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Summary. We introduce two new classes of special subsets of the real line: the class of
perfectly null sets and the class of sets which are perfectly null in the transitive sense.
These classes may play the role of duals to the corresponding classes on the category side.
We investigate their properties and, in particular, we prove that every strongly null set is
perfectly null in the transitive sense, and that it is consistent with ZFC that there exists
a universally null set which is not perfectly null in the transitive sense. Finally, we state
some open questions concerning the above classes. Although the main problem of whether
the classes of perfectly null sets and universally null sets are consistently different remains
open, we prove some results related to this question.

1. Motivation and preliminaries. Among classes of special subsets of
the real line, the classes of perfectly meager sets (sets which are meager rel-
ative to any perfect set, here denoted by PM) and universally null sets (sets
which are null with respect to any possible finite diffuse Borel measure, de-
noted by UN) were considered to be dual (see [13]), though some differences
between them have been observed. For example, the class of universally null
sets is closed under taking products (see [13]), but it is consistent with ZFC
that this is not the case for perfectly meager sets (see [19] and [20]).

Table 1. Classes of special subsets of the real line

category PM ⊇ UM ⊇ PM′ ⊇ SM

measure ? UN ? SN
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In [24], P. Zakrzewski proved that two other earlier defined classes of sets
(see [8] and [7]), smaller than PM, coincide and are dual to UN. Therefore,
he proposed to call this class the universally meager sets (denoted by UM).
A set A ⊆ 2ω is universally meager if every Borel isomorphic image of A in
2ω is meager. The class PM was left without a counterpart (see Table 1),
and in this paper (answering an oral question of P. Zakrzewski) we try to
define a class of sets which may play the role of a dual class to PM.

In [15], the authors introduced a notion of perfectly meager sets in the
transitive sense (denoted here by PM′), which turned out to be stronger
than the classical notion of perfectly meager sets. In this article, we define
an analogous class, which will be called the class of perfectly null sets in the
transitive sense PN′, and we investigate its properties.

We assume that the reader is familiar with the standard terminology
of special subsets of the reals, and we recall some definitions that are less
common (see also [4], [2] and [13]).

Throughout this paper we will work generally in the Cantor space 2ω.
The basic clopen set in 2ω determined by a finite sequence w ∈ 2<ω will
be denoted by [w]. If F is a set of partial functions ω → 2, the expression
[F ] denotes

⋃
f∈F {x ∈ 2ω : x�ran f = f}. The Cantor space will also be

considered as a vector space over Z2. In particular, for A,B ⊆ 2ω, we let
A+B = {t+ s : t ∈ A, s ∈ B}.

Recall that a set A is strongly null (strongly of measure zero) if for
any sequence of δn > 0, there exists a sequence 〈An〉n∈ω of open sets with
diamAn < εn for n ∈ ω, where diamX denotes the diameter of a set X, and
such that A ⊆

⋃
n∈ω An. We denote the class of such sets by SN. Galvin,

Mycielski and Solovay [6] proved that A ∈ SN (in 2ω) if and only if for any
meager set B, there exists t ∈ 2ω such that A ∩ (B + t) = ∅. Therefore, one
can consider a dual class of sets. A set A is called strongly meager (strongly
first category, denoted by SM) if for any null set B, there exists t ∈ 2ω such
that A ∩ (B + t) = ∅.

Finally, we shall say that an uncountable set L ⊆ 2ω is a Lusin (respec-
tively, Sierpiński) set if for any meager (respectively, null) set X, L ∩X is
countable.

2. Perfectly null sets

2.1. Canonical measure on a perfect set. If P is a closed set in 2ω,
there is a pruned tree TP ⊆ 2<ω such that the set of all infinite branches
of TP (usually denoted by [TP ]) equals P . If T is a pruned tree, then [T ]
is perfect if and only if for any w ∈ T , there exist w′, w′′ ∈ T such that
w ⊆ w′, w ⊆ w′′, but w′ * w′′ and w′′ * w′. Such a tree is called a perfect
tree.



Perfectly Null Sets 3

If w ∈ 2n, and a, b ∈ ω with a ≤ b, then w[a, b] ∈ 2b−a+1 denotes the
finite sequence such that w[a, b](i) = w(a+i) for i ≤ b−a. If 〈s0, s1, . . . sk〉 is
a finite sequence of natural numbers less than n, then w 〈s0, s1, . . . sk〉 ∈ 2k+1

denotes a sequence such that w 〈s0, s1, . . . sk〉 (i) = w(si) for any i ≤ k.
A finite sequence w ∈ TP will be called a branching point of a perfect

set P if w_0, w_1 ∈ TP . A branching point is on level i ∈ ω if there
exist i branching points below it. The set of all branching points of P on
level i will be denoted by Spliti(P ), and Split(P ) =

⋃
i∈ω Spliti(P ). Let

si(P ) = min{|w| : w ∈ Spliti(P )} and Si(P ) = max{|w| : w ∈ Spliti(P )}.
For i > 0, we say that w ∈ TP is on level i in P (written lP (w) = i) if there
exist v, t ∈ TP such that v ( w ⊆ t, v ∈ Spliti−1(P ), t ∈ Spliti(P ). We say
that w ∈ TP is on level 0 if w ⊆ t where t ∈ Split0(P ).

Let P be a perfect set in 2ω and hP : 2ω → P be the homeomorphism
given by the order isomorphism of 2<ω and Split(P ). We call this homeomor-
phism the canonical homeomorphism. Let m denote the Lebesgue measure
(the standard product measure) on 2ω.

Definition 2.1. Let A ⊆ P be such that h−1P [A] is measurable in 2ω.
We define µP (A) = m(h−1P [A]). The measure µP will be called the canonical
measure on P . A set A ⊆ P such that µP (A) = 0 will be called P -null, and
a set measurable with respect to µP will be called P -measurable.

The same idea of the canonical measure on a perfect set was used in [5].

Remark. Sometimes the measure µP will be considered as a measure
on the whole 2ω by setting µP (A) = µP (A∩ P ) for A ⊆ 2ω such that A∩ P
is P -measurable.

For w ∈ TP , we set [w]P = [w]∩P . Notice that if w ∈ TP is on level i in P ,
then µP ([w]P ) = 1/2i. If Q ⊆ P is perfect, then TQ ⊆ TP , and therefore if
w ∈ TQ, then lQ(w) ≤ lP (w), so µQ([w]Q) ≥ µP ([w]P ). By defining the outer
measure µ∗P (A) = m∗(h−1P [A]), where m∗ is the Lebesgue outer measure, we
obtain the following proposition.

Proposition 2.2. If Q,P are perfect sets such that Q ⊆ P , and A ⊆ Q,
then µ∗P (A) ≤ µ∗Q(A). In particular, every Q-null set A ⊆ Q is also P -null.

Proposition 2.3. If Q,P are perfect sets such that Q ⊆ P , and A is a
Q-measurable subset of Q, then it is P -measurable.

Proof. If A is Q-measurable, there exists a Borel set B ⊆ 2ω such that
B ∩Q ⊆ A and µQ(A \B) = 0, so µP (A \B) = 0. Let B′ = B ∩Q. Then B′
is Borel, µP (A \B′) = µP (A \B) = 0 and B′ ⊆ A.

Corollary 2.4. If P is perfect, and Qn ⊆ P for n ∈ ω are perfect sets
such that µP (

⋃
nQn) = 1 and A ⊆ P is such that A ∩Qn is Qn-measurable
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for any n ∈ ω, then A is P -measurable and µP (A) ≤
∑

n∈ω µQn(A∩Qn). In
particular, if A ∩Qn is Qn-null for all n ∈ ω, then A is P -null.

We will need the following lemma.

Lemma 2.5. Let P ⊆ 2ω be a perfect set, k ∈ ω and X ⊆ 2ω be such that
for all t ∈ P , there exist infinitely many n ∈ ω such that there exists w ∈ 2k

with [t�n
_w]P ⊆ P \X. Then µP (X) = 0.

Proof. Notice that if k = 0, then X ∩ P = ∅, so we can assume that
k > 0. We prove by induction that for any m ∈ ω, there exists a finite set
Sm ⊆ TP such that X ∩ P ⊆

⋃
s∈Sm

[s]P , and∑
s∈Sm

1

2lP (s)
≤
(
2k − 1

2k

)m
.

Let S0 = {∅}. Given Sm, for each s ∈ Sm and each t ∈ P such that
s ⊆ t, we can find ss,t ∈ TP such that s ⊆ ss,t ⊆ t and ws,t ∈ 2k with
[ss,t

_ws,t]P ⊆ P \X. Therefore, since [s]P is compact, we can find a finite
set As ⊆ P such that [s]P =

⋃
t∈As

[ss,t]P and [ss,t]P ∩ [ss,t′ ]P = ∅ if t, t′ ∈ As
and t 6= t′. Let

Sm+1 =
{
ss,t

_w : s ∈ Sm ∧ t ∈ As ∧ w ∈ 2k \ {ws,t}
}
∩ TP .

We have X ∩ P ⊆
⋃
s∈Sm+1

[s]P . Notice also that for s ∈ Sm,∑
t∈As

1

2lP (ss,t)
=

1

2lP (s)
.

Moreover, if t ∈ As, then∑
w∈2k\{ws,t}

1

2lP (ss,t _w)
≤ 2k − 1

2k
· 1

2lP (ss,t)
.

Therefore, ∑
s∈Sm+1

1

2lP (s)
≤ 2k − 1

2k
·
∑
s∈Sm

1

2lP (s)
≤
(
2k − 1

2k

)m+1

,

which concludes the induction argument.
Thus, µP (X) ≤ (1− 1/2k)m for any m ∈ ω, and so µP (X) = 0.

Now, we define a possible measure analogue of the class of perfectly
meager sets.

Definition 2.6. We shall say that A ⊆ 2ω is perfectly null if it is null
in any perfect set P ⊆ 2ω with respect to the measure µP . The class of
perfectly null sets will be denoted by PN.
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Proposition 2.7. The following conditions are equivalent for a setA⊆2ω:

(i) A is perfectly null,
(ii) for every perfect P ⊆ 2ω, A ∩ P is P -measurable, but P \A 6= ∅,
(iii) there exists n ∈ ω such that for every w ∈ 2n and every perfect

P ⊆ [w], A ∩ P is P -null.

Proof. Notice that if A ∩ P is P -measurable with µP (A ∩ P ) > 0, then
we can find a closed uncountable set F such that F ⊆ A ∩ P . Therefore,
there is a perfect set Q ⊆ F ; hence Q ⊆ A, so Q \ A = ∅. Moreover, given
any perfect set P we have P =

⋃
w∈2n,w∈TP [w]P , and for any w ∈ 2n such

that w ∈ TP , the set [w]P is perfect.

2.2. The main open problem

Proposition 2.8. UN ⊆ PN.

Proof. Let A ⊆ 2ω be universally null, and let P be perfect. Let λ be
a measure on 2ω such that λ(B) = µP (B ∩ P ) for any Borel set B ⊆ 2ω.
Then λ(A) = 0, so A is P -null.

Unfortunately, we do not know the answer to the following question.

Problem 2.9. Is it consistent with ZFC that UN 6= PN?

Remark. On the category side every proof of the consistency of the
fact that UM 6= PM known to the authors uses the idea of a Lusin function
or similar arguments. A Lusin function L : ωω → 2ω was defined in [11],
and extensively described in [23]. To get a Lusin function we construct a
system 〈Ps : s ∈ ω<ω〉 of perfect sets such that for s ∈ ω<ω and n,m ∈
ω, diamPs ≤ 1/2|s|, Ps_n ⊆ Ps is nowhere dense in Ps,

⋃
k∈ω Ps_k is

dense in Ps, and if n 6= m, then Ps_n ∩ Ps_m = ∅. Next, we set L(x)
to be the only point of

⋂
n∈ω Px|n . One can prove that L is a continuous

and one-to-one function. Furthermore, if Q ⊆ 2ω is a perfect set, then
L−1[

⋃
{Ps : Ps is nowhere dense in Q}] contains an open dense set. There-

fore, if L is a Lusin set, then L[L] is perfectly meager (see also [13]). More-
over, L−1 is a function of the first Baire class. Given such a function it is easy
to see that if there exists a Lusin set L, then UM 6= PM. This should be clear
since UM is closed under taking Borel isomorphic images, so L[L] ∈ PM\UM.

Therefore, to prove PN 6= UN, we possibly need some analogue of a Lusin
function.

Problem 2.10. Is there an analogue of a Lusin function for perfectly
null sets?

But even if such an analogue exists, it cannot be constructed in a similar
way to Lusin’s argument. Indeed, if we equip ωω with the natural measure
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m defined by

m([w]) =

|w|−1∏
i=0

1

2w(i)+1
,

where w ∈ ω<ω and [w] = {f ∈ ωω : w ⊆ f}, we get the following proposi-
tion.

Proposition 2.11. Let S : ωω → 2ω be a function such that there exists
a sequence 〈Ps : s ∈ ω<ω〉 such that each Ps ⊆ 2ω is a perfect set, and for
n,m ∈ ω, n 6= m → Ps_n ∩ Ps_m = ∅, Ps_n ⊆ Ps, diamPs ≤ 1/2|s|, and
S(x) is the only element of

⋂
n∈ω Px�n. Then there exists a perfect set Q ⊆ 2ω

such that m(S−1[
⋃
{Ps : µQ(Ps) = 0}]) < 1.

Proof. We define T ⊆ ω<ω inductively as follows: in the nth step we
construct Tn = T ∩ ωn such that |Tn| < ω for all n ∈ ω. Let T0 = {∅}.
Assume that Tn is constructed and w ∈ Tn. Let Mw ≥ 2 be such that
2Mw ≥ 2n+2 · |Tn| ·m([w]) and Tn+1 = {w_k : w ∈ Tn ∧ k ∈ ω ∧ k < Mw}.

Therefore, if w ∈ Tn, then

m
(
[w] \

⋃
{w_k : k < Mw}

)
= m

(⋃
{w_k : k ≥Mw}

)
= m([w]) ·

∞∑
i=Mw

1

2i+1
=
m([w])

2Mw
≤ 1

2n+2|Tn|
.

Thus, for all n ∈ ω,

m
(⋃
{[s] : s ∈ Tn} \

⋃
{[s] : s ∈ Tn+1}

)
≤ 1

2n+2
,

so

m
(⋃
{[s] : s /∈ T}

)
= m

(⋃
n∈ω

(⋃
{[s] : s ∈ Tn} \

⋃
{[s] : s ∈ Tn+1

))
≤ 1

2
.

Let Q =
⋂
n∈ω

⋃
s∈Tn Ps. Obviously, Q is a closed set. Moreover, if s ∈ T ,

there exists w ∈ 2<ω with [w]Q ⊆ Ps. This should be clear since for all n ∈ ω,
{Ps : s ∈ Tn} is a finite collection of disjoint perfect sets, and Q ⊆

⋃
s∈Tn Ps.

Therefore, Q is perfect and µQ(Ps) > 0. On the other hand, if s /∈ T , then
Ps ∩ Q = ∅, so µQ(Ps) = 0. Therefore, if S(x) ∈ Ps and µQ(Ps) = 0, then
s /∈ T and x ∈ [s], so

m
(
S−1

[⋃
{Ps : µQ(Ps) = 0}

])
= m

(⋃
{[s] : s /∈ T}

)
≤ 1/2.

Obviously, since for every diffuse Borel measure µ, there exists a Borel
isomorphism of 2ω mapping µ to the Lebesgue measure (see e.g. [12, Theorem
4.1(ii)]), if the class PN is closed under Borel automorphisms of 2ω, then
UN = PN, which motivates the following question, which was asked by the
reviewer.
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Problem 2.12. Is the class PN closed under homeomorphisms of 2ω

onto itself?

2.3. Simple perfect sets. To understand what may happen when one
attempts to solve the main open problem mentioned above, we restrict our
attention to some special subfamilies of perfect sets. This will lead to an
important result in Theorem 2.25.

Definition 2.13. A perfect set P will be called balanced if si+1(P ) >
Si(P ) for all i ∈ ω. This generalizes the notion of uniformly perfect set (see
[3]). A perfect set P is uniformly perfect if for any i ∈ ω, either 2i ∩ TP ⊆
Split(P ) or 2i ∩ Split(P ) = ∅. If additionally, in a uniformly perfect set P ,

∀w,v∈TP , |w|=|v| ∀j∈{0,1} (w
_j ∈ TP → v_j ∈ TP ),

then P is called a Silver perfect set (see for example [10]).

A set that is null in any balanced (respectively, uniformly, Silver) perfect
set will be called balanced perfectly null (respectively, uniformly perfectly
null, Silver perfectly null). The class of such sets will be denoted by bPN
(respectively, uPN, vPN). Obviously, PN ⊆ bPN ⊆ uPN ⊆ vPN.

Lemma 2.14. There exists a perfect set E such that for every balanced
perfect set B, we have either µB(E) = 0 or µE(B) = 0.

Proof. Consider K = {000, 001, 011, 111} ⊆ 23 and a perfect set E ∈ 2ω

such that x ∈ E if and only if x[3k, 3k + 2] ∈ K for every k ∈ ω (see
Figure 1). Let B be a balanced perfect set. Imagine now how TB looks
like in a K-block of TE (see Figure 1, where TB is shown as dotted lines).
Let k ∈ ω and w ∈ TE ∩ 23k. The following two situations are possible:
either {w_s : s ∈ K} ⊆ TB (possibility (a)), or {w_s : s ∈ K} \ TB 6= ∅
(possibility (b)).

Fig. 1. Proof of Lemma 2.14
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Assume that for all t ∈ E, there exist infinitely many k ∈ ω such that
{t�3k _s : s ∈ K} \ TB 6= ∅ (case (b)). Then µE(B) = 0 by Lemma 2.5.

On the other hand, assume that there exists t ∈ E such for all but
finite k ∈ ω, we have {t�3k _s : s ∈ K} ⊆ TB (case (a)). Then there exists
i ∈ ω such that B has a branching point of length j for all j ≥ i, so
sj+1(B) ≤ Sj(B) + 1 for any j ≥ i. And since B is a balanced perfect set,
this implies that sj(B) = Sj(B) and sj+1(B) = sj(B) + 1 for any j > i. In
other words, for w ∈ TB∩2i, B∩[w] = [w], and therefore for any v ∈ TB∩23k
with 3k > i, there exists w ∈ 23 such that v_w ∈ TB \ TE . It follows that
µB(E) = 0 by Lemma 2.5.

Proposition 2.15. Suppose that there exists a Sierpiński set. Then
PN ( bPN.

Proof. Let E be the perfect set defined in Lemma 2.14, and let S ⊆ E
be a Sierpiński set with respect to µE . Obviously, S is not perfectly null.
But if B is a balanced perfect set, then either µB(E) = 0, so µB(S) = 0, or
µE(B) = 0, so S ∩B is countable. Thus, µB(S) = 0. So S ∈ bPN \ PN.

Proposition 2.16. bPN ( uPN ( vPN.

Proof. The first inclusion is proper, because if we take any balanced
perfect set B such that |Split(B)∩ 2i| = 1 for each i ∈ ω, and any uniformly
perfect set U , then µU (B) ≤ (n+1)/2n for any n ∈ ω, so B is U -null. Thus,
B ∈ uPN \ bPN.

To see that the second inclusion is proper, notice that the uniformly
perfect set U = {α ∈ 2ω : ∀i∈ω α(2i + 1) = α(2i)} is null in every Silver
perfect set. Indeed, let S be a Silver perfect set. Let i ∈ ω be such that for
every w ∈ 22i ∩ S, w ∈ Split(S), or for every w ∈ 22i+1 ∩ S, w ∈ Split(S).
The following two cases are possible:

• For every w ∈ 22i∩S, we have w ∈ Split(S), so w_0, w_1 ∈ TS . Then
w_0_1 ∈ TS or w_0_0 ∈ TS . In the first case w_0_1 ∈ TS \ TU ,
while in the second w_1_0 ∈ TS , but w_1_0 /∈ TU .
• For every w ∈ 22i∩S, we have w /∈ Split(S). Without loss of generality,

assume that w_0 ∈ TS . Then w_0 ∈ Split(S) and w_0_1 ∈ TS \ TU .
Since there exist infinitely many i ∈ ω such that 22i ∩ S ⊆ Split(S)
or 22i+1 ∩ S ⊆ Split(S), Lemma 2.5 can be applied to conclude that
µS(U) = 0.

Proposition 2.17. The following conditions are equivalent for A ⊆ 2ω:

(i) A is perfectly null,
(ii) for every perfect set P ⊆ 2ω, A ∩ P is P -measurable, but for every

balanced perfect set Q ⊆ 2ω, Q \A 6= ∅,
(iii) for every perfect set P ⊆ 2ω, A ∩ P is P -measurable and A ∈ bPN.
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Proof. Notice that there exists a balanced perfect set in every perfect set.
Therefore, in the proof of Proposition 2.7 we can require that the perfect set
Q is balanced.

Remark. Notice that even if a set is P -measurable for any perfect set
and does not contain any uniformly perfect set, it need not be perfectly null.
An example is the set B from the proof of Proposition 2.16.

Proposition 2.18.

(i) A ∈ bPN if and only if for every balanced perfect P ⊆ 2ω, A ∩ P is
P -measurable, but P \A 6= ∅.

(ii) A ∈ uPN if and only if for every uniformly perfect P ⊆ 2ω, A ∩ P
is P -measurable, but P \A 6= ∅.

(iii) A ∈ vPN if and only if for every Silver perfect P ⊆ 2ω, A ∩ P is
P -measurable, but P \A 6= ∅.

Proof. We proceed as in the proof of Proposition 2.7. For uniformly per-
fect and Silver perfect sets we use [10, Lemma 2.4], which states that there
exists a Silver perfect set in every set of positive Lebesgue measure, and
we notice that if P is a uniformly (respectively, Silver) perfect set, and
hP : 2ω → P is the canonical homeomorphism, then the image of any Silver
perfect set is uniformly (respectively, Silver) perfect.

2.4. Perfectly null sets and the s0 and v0 ideals. Recall that a set
A is a Marczewski s0-set if for any perfect set P , there exists a perfect set
Q ⊆ P such that Q ∩A = ∅.

Proposition 2.19. PN ⊆ bPN ⊆ s0.

Proof. Indeed, if P is perfect and X ∈ bPN, let B ⊆ P be a balanced
perfect set. Then µB(B \X) = 1, so there exists a closed set F ⊆ B \X of
positive measure. Therefore, it is uncountable, and there exists a perfect set
Q ⊆ F ⊆ P \X.

Remark. Obviously, uPN 6⊆ s0 (see the proof of Proposition 2.16).

We say that a set X has the v0 property if for every Silver perfect set P ,
there exists a Silver perfect set Q ⊆ P \X (see [10]).

Proposition 2.20. PN ⊆ vPN ⊆ v0.

Proof. Let P ⊆ 2ω be a Silver perfect set, and let X ∈ vPN. Notice
that the image of any Silver perfect set under the canonical homeomorphism
hP : 2ω → P is a Silver perfect set. Since m(2ω \ h−1P [X]) = 1, there exists
a Silver perfect set Q ⊆ 2ω\h−1P [X] (see [10, Lemma 2.4]). So, hP [Q] ⊆ P \X
is a Silver perfect set.
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M. Scheepers [22] proved that if X is a measure zero set with the s0
property, and S is a Sierpiński set, then X + S is also an s0-set. Therefore,
we easily obtain the following proposition.

Proposition 2.21. The algebraic sum of a Sierpiński set and a perfectly
null set is an s0-set.

2.5. Products. We consider PN sets in the product 2ω × 2ω using the
natural homeomorphism h : 2ω × 2ω → 2ω defined as

h(x, y) = 〈x(0), y(0), x(1), y(1), . . .〉 .

It is consistent with ZFC that the product of two perfectly meager sets is
not perfectly meager (see [20], [19]). If the answer to Problem 2.9 is positive,
then it makes sense to ask the following question.

Problem 2.22. Is the product of any two perfectly null sets perfectly
null?

This problem remains open, but in the easier case of Silver perfect sets,
the answer is affirmative. First, notice the following simple lemma.

Lemma 2.23. Let P,Q ⊆ 2ω be perfect sets. Then µP×Q = µP × µQ. In
particular, if X ⊆ 2ω × 2ω is such that π1[X] is P -null, then µP×Q(X) = 0.

Proof. First, we shall prove that for any n ∈ ω and v ∈ 22n,

µP×Q([v]P×Q) =
1

2lP (wP )
· 1

2lQ(wQ)
,

where wP , wQ ∈ 2n are such that for any i < n, wP (i) = v(2i) and wQ(i) =
v(2i+1). This can be proved by induction on n. For n = 0, we get v = wP =
wQ = ∅, and

µP×Q([v]P×Q) = 1 =
1

2lP (wP )
· 1

2lQ(wQ)
.

Now consider v ∈ 22(n+1).

• If both wP �n and wQ�n are branching points in P and Q respectively
(so lP (wP ) = lP (wP �n) + 1 and lQ(wQ) = lQ(wQ�n) + 1), then v�2n ∈
Split(P ×Q) and v�2n+1 ∈ Split(P ×Q), and so

µP×Q([v]P×Q) = 1/2 · 1/2 · µP×Q([v�2n]P×Q)
= 1/2 · 1/2 · 1/2lP (wP �n) · 1/2lQ(wQ�n)

= 1/2lP (wP ) · 1/2lQ(wQ).

• If wP �n or wQ�n (but not both) is a branching point in P or Q respec-
tively, we may assume without loss of generality that wP �n ∈ Split(P )
and wQ�n /∈ Split(Q) (so lP (wP ) = lP (wP �n) + 1 and lQ(wQ) =
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lQ(wQ�n)). Then v�2n ∈ Split(P × Q), but v�2n+1 /∈ Split(P × Q),
and so

µP×Q([v]P×Q) = 1/2 · 1 · µP×Q([v�2n]P×Q)
= 1/2 · 1 · 1/2lP (wP �n) · 1/2lQ(wQ�n)

= 1/2lP (wP ) · 1/2lQ(wQ).

• If wP �n /∈ Split(P ) and wQ�n /∈ Split(Q) (so lP (wP ) = lP (wP �n) and
lQ(wQ) = lQ(wQ�n)), then v�2n, v�2n+1 /∈ Split(P ×Q), and so

µP×Q([v]P×Q) = 1 · 1 · µP×Q([v�2n]P×Q)
= 1/2lP (wP �n) · 1/2lQ(wQ�n) = 1/2lP (wP ) · 1/2lQ(wQ).

This concludes the induction argument. Since every open set in P × Q is
a countable union of sets of the form [v]P×Q, with v ∈ 22n, n ∈ ω, this
concludes the proof.

Proposition 2.24. If X,Y ∈ vPN, then X × Y ∈ vPN in 2ω × 2ω.

Proof. Fix a Silver perfect set P . Recall that it is uniquely determined
by a sequence 〈an〉n∈ω, an ∈ {−1, 0, 1}, such that {n ∈ ω : an = −1} is
infinite, TP splits on all branches at length n ∈ ω if and only if an = −1, and
t(n) = an for all t ∈ P for any other n ∈ ω. Let T1 be a tree which splits on all
branches at length n if and only if a2n = −1, and t(n) = a2n for any t ∈ [T1]
for any other n ∈ ω. Finally, let T2 be a tree which splits on all branches at
length n if and only if a2n+1 = −1, and t(n) = a2n+1 for any t ∈ [T2] for any
other n ∈ ω. Let P1 = [T1] and P2 = [T2]. If {2n ∈ ω : an = −1} is infinite,
then P1 is a Silver perfect set. On the other hand, if {2n ∈ ω : an = −1} is
finite, then P1 is also finite. Analogously, if {2n+1 ∈ ω : an = −1} is infinite,
then P2 is a Silver perfect set. On the other hand, if {2n+1 ∈ ω : an = −1}
is finite, then P2 is also finite. Moreover, P = P1 × P2.

If P1 and P2 are Silver perfect, then by Lemma 2.23, µP (X × Y ) = 0.
The other case is when P1 or P2 (but not both) is finite. Without loss

of generality, we may assume that P2 is finite. Then P =
⋃
t∈P2

P1 × {t}.
Obviously, for any t ∈ Y , µP1×{t}(X×Y ) = µP1(X) = 0, so by Corollary 2.4,
also µP (X × Y ) = 0.

On the other hand, it is consistent with ZFC that the classes uPN and
bPN are not closed under taking products.

Theorem 2.25. If there exists a Sierpiński set, then there are X,Y ∈
bPN such that X × Y /∈ uPN.

Proof. Let J ⊆ 28 be as shown in Figure 2 (J = {00000000, 00010111,
00101011, 00111111, 01001010, 01011111, 01101011, 01111111, 10000101,
10010111, 10101111, 10111111, 11001111, 11011111, 11101111, 11111111}).
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Fig. 2. Proof of Theorem 2.25

Let P be a perfect set such that x ∈ P if and only if x[8n, 8n + 7] ∈ J for
all n ∈ ω. Obviously, P is a uniformly perfect set. Let Q = π1[P ]. Notice
that x ∈ Q if and only if for all n ∈ ω, we have x[4n, 4n + 3] ∈ L, where
L = {0000, 0001, 0011, 0111, 1000, 1001, 1011, 1111} ⊆ 24 (see Figure 2
and Table 2).

Notice that L consists of two K-blocks (see the proof of Lemma 2.14)
joined by an additional root.

Also, if B is a balanced perfect set, then µB(Q) = 0 or µQ(B) = 0.
The argument is the same as in the proof of Lemma 2.14, namely there are
two possibilities. If for all t ∈ Q, there exists infinitely many k ∈ ω such
that {t�4k _s : s ∈ L} \ TB 6= ∅, then µQ(B) = 0 by Lemma 2.5. If it is
not the case, there exists t ∈ Q such that for all but finite k ∈ ω, we have
{t�4k _s : s ∈ L} ⊆ TB. It follows that there exists i ∈ ω such that B has
a branching point of length j for all j ≥ i, so sj+1(B) ≤ Sj(B) + 1 for any
j ≥ i. And since B is a balanced perfect set, this implies that sj(B) = Sj(B)
and sj+1(B) = sj(B) + 1 for any j > i. In other words, for w ∈ TB ∩ 2i,
we have B ∩ [w] = [w], and therefore for any v ∈ TB ∩ 24k with 3k > i,
there exists w ∈ 24 such that v_w ∈ TB \ TQ. It follows that µB(Q) = 0 by
Lemma 2.5.
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Table 2. Proof of Theorem 2.25

s ∈ J w = s〈0, 2, 4, 6〉 µQ µP

∈ L {x ∈ Q : x[4n, 4n+ 3] = w} π−1
1 [{x ∈ Q : x[4n, 4n+ 3] = w}]

00000000 0000 1/16 1/16

00010111 0001 1/16 1/16

00101011 0111

00111111 0111 1/4 4/16

01101011 0111

01111111 0111

01001010 0011 1/8 2/16

01011111 0011

10000101 1000 1/16 1/16

10010111 1001 1/16 1/16

10101111 1111

10111111 1111 1/4 4/16

11101111 1111

11111111 1111

11001111 1011 1/8 2/16

11011111 1011

Moreover, if A is Q-null, then A × 2ω is P -null. Indeed, if n ∈ ω and
w ∈ L, then

µQ({x ∈ Q : x[4n, 4n+ 3] = w}) = |{s ∈ J : w = s〈0, 2, 4, 6〉}|
16

= µP (π
−1
1 [{x ∈ Q : x[4n, 4n+ 3] = w}])

(see Table 2). Thus, if ε > 0 and 〈wi〉i∈ω is a sequence such that wi ∈ TQ,⋃
i∈ω[wi]Q coversA and

∑
i∈ω µQ([wi]Q)≤ε, then µP (π

−1
1 [[wi]Q])=µQ([wi]Q),

so
⋃
i∈ω π

−1
1 [[wi]Q] is a covering of A× 2ω of measure µP not greater than ε.

Let S ⊆ P be a Sierpiński set with respect to µP , and let X = π1[S] ⊆ Q.
Suppose that B is a balanced perfect set. Then either µB(Q) = 0, so µB(X)
= 0, or µQ(B) = 0, so µP (π−11 [Q∩B]) = 0. In the latter case, S∩π−11 [Q∩B]
is countable, so X ∩B is countable and µB(X) = 0. Hence X ∈ bPN.

Notice also that π2[P ] = Q as well (see Table 3). So analogously, one can
check that Y = π2[S] ∈ bPN.

But S ⊆ X × Y , so X × Y is not P -null, and therefore X × Y /∈ uPN.

Remark. The above result seems to be interesting as it resembles the
argument of Recław [20] that if there exists a Lusin set, then the class of per-
fectly meager sets is not closed under taking products. In his proof, Recław
actually constructs a perfect setD ⊆ 2ω×2ω and shows that given a Lusin set
L ⊆ D, its projections are perfectly meager. The same happens in the above
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Table 3. π2[P ] = Q

s ∈ J w = s〈1, 3, 5, 7〉∈L
00000000 0000

00010111 0111

00111111 0111

10010111 0111

10111111 0111

00101011 0001

01101011 1001

01111111 1111

01011111 1111

11011111 1111

11111111 1111

01001010 1000

10000101 0011

10101111 0011

11101111 1011

11001111 1011

proof where we consider a Sierpiński set and the class bPN. Nevertheless, we
do not know yet whether this can be done for the class PN.

3. Perfectly null sets in the transitive sense

3.1. The definition. In relation to the algebraic sum of sets belonging
to different classes of small subsets of 2ω, the class of perfectly sets in the
transitive sense (PM′) has been defined in [15]. The definition was also mo-
tivated by the obvious fact that a set X is perfectly meager if and only if for
any perfect set P , there exists an Fσ set F ⊇ X such that F ∩ P is meager
in P . We say that a set X is perfectly meager in the transitive sense if for
any perfect set P , there exists an Fσ set F ⊇ X such that for any t, the set
(F + t)∩P is a meager set relative to P . Further properties of PM′ sets were
investigated in [14], [16], [18] and [17], but some open questions remain.

Obviously, a set is perfectly null if and only if for any perfect set P , there
exists a Gδ set G ⊇ X such that µP (G) = 0. We define the following new
class of small sets.

Definition 3.1. We call a set X perfectly null in the transitive sense if
for any perfect set P , there exists a Gδ set G ⊇ X such that for any t, the
set (G+ t) ∩ P is P -null. The class of such sets will be denoted by PN′.

We do not know whether this class is a σ-ideal.
Similarly we define the ideals bPN′,uPN′ and vPN′.
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Proposition 3.2. The following inclusions hold:

PN′ ⊆ bPN′ ( uPN′ ( vPN′

PN ⊆ bPN ( uPN ( vPN

⊇ ⊇ ⊇ ⊇

Proof. The above inclusions follow immediately from the definitions. The
sets B and U defined in the proof of Proposition 2.16 are obviously also in
uPN′ \ bPN′ and vPN′ \ uPN′, respectively.

3.2. PN′ sets and other classes of special subsets. In [14], [16], [18]
and [17] the authors prove that SM ⊆ PM′ ⊆ UM, and that it is consistent
with ZFC that those inclusions are proper. Therefore, we study the relation
between the class PN′ and the classes of strongly null sets and universally
null sets.

Theorem 3.3. Every strongly null set is perfectly null in the transitive
sense.

Proof. Let X be a strongly null set, and let P be a perfect set. If w ∈ TP
and |w| = Sn(P ) + 1, then µP ([w]P ) ≤ 1/2n+1. It is well-known that if a
set A is strongly null, then we can find a sequence of open sets of any given
diameters, the union of which covers X in such a way that every point of
A is covered by infinitely many sets from this sequence (see e.g. [4]). So let
〈An : n ∈ ω〉 be a sequence of open sets such that X ⊆

⋂
m∈ω

⋃
n≥mAn and

diamAn ≤ 1/2Sn(P )+1. Let t ∈ 2ω and Bn = (An + t) ∩ P . Since diamBn ≤
1/2Sn(P )+1, we have Bn ⊆ [wn]P , where wn ∈ TP and |wn| = Sn(P ) + 1.
Therefore, µP (Bn) ≤ 1/2n+1. But

(X + t) ∩ P ⊆
( ⋂
m∈ω

⋃
n≥m

An + t
)
∩ P ⊆

⋂
m∈ω

⋃
n≥m

Bn

and µP (
⋂
m∈ω

⋃
n≥mBn) = 0, so X is perfectly null in the transitive sense.

The following problem remains open.

Problem 3.4. Does there exist a PN′ set which is not strongly null?

In particular, the authors have not been able to answer the following
question.

Problem 3.5. Does there exist an uncountable PN′ set in every model
of ZFC?

Recall that in every model of ZFC there exists an uncountable PM′ set
(see [14]).

In [17], it is proved that PM′ ⊆ UM. One can ask the following:



16 M. Korch and T. Weiss

Problem 3.6. Is it true that PN′ ⊆ UN?

If this inclusion holds in ZFC, then it is consistent with ZFC that it is
proper. Motivated by [21, Theorem 1], we get the following theorem.

Theorem 3.7. If there exists a universally null set of cardinality c, then
there exists Y ∈ UN \ bPN′ ⊆ UN \ PN′.

Proof. As in [17], we apply the ideas presented in [21] in the case of sub-
sets of 2ω. Notice that there exists a perfect set P ⊆ 2ω which is linearly in-
dependent over Z2. Indeed, define ϕ : 2<ω → 2<ω by induction. Let ϕ(∅)=∅.
Given ϕ(w) = v ∈ 2<ω for w ∈ 2<ω with n = |w|, let ϕ(w_0) = v_ε2

n+1

2k

and ϕ(w_1) = v_ε2
n+1

2k+1, where εml = 0 . . . 010 . . . 0 is of length m with
1 on the lth position, and k ∈ ω has binary expansion w. For example,
ϕ(0) = 10, ϕ(1) = 01, ϕ(00) = 101000, ϕ(01) = 100100, ϕ(10) = 010010,
ϕ(11) = 010001, ϕ(000) = 10100010000000, and so on. Now, notice that
〈[ϕ(w)]〉w∈2<ω is a Cantor scheme, so define

P =
⋃
α∈2ω

⋂
n∈ω

[ϕ(α�n)].

Let α1, . . . , αn ∈ P be pairwise distinct. There exists l ∈ ω such that
αi�2l−2 6= αj�2l−2 for any distinct i, j ≤ n. Then α1, . . . , αn restricted to
[2l− 2, 2l+1− 2) are basis vectors of 2l. Thus, P is linearly independent over
Z2. The existence of such a set also follows from the Kuratowski–Mycielski
Theorem (see [9, Theorem 19.1]).

Next, we follow the argument from [21]. Let C,D be perfect and disjoint
subsets of P . We can require D to be a balanced perfect set. Assume that
X ⊆ C is a universally null set and |X| = c. Let 〈Bx : x ∈ X〉 enumerate
all Gδ sets. For every x ∈ X, let yx ∈ x + D be such that yx /∈ Bx if only
(D+ x) \Bx 6= ∅. Otherwise, choose any yx ∈ x+D. Set Y = {yx : x ∈ X}.

Notice that +: C × D → C + D is a homeomorphism. Obviously, + is
continuous and open on C × D. Since (C + C) ∩ (D + D) = {0} (because
P is linearly independent), we see that + is one-to-one. Since π1[+−1[Y ]] =
π1[{〈x, dx〉 : x+ dx = yx ∧ x ∈ X}] = X is universally null, Y is universally
null as well.

Now, we prove that Y is not perfectly null in the transitive sense. Indeed,
if Bx ⊇ Y is a Gδ set, then yx ∈ Bx, so (D+x)\Bx = ∅ andD∩(Bx+x) = D.
Therefore, µD(D ∩ (Bx + x)) = 1.

Recall that non(N) denotes the minimal possible cardinality of a subset
of the real line which is not of Lebesgue measure zero (see e.g. [4]).

Corollary 3.8. If non(N) = c, then PN′ 6= UN.

Proof. If non(N) = c, then there exists a universally null set of cardinal-
ity c (see [4, Theorem 8.8]).
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Taking into account Proposition 2.8, we have the following.

Corollary 3.9. If non(N) = c, then PN′ 6= PN.

The class of perfectly meager sets in the transitive sense is closed under
taking products (see [17]). We do not know whether this holds for PN′ sets.

Problem 3.10. Let X,Y ∈ PN′. Is it always true that X × Y ∈ PN′?

The answer is affirmative for vPN′ sets.

Proposition 3.11. Let X,Y ∈ vPN′. Then X × Y ∈ vPN′.

Proof. Follows easily from the proof of Proposition 2.24.

3.3. Additive properties of PN′ sets. We conclude this paper by
investigating some additive properties of the class of sets perfectly null in
the transitive sense.

Proposition 3.12. Let A ⊆ 2ω be open, µ be any Borel diffuse measure
on 2ω and 0 ≤ ε < 1. Then the set Aε = {t ∈ 2ω : µ(A+ t) > ε} is also open.

Proof. Let A =
⋃
n∈ω[sn]. If Aε = ∅, it is obviously open. Otherwise,

let t0 ∈ Aε. There exists N ∈ ω such that µ(
⋃
n≤N [sn] + t0) > ε. Let

M = max{|sn| : n ≤ N}. For any t such that t�M = t0�M ,

µ(A+ t) ≥ µ
( ⋃
n≤N

[sn] + t
)
= µ

( ⋃
n≤N

[sn] + t0

)
> ε.

So Aε is open.

Recall that a set A is called null-additive (A ∈ N∗) if for any null set X,
A+X is null. Let ≤∗ denote the standard dominating order on ωω.

Lemma 3.13. Let µ be a Borel diffuse measure on 2ω and G ⊆ 2ω be
a Gδ set. Let Y ∈ N∗ be such that for every Borel map ϕ : Y → ωω, there
exists α ∈ ωω such that ϕ(y) ≤∗ α for every y ∈ Y . Moreover, assume that
for µ(G+ y) = 0 all y ∈ Y . Then µ(G+ Y ) = 0.

Proof. LetG =
⋂
m∈ω Gm, where for anym ∈ ω,Gm is open andGm+1 ⊆

Gm. For m ∈ ω, let Gm =
⋃
i∈ω[wi,m] with wi,m ∈ 2<ω, |wi,m| > m, and

[wi,m] ∩ [wj,m] = ∅ for i 6= j. Let Fn = {wi,m : i,m ∈ ω ∧ |wi,m| = n} ⊆ 2n.
Notice that

G =
⋂
m∈ω

⋃
n≥m

[Fn].

Let ϕ : Y → ωω be defined as follows:

ϕ(y)(k) = min

{
i ∈ ω : µ

(⋃
n≥i

[Fn + y�n]
)
≤ 1

2k+1 · k!

}
.
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Notice that ϕ is well defined, as µ(G+ y) = 0 for any y ∈ Y . By Proposition
3.12, the set

ϕ−1[{γ ∈ ωω : γ(k) > i}] =
{
y ∈ Y : µ

(⋃
n≥i

[Fn] + y
)
>

1

2k+1 · k!

}
is open for any i, k ∈ ω, and therefore ϕ is Borel, so there exists a strictly
increasing α ∈ ωω such that ϕ(y) ≤∗ α for every y ∈ Y . For p ∈ ω, set
Yp = {y ∈ Y : ∀k≥p ϕ(y)(k) ≤ α(k)}.

Recall now the characterization of null-additive sets due to S. Shelah (see
[2, Theorem 2.7.18(3)]): A ∈ N∗ if and only if for any increasing F : ω → ω,
there exists a sequence 〈Iq〉q∈ω of sets such that for q ∈ ω, Iq ⊆ 2[F (q),F (q+1)),
|Iq| ≤ q and A ⊆

⋃
r∈ω

⋂
q≥r[Iq].

Fix p ∈ ω, and apply the above characterization for Yp and the function α.
There exists a sequence 〈Ipq 〉q∈ω of sets such that for q ∈ ω, Ipq ⊆ 2[α(q),α(q+1)),
|Ipq | ≤ q and Yp ⊆

⋃
r∈ω

⋂
q≥r[I

p
q ]. For r ∈ ω, let Yp,r = Y ∩

⋂
q≥r[I

p
q ].

Then Yp =
⋃
r∈ω Yp,r. For any q > r, set Kp,q,r = {y�α(q+1) : y ∈ Yp,r}.

Notice that Kp,q,r has at most

|2α(r)|
q∏

n=r

|Ipn| = 2α(r)
q∏

n=r

n ≤ 2α(r) · q!

elements.
Obviously, Y =

⋃
p,r∈ω Yp,r, so it is sufficient to prove that µ(G+Yp,r) = 0

for any p, r ∈ ω. Notice that for p, r ∈ ω,

G+ Yp,r =
⋃

y∈Yp,r

G+ y =
⋃

y∈Yp,r

⋂
m∈ω

⋃
n≥m

[Fn + y�n] ⊆
⋂
m∈ω

⋃
y∈Yp,r
n≥m

[Fn + y�n]

=
⋂
m∈ω

⋃
y∈Yp,r
q≥m

⋃
α(q)≤n<α(q+1)

[Fn + y�n] ⊆
⋂
m≥p

⋃
q≥m

⋃
α(q)≤n<α(q+1)

w∈Kp,q,r

[Fn + w�n].

Recall that if w ∈ Kp,q,r, then w = y�α(q+1) for some y ∈ Yp,r ⊆ Yp, thus for
any k ≥ p, we have α(k) ≥ ϕ(y)(k), so µ(

⋃
n≥α(k)[Fn+ y�n]) ≤ 1/(2k+1 · k!).

In particular, µ(
⋃
n≥α(q)[Fn + y�n]) ≤ 1/(2q+1 · q!), so

µ
( ⋃
q≥m

⋃
α(q)≤n<α(q+1)

w∈Kp,q,r

[Fn + w�n]
)
≤ 2α(r) ·

∑
q≥m

q!

2q+1q!
=

2α(r)

2m
.

Therefore, µ(G + Yp,r) ≤ 2α(r)/2m for any m ∈ ω, so µ(G + Yp,r) = 0, for
any p, r ∈ ω.

We say that a set Y is SRN (see [1]) if for every Borel set H ⊆ 2ω × 2ω

such that Hx = {y ∈ 2ω : 〈x, y〉 ∈ H} is null for any x ∈ 2ω,
⋃
x∈Y Hx is null

as well.
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Theorem 3.14. Let X ∈ PN′, and let Y be an SRN set. Then X + Y ∈
PN.

Proof. This is an easy consequence of Lemma 3.13. Indeed, by [1, Theo-
rem 3.8] if Y is an SRN set, then Y ∈ N∗ and every Borel image of Y into
ωω is bounded. Let P be perfect. Apply Lemma 3.13 to the measure µP , the
set Y and a Gδ set G such that X ⊆ G and µP (G+ t) = 0 for all t ∈ 2ω.

In [15], the authors prove that SN + PM′ ⊆ s0. The question of whether
the measure analogue is true remains open.

Problem 3.15. Is it true that SM+ PN′ ⊆ s0?

Remark. Notice that a weaker statement, that the algebraic sum of a
Sierpiński set and a PN′ set is an s0-set, holds by Proposition 2.21.

Acknowledgements. The authors are grateful to the referee for a num-
ber of helpful suggestions for improvement.
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