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ON THE CONTINUATION OF THE LIMIT DISTRIBUTION

OF CENTRAL ORDER STATISTICS UNDER POWER

NORMALIZATION

Abstract. An important stability property of central order statistics un-
der power normalization is discussed. It is proved that the restricted con-
vergence of power normalized central order statistics on an arbitrary non-
degenerate interval implies their weak convergence.

1. Introduction. For a long time, the limit distribution functions (df’s)
of order statistics with fixed rank sequence (i.e., extremes) or with variable
rank sequence (i.e., intermediate and central order statistics) were obtained
by using linear normalization Gn(x) = anx+ bn, where an > 0. The advan-
tage of using this traditional transformation is that it provides us with a
sufficiently simple approximation for the exact df’s of order statistics. How-
ever, Pantcheva (1985) showed that any nonlinear strictly monotone con-
tinuous transformation may serve to construct a simplified approximation,
provided one can prove a suitable limit theorem. In the last two decades
Pantcheva and her collaborators have been investigating various limit theo-
rems for extremes and extremal processes using a wider class of normalizing
mappings than the linear ones to get a wider class of limit laws. This wider
class of extreme limit laws can be used in solving approximation problems.
Another reason for using nonlinear normalization is to refine the accuracy
of approximation in the limit theorems. Actually, by using relatively non-
difficult monotone mappings in certain cases we may achieve a better rate of
convergence: see e.g. Weinstein (1973) and Barakat et al. (2010). Although
no one can claim that the employment of nonlinear normalization is prefer-
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able in general, Pantcheva (1994) (and many other authors) showed that
in some cases of practical interest it is not only better to use a nonlinear
transformation, but we have to use it.

Pantcheva (1985) considered the power normalization Gn(x) = bn |x|an
× sign(x), an, bn > 0, to derive all the possible limit distributions of max-
imum order statistics. These limit distributions are usually called p-max
stable df’s. We say that two df’s Ψ1 and Ψ2 are of the same power type
(p-type) if for some A,B > 0, Ψ1(x) = Ψ2(A|x|B sign(x)) for all x. Mohan
and Ravi (1992) showed that the p-max stable df’s (six p-types of df’s)
attract more df’s than linear max stable df’s. Therefore, using power nor-
malization, we get a wider class of limit df’s which can be used in solving
approximation problems.

Barakat and Omar (2011) extended the work of Pantcheva (1985) to
order statistics with variable ranks. They showed that, unlike the case of
extreme order statistics, the class of possible limit df’s of central order
statistics under linear normalization (this class contains four types) coin-
cides with the class of possible limit df’s of central order statistics under
power normalization.

Specifically, let X1, . . . , Xn be i.i.d. random variables (rv’s) with common
df F (x) = P (Xn ≤ x). Furthermore, let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote
the order statistics of X1, . . . , Xn. Thus, Xr:n is the rth order statistic with
rank r. If r = rn →∞ as n→∞ and rn/n→ λ, 0 < λ < 1, then r is called
a central rank.

Assume
√
n(r/n−λ)→ 0 as n→∞, 0 < λ < 1. Then, following Smirnov

(1952), a df F is said to belong to the domain of normal λ-attraction of a
nondegenerate df Φ, written F ∈ Dλ(Φ), if there exist normalizing constants
an > 0 and bn such that

Φλ:n(anx+ bn) = P (Xr:n ≤ anx+ bn)
w−→
n
Φ(x),

where
w−→
n

stands for weak convergence as n → ∞ (everywhere in what

follows, −→
n

means convergence as n→∞). Smirnov (1952) showed that the

class of limit laws of linearly normalized central order statistics consists of
the following types:

(i) Φ1(x; c, α) = N (cxα)I[0,∞)(x), c, α > 0.
(ii) Φ2(x; c, α) = N (−c(−x)α)I(−∞,0)(x) + I[0,∞)(x), c, α > 0.

(iii) Φ3(x; c1, c2, α)=N (−c1(−x)α)I(−∞,0)(x)+N (c2x
α)I[0,∞)(x), c1, c2,

α > 0.
(iv) Φ4(x) = 1

2I[−1,1)(x) + I[1,∞)(x),

whereN (·) denotes the standard normal distribution. Moreover F ∈ Dλ(Φi),
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i ∈ {1, 2, 3, 4}, if and only if

√
n
F (anx+ bn)− λ

Cλ
−→
n
N−1(Φi(x)),

where Cλ =
√
λ(1− λ).

Barakat and Omar (2011) showed that the possible limit types for central
order statistics under power normalization are

Ψ1(x) = Φ1(x; 1, 1), Ψ2(x) = Φ2(x; 1, 1), Ψ3(x) = Φ3(x; c1, c2, 1), Ψ4(x),

where Ψ4(x) is a family of df’s which consists of the following six power
types:

Φ
[1]
4 (x) =

1

2
I[−A,A)(x) + I[A,∞)(x),

Φ
[2]
4 (x) =

1

2
I[−A,B)(x) + I[B,∞)(x),

Φ
[3]
4 (x) =

1

2
I[−A,0)(x) + I[0,∞)(x),

Φ
[4]
4 (x) =

1

2
I[0,A)(x) + I[A,∞)(x),

Φ
[5]
4 (x) =

1

2
I[A,B)(x) + I[B,∞)(x),

Φ
[6]
4 (x) =

1

2
I[−A,−B)(x) + I[−B,∞)(x),

where A,B > 0.

Remark 1.1. Note that, under power normalization, the function c|x|α
has the same type as |x|, while Φ3(x; c1, c2, 1) represents a family of two
power types, which correspond to the cases c1 6= c2 and c1 = c2, respectively.

The main aim of this paper is to prove the weak convergence continuation
property of the limit df of central order statistics under power normalization.

In the last two decades the subject of continuation of convergence either
in sums of independent rv’s or in order statistics gained considerable impor-
tance in probability theory and its applications. Perhaps one of the most
important reasons for this is that when we get a sample for studying any
random quantity, we are often faced with a major difficulty that the range
of values of that sample is limited. Therefore, the data actually enables us to
identify the limit df of the given random quantity only on a finite interval.
This difficulty becomes serious in some situations, such as medical research
and for agencies which regulate food or drug safety standards. However, the
proof of continuation of convergence of these possible limits allows us to
overcome this difficulty and to deal with the identified limit distribution on
the whole real line regardless of the length of the interval to which the data
belongs.
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The theory of continuation of convergence started with the work of Ross-
berg and Siegel (1975), in which an elegant hypothesis due to V. M. Zolotarev
is proved. This hypothesis states that if the distribution of the normal-
ized sum of i.i.d. rv’s converges weakly to the normal distribution, then
this convergence holds on the whole real line. More recently this result
has been generalized in various directions (e.g., Riedel, 1977 and Rossberg,
1995). Moreover, some pertaining results concerning the asymptotic theory
of order statistics have been obtained (e.g., Gnedenko, 1983, Gnedenko and
Senocy, 1982, 1983, Barakat, 1997, 2000 and Barakat and Ramchandran,
2001). Barakat et al. (2002) proved that the restricted convergence of power
normalized extremes on an arbitrary nondegenerate interval implies weak
convergence. More recently, Barakat et al. (2003) proved the continuation
property of power normalized extremes with random sample indices.

We end this introductory section with a definition and a lemma, which
help us establish our results.

Definition 1.1. Let {Fn}n be a sequence of df’s. Then the restricted

convergence Fn(x)
S−→
n
F (x), where S is a set of real numbers and F is a

nondecreasing function, means that the convergence of {Fn}n to the limit F
is restricted to S, for all continuity points of F. Moreover, a function F (x)
is said to be nondegenerate on S if it has at least two growth points on S.

Lemma 1.1. Let {un, n ≥ 1} be a sequence of constants and 0 ≤ τ ≤ ∞.
Then

Φλ:n(un) −→
n
N (τ) if and only if

√
n

[F (un)− λ]

Cλ
−→
n
τ.

Using the power parametrization un = an|x|bn sign(x) and τ = Vi(x), i ∈
{1, 2, 3, 4}, where Vi(x) is defined by N−1(Ψi(x)), Lemma 1.1 gives a neces-

sary and sufficient condition for Φλ:n(an|x|bn sign(x))
w−→
n
Ψi(x) = N (Vi(x)).

2. Main results

Theorem 2.1. Let F (x) be a df for which there exist real constants
an > 0 and bn > 0 such that

(2.1) Φλ:n(an|x|bn sign(x))
[c,d]−−→
n

Φ∗(x),

where
√
n(r/n− λ) −→

n
0 and Φ∗(x) is any nondecreasing (right continuous)

function, which has at least two nonzero growth points in (c, d). Moreover,
assume that Φ∗(x) takes at least two different values in [c, d], one of which is
less than 1/2, while the other is greater than 1/2. Then Φλ:n(an|x|bn sign(x))
w−→
n
Φ(x), where Φ(x) = Φ∗(x) for all x ∈ [c, d]. Moreover, Φ(x) = N (Vi(x)),
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i ∈ {1, 2, 3, 4}, i.e., Φ(x) has one and only one of the types Φ1(x; 1, 1),

Φ2(x; 1, 1), Φ3(x; c1, c2, 1), Φ
[1]
4 (x), Φ

[2]
4 (x), Φ

[5]
4 (x) or Φ

[6]
4 (x).

Remark 2.1. The assumption that the two growth points are nonzero

implies that the types Φ
[3]
4 and Φ

[4]
4 will be excluded in the proof of Theo-

rem 2.1.

Proof of Theorem 2.1. Since the proof is somewhat lengthy, we split it
up into several steps, some of which are of independent interest.

Step 1. Under the conditions of Theorem 2.1, the sequence {Φλ:n(an|x|bn
× sign(x))}n is stochastically bounded.

Proof. It is sufficient to show that, for any subsequence {nk} for which

(2.2) Φλ:nk(ank |x|
bnk sign(x))

R−→
k
Φ̃(x),

where Φ̃(x) is a nondecreasing right continuous function, we must have
Φ̃(−∞) = 0 and Φ̃(∞) = 1. It is easy to see that, in view of Lemma 1.1, the
last two equalities are equivalent to Ṽ (−∞) = −∞ and Ṽ (∞) =∞, respec-
tively, where Ṽ (x) = N−1(Φ̃(x)) for x ∈ R, Ṽ (x) = V ∗(x) for x ∈ [c, d] and
V ∗(x) = N−1(Φ∗(x)) for x ∈ [c, d]. By using Lemma 1.1, we get the limit
relations

Vn(an|x|bn sign(x)) =

√
n(F (an|x|bn sign(x))− λ)

Cλ

[c,d]−−→
n

V ∗(x)

and

Vnk(ank |x|
bnk sign(x)) =

√
nk(F (ank |x|bnk sign(x))− λ)

Cλ

R−→
k
Ṽ (x).

Now, for any positive real number t, (2.1) implies that

Φλ:[nt](a[nt]|x|b[nt] sign(x))
[c,d]−−→
n

Φ∗(x),

which again, by Lemma 1.1, is equivalent to

Vλ:[nt](a[nt]|x|b[nt] sign(x))
[c,d]−−→
n

V ∗(x).

Clearly, if there exists x ∈ [c, d] for which Φ∗(x) = 0 or Φ∗(x) = 1, then
Φ̃(−∞) = 0 or Φ̃(∞) = 1, respectively. Therefore (without any loss of
generality), we assume that 0 < Φ∗(x) < 1 for all x ∈ [c, d], or equivalently
−∞ < V ∗(x) <∞ for all x ∈ [c, d]. This implies

F (a[nt]|x|b[nt] sign(x))− λ
Cλ

[c,d]−−→
n

0.

Therefore,

(2.3) Vn(a[nt]|x|b[nt] sign(x))
[c,d]−−→
n

V ∗(x)√
t
,



150 H. M. Barakat et al.

which by Lemma 1.1 yields

(2.4) Φλ,n(a[nt]|x|b[nt] sign(x))
[c,d]−−→
n
N
(
V ∗(x)√

t

)
.

From (2.1), (2.2) and (2.4) and by applying Lemma 4 of Barakat et al.
(2002), we deduce that there exist real functions α(t), β(t) > 0 such that

N
(
V ∗(x)√

t

)
= Φ̃(α(t)|x|β(t) sign(x)) = N

(
Ṽ (α(t)|x|β(t) sign(x))

)
.

Therefore,

(2.5) V ∗(x) =
√
t Ṽ (α(t)|x|β(t) sign(x)), ∀x ∈ [c, d].

Now, if the assumption that Ṽ (−∞) = −∞ is violated, (2.5) implies that√
t Ṽ (−∞)≤ V ∗(x) for all x ∈ [c, d], for arbitrarily small values of t. Hence,

letting t → 0 we get V ∗(x) ≥ 0, i.e. Φ∗(x) ≥ 1/2 for all x ∈ [c, d], which
contradicts our assumptions. Furthermore, if Ṽ (∞) < ∞, (2.5) leads to√
t Ṽ (∞) ≥ V ∗(x) for all x ∈ [c, d], for arbitrarily small values of t. There-

fore, V ∗(x) ≤ 0 for all x ∈ [c, d], i.e., Φ∗(x) ≤ 1/2 for all x ∈ [c, d], which
again contradicts our assumptions.

Step 2. If there exist t′ < t′′ such that 0 < t′ < 1 < t′′ < ∞, c ≤
α(t′′)|c|β(t′′) sign(c) < d and c < α(t′)|d|β(t′) sign(d) ≤ d, then Φ∗(c) = 0 and
Φ∗(d) = 1, which immediately proves Theorem 2.1.

Proof. If such t′ and t′′ exist then, by (2.5), we have

V ∗(c) ≤ V ∗(α(t′′)|c|β(t′′) sign(c)) = Ṽ
(
α(t′′)|c|β(t′′) sign(c)

)
=
V ∗(c)√
t′′

, t′′>1,

V ∗(d) ≥ V ∗(α(t′)|d|β(t′) sign(d)) = Ṽ
(
α(t′)|d|β(t′) sign(d)

)
=
V ∗(d)√

t′
, t′<1.

These relations hold only if V ∗(c) = ∞ (i.e., Φ∗(c) = 1), or V ∗(c) = 0
(i.e., Φ∗(c) = 1/2), or V ∗(c) = −∞ (i.e., Φ∗(c) = 0), and V ∗(d) = −∞
(i.e., Φ∗(d) = 0), or V ∗(d) = 0 (i.e., Φ∗(d) = 1/2), or V ∗(d) = ∞ (i.e.,
Φ∗(d) = 1). Clearly, the first two values in each of the above cases contradict
our assumptions: e.g., when V ∗(c) = ∞ or equivalently Φ∗(c) = 1 we get
Φ∗(x) > 1/2 for all x ∈ [c, d], and when V ∗(d) = −∞ or equivalently
Φ∗(d) = 0 we get Φ∗(x) < 1/2 for all x ∈ [c, d]. Hence Φ∗(c) = 0 and
Φ∗(d) = 1 as required.

Step 3. Under the conditions of Theorem 2.1, there are no 0<t′< 1<
t′′ <∞ such that d ≤ α(t′′)|c|β(t′′) sign(c) or α(t′)|d|β(t′) sign(d) ≤ c.

Proof. If such t′, t′′ exist then, by (2.5), we obtain

Ṽ
(
α(t′′)|c|β(t′′) sign(c)

)
≥ Ṽ (c)=V ∗(c)=

√
t′′
(
Ṽ (α(t′′)|c|β(t′′) sign(c))

)
, t′′>1,

Ṽ
(
α(t′)|d|β(t′) sign(d)

)
≤ Ṽ (d)=V ∗(d)=

√
t′
(
Ṽ (α(t′)|d|β(t′) sign(d))

)
, t′<1,
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which hold only if Ṽ (α(t′′)|c|β(t′′) sign(c))=−∞, 0, or ∞ and Ṽ (α(t′)|d|β(t′)
sign(d)) = −∞, 0, or ∞. The first value in the above two cases gives
Φ∗(d) = 0. Indeed, in the first case, 0 = Φ̃(α(t′′)|c|β(t′′) sign(c)) ≥ Φ̃(d) =
Φ∗(d), while in the second case V ∗(d) =

√
t′ Ṽ (α(t′)|d|β(t′) sign(d)) = −∞.

When the second value 0 is assumed, we get 1/2 = Φ̃(α(t′′)|c|β(t′′) sign(c))
≥ Φ̃(d) = Φ∗(d) in the first case, while in the second case we have 1/2 =
Φ̃(α(t′)|d|β(t′) sign(d)) ≤ Φ̃(c) = Φ∗(c). Finally, the third value (∞) implies

that Φ∗(c) = 1. Indeed, V ∗(c) =
√
t′′ Ṽ (α(t′′)|c|β(t′′) sign(c)) = ∞ in the

first case, while in the second case 1 = Φ̃(α(t′)|d|β(t′) sign(d)) ≤ Φ̃(c) =
Φ∗(c). Therefore, all the preceding cases contradict the assumptions of The-
orem 2.1, and hence Step 3 is proved.

Combining Steps 2 and 3 immediately yields

Step 4.

(i) If there exists 1 < t′′ < ∞ such that c ≤ α(t′′)|c|β(t′′) sign(c), then
Φ∗(c) = 0, which implies continuation of convergence in (2.1) to the
left.

(ii) If there exists 0 < t′ < 1 such that α(t′)|d|β(t′) sign(d) ≤ d, then
Φ∗(d) = 1, which implies continuation of convergence in (2.1) to
the right.

(iii) If there exist both t′ and t′′ as above, convergence in (2.1) will con-
tinue weakly, for all x, to a nondegenerate df which coincides with
Φ∗ on [c, d], and Theorem 2.1 follows from the result of Barakat and
Omar (2011).

Step 5. Under the conditions of Theorem 2.1, there exist at least two
growth points x1, x2 ∈ (c, d). Assume that x1 < x2 and d < α(t)|d|β(t) sign(d)
for all t < 1. Then there exists t′ < 1 (in fact, there exist infinitely many
t′ < 1) such that

(2.6) α(t′)|c|β(t′) sign(c) < x1 < d < α(t′)|d|β(t′) sign(d).

Proof. Since the limit Φ̃(x) in (2.2) is a nondegenerate df, by the power
central types theorem it must be of the form N (Ṽ (x)) and Ṽ (x) must be one
and only one of the types N−1(Φ1(x; 1, 1)), N−1(Φ2(x; 1, 1)), N−1(Φ3(x; c1,

c2, 1)) or N−1(Φ[i]
4 (x)), i = 1, 2, 5, 6. Furthermore, by using the modified

Khintchine convergence theorem (Lemma 3 in Barakat et al., 2002) it is
easy to prove that Ṽ (x) =

√
t Ṽ (α(t)|c|β(t) sign(c)) for all x ∈ R and t > 0.

On the other hand, it is easy to show that α(t) and β(t) are continuous and
monotonic functions of t. Indeed, a quick check shows that α(t) = 1/

√
t for

the first three types of central limit laws under power normalization, and

α(t) = 1 for Φ
[i]
4 (x), i = 1, 2, 5, 6 (see Remark 1.1). Moreover, β(t) = 1 for

all types.
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Let us now define a continuous function fc(t) = α(t)|c|β(t) sign(c). Clearly
fc(1) = c. Hence, there exists δ > 0 such that, whenever t′ < 1 and 0 <
1− t′ < δ, we have |fc(t′)− fc(1)| = |α(t′)|c|β(t′) sign(c)− c| < x1 − c, which
implies that for all 1−δ < t′ < 1 (there are infinitely many such t′), we have
α(t′)|c|β(t′) sign(c) < x1, which completes the proof.

Step 6. Assume that, for all t < 1, we have d < α(t)|d|β(t) sign(d). Then
the convergence in (2.1) will continue weakly, for all x, to the right (i.e., for
all x > d).

Proof. Let T be the set of all t < 1 which satisfy the condition (2.6).
Henceforth, we consider only those values t ∈ T. Furthermore, let us consider
the following cases:

1. There exists t ∈ T such that β(t) < 1.
2. There exists t ∈ T such that β(t) = 1.
3. For all t ∈ T, we have β(t) > 1.

Case 1. Clearly, we have d < (α(t))1/(1−β(t)) sign(d). If we show that
the convergence of the sequence {Φλ:n(an|x|bn sign(x))}n continues to the
point P = (α(t))1/(1−β(t)) sign(d) (note that sign(P) = sign(d)) then, by
Step 4(ii), the convergence will continue, for all x, to the right (since P =
α(t)|P|β(t) sign(P)). Indeed, by (2.4) and (2.5), we have

(2.7) Φλ:n(a[nt]|x|b[nt] sign(x))
[c,d]−−→
n

Φ̃(α(t)|x|β(t) sign(x)).

Setting y = α(t)|x|β(t) sign(x), we get

(2.8) Φλ:n(an(t)|y|bn(t) sign(y))
[c1,d1]−−−−→
n

Φ̃(y),

where an(t) = a[nt]{α(t)}−b[nt]/β(t), bn(t) = b[nt]/β(t), c1 = α(t)|c|β(t) sign(c),

and d1 = α(t)|d|β(t) sign(d). Since Φ̃(x) = Φ∗(x) for all x ∈ [c, d] ∩ [c1, d1]
and Φ∗(x) has more than two different values in the interval [c, d] ∩ [c1, d1],
by application of Lemma 3 of Barakat et al. (2002) to (2.1) and (2.8) we get(

an(t)

an

)1/bn

−→
n

1 and
bn(t)

bn
−→
n

1.

By a further application of Lemma 3 of Barakat et al. (2002), we see that
the sequences {an(t)}n and {bn(t)}n in (2.8) may be replaced, respectively,
by an and bn. Thus, we get

Φλ:n(an|y|bn sign(y))
[c1,d1]−−−−→
n

Φ̃(y),

which by (2.1) leads to

Φλ:n(an|y|bn sign(y))
[c,d1]−−−→
n

Φ̃(y).
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Repeating this argument N times yields

Φλ:n(an|y|bn sign(y))
[c,dN ]−−−→
n

Φ̃(y),

where

dN = (α(t))1+β(t)+···+β
N−1(t)|d|βN (t) sign(d)

= (α(t))
1−βN (t)
1−β(t) |d|βN (t) sign(d) −→

N
P.

Therefore, due to the continuity of Ṽ (y) for all y, the proof of Step 6 follows
in this case.

Case 2. In this case α(t) 6= 1 (in fact α(t) < 1 if d < 0, and α(t) > 1 if
d > 0). If we set y = α(t)|x| sign(x) with β(t) = 1 in (2.7), we obtain

(2.9) Φλ:n(a′n(t)|y|b′n(t) sign(y))
[c′1,d

′
1]−−−−→

n
Φ̃(y),

where a′n(t) = a[nt](α(t))−b[nt] , b′n(t) = b[nt], c
′
1 = α(t)c and d′1 = α(t)d. An

application of Lemma 3 of Barakat et al. (2002) to (2.1) and (2.9) thus yields(
a′n(t)

an

)1/bn

−→
n

1 and
b′n(t)

bn
−→
n

1.

Furthermore, Φ̃(x) = Φ∗(x) for all x ∈ [c, d]∩[c′1, d
′
1] and Φ∗(x) has more than

two different values in [c, d] ∩ [c′1, d
′
1]. By a further application of Lemma 3

of Barakat et al. (2002), the sequences a′n(t) and b′n(t) in (2.9) may be
replaced, respectively, by an and bn. Thus, we get

Φλ:n(an|y|bn sign(y))
[c′1,d

′
1]−−−−→

n
Φ̃(y),

which, in view of (2.1), leads to

Φλ:n(an|y|bn sign(y))
[c,d′1]−−−→
n

Φ̃(y).

By repeating this procedure N times, we obtain

Φλ:n(an|y|bn sign(y))
[c,d′N ]
−−−→
n

Φ̃(y),

where d′N = αN (t)d −→
n
P∗, with P∗ = ∞ if d > 0, and P∗ = 0 if d ≤ 0. In

the case P∗ = ∞, the proof follows immediately, while in the case P∗ = 0,
we use the result of Step 3 (since α(t)|P∗|β(t) sign(P∗) ≤ P∗ is trivially
satisfied).

Case 3. In this case, in view of the assumption d < α(t)|d|β(t) sign(d),
we have α(t)|d|β(t)−1 > 1 if d > 0, and α(t)|d|β(t)−1 < 1 if d < 0. Therefore,
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by using the same argument as in Case 1, we can prove that

Φλ:n(an|y|bn sign(y))
[c,d′′N ]
−−−→
n

Φ̃(y),

where

d′′N = (α(t))
βN (t)−1
β(t)−1 |d|βN (t) sign(d)

= (α(t))
− 1
β(t)−1 (α(t)|d|β(t)−1)

βN (t)
β(t)−1 sign(d) −→

N

{∞, d > 0,

0, d ≤ 0.

This implies that the convergence in (2.1) will continue to Φ̃(x) for all x > d
(to the right), which completes the proof.

Step 7. Assume α(t)|c|β(t) sign(c) < c for all t > 1. Then there exists
t′ > 1 (in fact there are infinitely many t′ > 1) such that

α(t′)|c|β(t′) sign(c) < c < x2 < α(t′)|d|β(t′) sign(d).

Proof. The proof follows closely the proof of Step 5, with obvious changes.

Step 8. Assume α(t)|c|β(t) sign(c) < c for all t > 1. Then the conver-
gence in (2.1) will continue weakly, for all x, to the left (i.e. to −∞).

Proof. The proof follows closely the proof of Step 6, with obvious changes.
The proof of Theorem 2.1 is completed by this step.

Acknowledgements. The authors are grateful to the anonymous ref-
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