Thus the multifunctions Z(fn(·)) are measurable in the sense of [18] and
hence each Gr(Z(fn)) is measurable by [15, Theorem 5.3]. But then for
all n, Gr(Z(an)) = (Id× π)−1(Gr(Z(fn))) ∈ F ×B(ΦA). Hence Z(I) exists
and is measurable.

The classical example which led to the notions of hull and kernel in
Banach algebras is the case A = C(X) for X a compact Hausdorff space,
which is, of course, regular. Here ΦA = X in the natural way, so our theorem
mimics the classical results. But in this case the situation is more complete.

Theorem 4.7. Let X be a separable, compact Hausdorff space. If
E : Ω → X is a closed, measurable multifunction, then Z(I(E)) = E. If
I is a countably generated closed ideal in L0(Ω;C(X)), then I(Z(I)) = I.

Proof. Let ϕ(ω)(x) = dist(x,E(ω)). Then ϕ is continuous on X for
each ω ∈ Ω and measurable for each x ∈ X. By a well-known observation
of Carathéodory, ϕ is jointly measurable on Ω × X, hence an element of
L0(Ω;C(X)). Since Z(I(E)) ⊂ Z(ϕ) = E, we obtain equality from Propo-
sition 4.5.

Let I be the ideal in L0(Ω;C(X)) generated topologically by {f1,f2, . . .}.
For each n, ‖fn‖ ∈ L0(Ω), so set

f =

∞∑
n=1

fn
2n‖fn‖

,

where we understand any term to be the constant function 0 whenever
‖fn‖ = 0. Then f ∈ I, and Z(I) = f−1(0).

Let g ∈ I(Z(I)) and ε > 0. For each j = 1, 2, . . . and ω ∈ Ω, let

U j(ω) = {x : dist(x, Z(I)(ω)) < 1/j}.
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Since X is separable, it is easy to see that U j is a measurable multifunction.
(The modulus of continuity of any element of L0(Ω;C(X)) is easily seen to
be measurable.) Hence the sets

Ωj = {ω : |g(ω)(x)| < ε/3 for all x ∈ U j(ω)}
are measurable; Ωj ⊂ Ωj+1, j = 1, 2, . . . ; and

⋃∞
j=1Ωj = Ω. Thus we can

choose j0 such that µ(Ωc
j0
) < ε.

Recall that if F and G are disjoint closed multifunctions in X, then the
function

Φ(ω)(x) =
dist(x, F (ω))

dist(x, F (ω)) + dist(x,G(ω))

is an element of L0(Ω;C(X)) such that Φ(x) = 0 if x ∈ F and Φ(x) = 1
if x ∈ G. Using this observation and the stochastic version of Tietze’s Ex-
tension Theorem [4, Theorem 2.3], one can construct h ∈ L0(Ω;C(X)) such
that fh = 1 on U cj0 and ‖fh‖ ≤ 2 a.s.

Set q = fgh. Then q ∈ I. Let ω ∈ Ωj0 . If x ∈ Z(I)(ω), then
g(x) = 0 = q(x).

If x /∈ U j0(ω), then f(x)h(x) = 1, so q(x) = g(x). And if

x ∈ U j0(ω) \ Z(I)(ω),
then

|g(x)− q(x)| = |g(x)| |1− f(x)h(x)| < 3
ε

3
= ε.

Thus µ[‖g − q‖ ≥ ε] < ε. Since ε was arbitrary and I is closed, we conclude
that g ∈ I. And since g was chosen arbitrarily in I(Z(I)), Proposition 4.5
implies that I(Z(I)) = I.

5. Homomorphisms and automatic continuity. In this section we
prove analogues of two well-known theorems on the automatic continuity of
homomorphisms between Banach algebras, in the context of L0-algebras. If
A and B are unital Banach algebras, a mapping θ : L0(Ω;A) → L0(Ω;B)
will be called a modular unital homomorphism if it is a unital homomorphism
which is also a module homomorphism over L0(Ω).

Lemma 5.1. Let A and B be a unital Banach algebra and

θ : L0(Ω;A)→ L0(Ω;B)

be a unital homomorphism. Then θ is modular if and only if

(1) σs(θ(a)) ⊂ σs(a), a ∈ L0(Ω;A).

Proof. Suppose θ is modular and a ∈ L0(Ω;A). If λ /∈ σs(a), then there
exists Ω0 ⊂ Ω with µ(Ω0) > 0 such that

a(ω)− λ(ω) ∈ Inv(A), ω ∈ Ω0.
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Let

c(ω) =

{
(a(ω)− λ(ω))−1, ω ∈ Ω0,

0, ω /∈ Ω0.

Then c ∈ L0(Ω;A) and c(a−λ) = χΩ0
, so θ(c)(θ(a)−λ) = θ(χΩ0

) = χΩ0
.

Hence λ /∈ σs(θ(a)), so (1) holds.
Conversely, suppose that (1) holds for all a ∈ L0(Ω;A). Then in par-

ticular, for all λ ∈ L0(Ω), we have ∅ 6= σs(θ(λ)) ⊂ σs(λ) = {λ}. Hence
θ(λ) = λ, so θ(λa) = θ(λ)θ(a) = λθ(a) for all a ∈ L0(Ω;A), i.e., θ is
modular.

Theorem 5.2. Let A and B be unital Banach algebras and

θ : L0(Ω;A)→ L0(Ω;B)

be a modular unital homomorphism. Suppose that either

(i) B is simple and the range of θ is dense in L0(Ω;B), or
(ii) B is commutative and semisimple.

Then θ is continuous.

Proof. Let S(θ) be the separating subspace of θ, i.e., the set of all
b ∈ L0(Ω;B) for which there exists a sequence {an} in L0(Ω;A) such that
an → 0 and θ(an)→ b. Then S(θ) is a closed ideal in L0(Ω;B), since θ has
dense range, and θ is continuous if and only if S(θ) = {0} by the Closed
Graph Theorem, since L0(Ω;A) and L0(Ω;B) are Fréchet spaces.

Assume first that B is simple, and suppose S(θ) 6= {0}. By Theo-
rem 4.3 there exists Ω0 ⊂ Ω such that µ(Ω0) > 0 and χΩ0

∈ S(θ). Choose
an ∈ L0(Ω;A), n = 1, 2, . . . , so that an → 0 and θ(an) → χΩ0

. By Lem-
ma 5.1,

σs(θ(a)) ⊂ σs(a), a ∈ L0(Ω;A).

If λn ∈ σs(θ(an)), then almost surely on Ω0 our hypotheses imply that

1− λn ∈ σs(e− θ(an)) = σs(θ(e− an)).
Thus passing to a subsequence, we have

1 = λn + (1− λn) ≤ |λn|+ |1− λn| ≤ ‖an‖+ |1− λn| → 0

almost surely on Ω0. Hence S(θ) = {0}.
Now suppose that B is commutative and semisimple. For each stochastic

character ϕ on L0(Ω;B) and b ∈ S(θ), the previous case implies that

ϕ(b) ∈ S(ϕθ) = {0}.
Thus S(θ) ⊂ Rad(L0(Ω;B)) = {0} by Corollary 3.11.

The following celebrated theorem was proved by B. E. Johnson in 1967:

Theorem 5.3 ([17]). Let A and B be unital Banach algebras with B
semisimple. Then every surjective homomorphism θ : A→ B is continuous.
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Corollary 5.4. Every semisimple, unital Banach algebra has a unique
Banach-algebra norm.

This theorem has been generalized by several authors in various directions
for locally convex Fréchet algebras (see [7], [12], [16]). The following theorem
is a version of Theorem 5.3 valid for algebras of random elements.

Our proof is based on the short proof of Theorem 5.3 obtained by T. Rans-
ford [31]. That proof is based on the following lemma.

Lemma 5.5 ([31]). Let A be a Banach algebra and let p(z) be a polyno-
mial with coefficients in A. Then for any R > 0,

r(p(1))2 ≤ sup
|z|=R

r(p(z)) sup
|z|=1/R

r(p(z)).

Remark 5.6. It was pointed out to the authors by A. Rodríguez-Palacios
that the proof of the above lemma in [31] uses implicitly the following variant
of Dini’s Theorem: Let E be a compact Hausdorff space, and let {fn} be a
decreasing sequence of nonnegative continuous functions on E. Then

lim
n→∞

sup
t∈E

fn(t) = sup
t∈E

lim
n→∞

fn(t).

For a proof, see [6, Lemma 3.7.2].

Theorem 5.7. Let A and B be unital Banach algebras and

θ : L0(Ω;A)→ L0(Ω;B)

be a modular unital homomorphism. If θ is surjective then the separat-
ing ideal S(θ) is contained in RadL0(Ω;B). In particular, if L0(Ω;B) is
semisimple then θ is continuous.

Proof. Let b ∈ S(θ) and choose a,a1,a2, . . . ∈ L0(Ω;A) such that
θ(a) = b and

(2) lim
n→∞

an = 0, lim
n→∞

θ(an) = b.

By passing to a subsequence we may assume the sequences in (2) converge
a.s. For each n let pn(z) = pn(z, ω) be the random linear polynomial with
values in L0(Ω;B) given by

pn(z) = zθ(an) + (θ(a)− θ(an)).

Then pn(1) = b and

(3) r(pn(z)) ≤ ‖pn(z)‖ ≤ |z|‖θ(an)‖+ ‖θ(a)− θ(an)‖ a.s.

Since θ is modular, it follows easily after choosing a sequence Λ in σs(θ(x))
as in Proposition 3.3 and applying Lemma 5.1 that

r(θ(x)) ≤ r(x) a.s., x ∈ L0(Ω;A).
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Thus

(4) r(pn(z)) ≤ r(zan + (a− an)) ≤ |z|‖an‖+ ‖a− an‖ a.s.

If we set z = 1, Lemma 5.5 and the estimates (3) and (4) give

r(b)2 ≤ (R‖an‖+ ‖a− an‖)(R−1‖θ(an)‖+ ‖θ(a)− θ(an)‖) a.s.

Letting n→∞ and recalling the definitions of an and a, we obtain

r(b)2 ≤ R−1‖a‖ ‖b‖ a.s.

Now choosing Rn → ∞ we see that b ∈ QNs(L0(Ω;B)). It follows that the
ideal S(θ) is contained in RadL0(Ω;B).
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