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On the torsion of the Jacobians
of the hyperelliptic curves y2 = xn + a and y2 = x(xn + a)

by

Tomasz Jędrzejak (Szczecin)

1. Introduction. The hyperelliptic curves (over Q)

Cn,a : y2 = xn + a, Cn,a : y2 = x(xn + a)

(where n is a positive integer and a is a nonzero rational) and their respective
Jacobian varieties Jn,a and Jn,a are the natural generalization of the famous
families of elliptic curves

Ea : y2 = x3 + a, Ea : y2 = x3 + ax.

The j -invariants of Ea and Ea are 0 and 1728 respectively. Both families
of curves have complex multiplication: Ea by a third and Ea by a fourth root
of unity. Let Ea(Q)tors and Ea(Q)tors denote the torsion subgroups of the
Mordell–Weil groups Ea(Q) and Ea(Q) respectively. The following results
are well known (cf. [12, Theorems 5.2 and 5.3, p. 134]):

Ea(Q)tors ∼=


{0} if a 6= square and a 6= cube and a 6= −432,
Z/2Z if a 6= square and a = cube,
Z/3Z if a = square and a 6= cube or a = −432,
Z/6Z if a = square and a = cube.

(1.1)

Ea(Q)tors ∼=


Z/2Z if a 6= 4 and a 6= − square,
(Z/2Z)2 if a = − square,
Z/4Z if a = 4.

(1.2)

(without loss of generality we can assume that a is a nonzero integer, 6th or
4th powerfree respectively).
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It is of interest to characterize the torsion parts Jn,a(Q)tors andJn,a(Q)tors
of the Mordell–Weil groups Jn,a(Q) and Jn,a(Q). One may expect that there
are analogies between Ea(Q)tors and Jn,a(Q)tors, and between Ea(Q)tors and
Jn,a(Q)tors.

In [9, Theorem 4.1] the author proved that

(1.3) Jp,a(Q)tors

∼=



{0} if a 6= square and a 6= p∗ times a square and
a 6= pth power,

Z/2Z if a 6= square and a 6= p∗ times a square and
a = pth power,

Z/pZ if a = square and a 6= pth power,
Z/2pZ if a = square and a = pth power,
{0} or Z/pZ if a = p∗ times a square and a 6= pth power,
Z/2Z or Z/2pZ if a = p∗ times a square and a = pth power,

where p is an odd prime and p∗ = (−1)(p−1)/2 p. For a /∈ p∗Z2 we have a
nice analogy between (1.3) and (1.1). Moreover, the author also considered
in [10] another generalization, namely the superelliptic curves

Cq,p,a : yq = xp + a,

where q < p are primes, and proved that

(1.4) J3,5,a(Q)tors ∼=


{0} if a 6= 3th power and a 6= 5th power,
Z/3Z if a 6= 3th power and a = 5th power,
Z/5Z if a = 3th power and a 6= 5th power,
Z/15Z if a = 3th power and a = 5th power.

Note that Ea(Q)tors is a 2-group for any nonzero a. Moreover, by (1.2),

(1.5) Ea(Q)tors = Ea(Q)[2] for a 6= 4

(note that E4(Q)[2] ∼= Z/2Z). In [11, Theorem 2.2] we proved an analogous
result for J4,a(Q):

(1.6) J4,a(Q)tors = J4,a(Q)[2] for any a ∈ Q\{0}.

Such a characterization was used to give interesting applications to ranks
of octic twists. Obviously we explicitly determined J4,a(Q)[2] in terms of a.

In [9, Theorems 3.2, 3.11] the author proved that J6,a(Q)tors is a 2-group
of order ≤ 64 for any nonzero rational a. Moreover,

J6,a(Q)tors = J6,a(Q)[2] for a /∈ 4N4 ∪ {−1728,−1259712}



Jacobians of hyperelliptic curves 101

(note that here without loss of generality we assume that a is a 12th pow-
erfree integer). For the excluded values a, with possible exception of a =
−1728, the group J6,a(Q) has an element of order 4.

In this paper we consider the curves Cn,a and Cn,a, and their Jacobians
Jn,a and Jn,a. Our aim is to characterize the torsion parts of Jn,a(Q) and of
Jn,a(Q). We show that any prime divisor of #Jn,a(Q)tors and #Jn,a(Q)tors
is equal to 2 or divides n. Moreover, we give explicit upper bounds for these
orders, and say something about the structure of these groups (see Theorems
1 and 2 below). We also prove that J8,a(Q)tors = J8,a(Q)[2] for any a ∈
Q\{0}, and explicitly compute J8,a(Q)[2] in terms of a (Theorem 4). In
Section 5 we give an (almost full) characterization of Jp,a(Q)tors, where p
is an odd prime, and of Jn,a(Q)tors, where n is a composite number ≤ 8.
This, together with the results from Section 4 and from [9] and [11], gives an
almost complete description of the groups Jn,a(Q)tors and Jn,a(Q)tors, where
n ≤ 8 or n is an odd prime.

The main ingredients in the proofs are explicit computations of zeta
functions of the title curves in some cases, which are of independent interest,
and applications of the Chebotarev Density Theorem (in the formulation
of [16, pp. 35–36]) and its consequences (e.g. the Dirichlet Prime Number
Theorem).

Theorem 1. For any prime p we have

p |#Jn,a(Q)tors ⇒ p = 2 ∨ p |n,

and

ord2(#Jn,a(Q)tors) ≤

{
1
2n ord2(2n) if 2 |n,
1
2(n− 1) if 2 - n,

and for odd primes

ordp(#Jn,a(Q)tors) ≤

{
1
2n ordp(n) if 2 |n,
1
2(n− 1) ordp(n) if 2 - n.

Moreover, for any nonzero a,

Z/2Z ⊂ Jn,a(Q)tors if 2 | n,
Z/nZ ⊂ Jn,a(Q)tors if 2 - n.

Theorem 2. For any prime p we have

p |#Jn,a(Q)tors ⇒ p = 2 ∨ p |n,

and

ord2(#J
n,a(Q)tors) ≤

{
1
2(n− 2) ord2(n) if 2 |n,
1
2(n− 1) if 2 - n,



102 T. Jędrzejak

and for odd primes p,

ordp(#J
n,a(Q)tors) ≤

{
1
2(n− 2) ordp(n) if 2 |n,
1
2(n− 1) ordp(n) if 2 - n.

Moreover,

Z/mZ ⊂ J2m,a(Q)tors,

(Z/mZ)2 ⊂ J2m,c2(Q)tors,

Z/(2m+ 1)Z ⊂ J2m+1,c2(Q)tors,

for any nonzero a, c, and any positive integer m.

Corollary 3. If n = 2k then (for any a) Jn,a(Q)tors and Jn,a(Q)tors are
2-groups of order ≤ 2(k+1)2k−1 and ≤ 2k(2

k−1−1) respectively. On the other
hand, if n is odd then Jn,a(Q)tors is never a 2-group. Similarly, if n is even
but not a power of 2 then Jn,a(Q)tors is never a 2-group.

Theorem 4. We have

J8,a(Q)tors = J8,a(Q)[2] for any a ∈ Q \ {0}.

Explicitly (here without loss of generality a is a 16th powerfree integer)

J8,a(Q)tors ∼=


Z/2Z if a 6= 4c4 and a 6= −c2,
(Z/2Z)2 if a = 4c4 or (a = −c2 and c 6= b2),

(Z/2Z)3 if a = −c4 and c 6= b2 and c 6= 2b2,

(Z/2Z)4 if a = −c8 or a = −16c8.

2. Jacobians of hyperelliptic curves. In this preliminary section
we collect necessary notation and results concerning Jacobians of algebraic
curves.

For a smooth projective curve C defined over a field K let Div(C) de-
note its divisor group, i.e., the free abelian group generated by the points
of C. By definition, the divisor D ∈ Div(C) is K-rational if it is invariant
under the action of the absolute Galois group Gal(K/K). Note that if D =
n1P1 + · · · + nrPr with n1, . . . , nr nonzero integers, then to say that D is
K-rational does not mean that P1, . . . , Pr ∈ C(K). It suffices for Gal(K/K)
to permute the Pi’s in an appropriate fashion. The number n1 + · · ·+ nr is
called the degree of D. Note that if h is an element of the function field of C
then the divisor div(h) :=

∑
P∈C ordP (h)P is called principal and has de-

gree 0. Let JC denote the Jacobian variety of C. Note that as a group, JC is
the quotient group of the degree zero divisors modulo the principal divisors.
We denote the corresponding equivalence relation by∼. Let JC(K)tors denote
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the subgroup of K-rational torsion elements of JC(K), and by JC(K)[m] the
kernel of multiplication by m on JC(K).

By a hyperelliptic curve of genus g defined over K (charK 6= 2) we mean
an absolutely irreducible nonsingular curve C defined by an equation of the
form y2 = f (x) where f ∈ K [x] is monic and has degree 2g+ 1 or 2g+ 2. In
the first case, C is called an imaginary hyperelliptic curve, and in the second
a real hyperelliptic curve. In the imaginary model there exists only one point
at infinity, say ∞, but in the real model we have two points at infinity, ∞+

and ∞−. Let S denote the set of points at infinity on C. Then elements
of the set C(K) := {(x, y) ∈ K

2
: y2 = f(x)} ∪ S are called K-rational

points on C (if they do not belong to S, we call them finite or affine points).
Similarly we define C(L) for any field K ⊂ L ⊂ K. It is always possible to
transform an imaginary model to a real model, but for the converse direction
one needs a finite K-rational point on C. For a point P = (x, y) ∈ C(K), the
hyperelliptic involution is given by τ(P ) := (x,−y). Note that τ(∞±) =∞∓
and τ(∞) =∞.

The following two lemmas concern representations of divisors in JC .

Lemma 5. Any K-rational divisor of degree 0 on an imaginary hyperel-
liptic curve C over K of genus g is equivalent to a unique reduced divisor,
i.e., a divisor D of the form

D =
d∑
i=1

Pi − d∞,

where Pi ∈ C(K) \ S, Pi 6= τ(Pj) for i 6= j, and 0 ≤ d ≤ g.

Proof. See [13, Theorem 47].

Lemma 6. Any K-rational divisor of degree 0 on a real hyperelliptic curve
C over K of genus g is equivalent to a unique divisor D of the form

D =

d1∑
i=1

Pi − d1∞− + d2(∞+ −∞−),

where Pi ∈ C(K) \ S, Pi 6= τ(Pj) for i 6= j, 0 ≤ d1, d2, and d1 + d2 ≤ g. In
particular, the divisors k(∞+ −∞−) for k = 1, . . . , g are not principal and
are pairwise inequivalent.

Proof. The first claim follows from [14]. For the second, set d1 = 0 and
d2 = k.

The next lemma allows us to compute the group JC(K)[2].

Lemma 7. Let f(x) = f1(x) · · · fs(x), where fi ∈ K[x] are distinct monic
polynomials of degree ti irreducible over K, and t := t1+· · ·+ts. Let r denote
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the F2-dimension of JC(K)[2], i.e.,

JC(K)[2] ∼= (Z/2Z)r , where C : y2 = f(x).

If K is a finite field of odd characteristic, then

r =


s− 2 if t is even and some ti is odd,
s− 1 if t is odd or (s = 1 and t ≡ 2 (mod 4)),
s if (s > 1 and all ti are even) or (s = 1 and t ≡ 0 (mod 4)).

If K is an extension of Q, and either t is odd, or t is even and g is even,
then

r =

{
s− 2 if t is even and some ti is odd,
s− 1 if t is odd or all ti are even.

Proof. The first case follows from [5, Theorem 1.4]. The second one fol-
lows from [15, Lemmas 6.1 and 12.9].

3. The curves y2 = x (xn + a) and y2 = xn+a. In this section we will
prove Theorems 1 and 2. We start with some preliminaries.

The curves Cn,a : y2 = x(xn +a) and Cn,a : y2 = xn +a are hyperelliptic
of genus [n/2] and [(n− 1)/2] respectively, where [x] denotes the integer
part of x. Without loss of generality we may assume that a is a 2nth power-
free integer (for both curves). Note that |disc(x(xn + a))| = nnan+1 and
|disc(xn + a)| = nnan−1, hence the curves Cn,a and Cn,a have good reduction
at primes p - 2na. Consequently, over such primes the Jacobians Jn,a and
Jn,a have good reduction too. The curve Cn,a has one point at infinity if n
is even, and two such points if n is odd. Conversely, Cn,a has two points at
infinity if n is even, and one such point if n is odd. All points at infinity are
defined over prime fields (i.e., Q and Fp after reduction).

In order to compute Jn,a(Q)tors and Jn,a(Q)tors it is helpful to consider
Jn,a(Fp) and Jn,a(Fp), respectively, for primes p - 2na. This is because re-
duction modulo p induces embeddings (cf. [8, Theorem C.1.4, p. 263])

Jn,a(Q)tors ↪→ Jn,a(Fp),(3.1)

Jn,a(Q)tors ↪→ Jn,a(Fp),(3.2)

and therefore

#Jn,a(Q)tors |#Jn,a(Fp),(3.3)

#Jn,a(Q)tors |#Jn,a(Fp).(3.4)

It is well known that the zeta functions of the curves Cn,a and Cn,a over Fp



Jacobians of hyperelliptic curves 105

(p - 2na) have the form

Z(Cn,a/Fp, T ) =
Pn,a(T )

(1− T )(1− pT )
,

Z(Cn,a/Fp, T ) =
Qn,a(T )

(1− T )(1− pT )
,

where Pn,a(T ) and Qn,a(T ) are polynomials with integer coefficients of de-
grees 2[n/2] and 2[(n− 1)/2] respectively. Moreover (see for example [8, ex-
ercise A.8.11]),

#Jn,a(Fp) = Pn,a(1),(3.5)

#Jn,a(Fp) = Qn,a(1),(3.6)

and

Pn,a(T ) =

2[n/2]∏
i=1

(1− αiT ),(3.7)

Qn,a(T ) =

2[(n−1)/2]∏
i=1

(1− βiT ),(3.8)

where

#Cn,a(Fpk) = pk + 1− (αk1 + · · ·+ αk2[n/2]),(3.9)

#Cn,a(Fpk) = pk + 1− (βk1 + · · ·+ βk2[(n−1)/2]),(3.10)

and

Pn,a(T ) = p[n/2]T 2[n/2]Pn,a(1/(pT )),

Qn,a(T ) = p[(n−1)/2]T 2[(n−1)/2]Qn,a(1/(pT )).

Therefore we need to calculate #Cn,a(Fpk) for k = 1, . . . , [n/2] and
#Cn,a(Fpk) for k = 1, . . . , [(n− 1)/2]. To this end we will use the Jacobi,
Gauss and Jacobsthal sums. For the convenience of the reader we list some
definitions and give their basic properties (we set q = pk below).

Definition 8. Let χ denote a character on the finite field Fq and let
β ∈ Fq. The Gauss sum Gk(β, χ) over Fq is defined by

Gk(β, χ) :=
∑
α∈Fq

χ(α)e2πiTr(αβ)/p,

where Tr denotes the trace from Fq to Fp. We shall abbreviate Gk(χ) :=
Gk(1, χ).
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Definition 9. Let χ and ψ denote characters of orders n and m respec-
tively on Fq.The Jacobi sum Jk(χ, ψ) is defined by

Jk(χ, ψ) :=
∑
α∈Fq

χ(α)ψ(1− α)

(we set χ(0) = 0 if χ is nontrivial, and χ(0) = 1 if χ is trivial). The order of
Jk(χ, ψ) is equal to lcm(n,m).

Definition 10. Let e ∈ N and a ∈ Fq. Let
( ·
q

)
denote the quadratic

character of Fq.The Jacobsthal sums φe,k,ψe,k of order e overFq are defined by

φe,k(a) =
∑
x∈Fq

(
x

q

)(
xe + a

q

)
, ψe,k(a) =

∑
x∈Fq

(
xe + a

q

)
.

For a ∈ Z, we define φe,k(a) := φe,k(amod p) and ψe,k(a) := ψe,k(amod p).

Lemma 11. Let χ and ψ denote characters on Fpk .
(1) A Jacobi sum of order m is an integer of the cyclotomic field

Q(e2πi/m).
(2) If χ and ψ are both trivial then Jk(χ, ψ) = pk.
(3) If exactly one of χ and ψ is trivial then Jk(χ, ψ) = 0.
(4) If χ is nontrivial then Jk(χ, χ̄) = −χ(−1).
(5) If χ, ψ and χψ are nontrivial then

Jk(χ, ψ) = ψ(−1)Jk(χ̄ψ̄, ψ) = χ(−1)Jk(χ̄ψ̄, χ),

and |Jk(χ, ψ)| =
√
pk.

(6) If χψ is nontrivial then

Jk(χ, ψ) =
Gk(χ)Gk(ψ)

Gk(χψ)
.

Proof. See [2, Theorems 2.1.1, 2.1.3, and 2.1.5].

Lemma 12. Let β1, . . . , βl be positive integers. Let α1, . . . , αl, α ∈ F∗q. Set
di = gcd(βi, q− 1), and let χi be a character on Fq of order di (i = 1, . . . , l).
Then the number of solutions of the diagonal equation α1x

β1
1 +· · ·+αlxβll = α

in Fq is given by

ql−1 +

d1−1∑
j1=1

· · ·
dl−1∑
jl=1

χj11 (αα−11 ) · · ·χjll (αα−1l )Jk(χ
j1
1 , . . . , χ

jl
l ).

Proof. See [2, Theorem 10.4.2].

Lemma 13.

(1) If gcd(e, q − 1) = e1 then φe,k = φe1,k.
(2) If e | (q − 1) but 2e - (q − 1) then φe,k = 0.

(3) φe,k(abe) =
(
b
q

)e+1
φe,k(a) for b ∈ F×q .



Jacobians of hyperelliptic curves 107

(4) #Cn,a(Fq) = q + φn,k(a) +

{
1 if 2 | n,
2 if 2 - n.

(5) #Cn,a(Fq) = q + ψn,k(a) +

{
2 if 2 | n,
1 if 2 - n.

(6) ψ2e,k = ψe,k + φe,k.

Proof. Generalize the proofs from [2, pp. 184–188] for Fp to an arbitrary
finite field. Note that our definition of ψe,k differs from the one from [2] by(
a
q

)
(but agrees with [1]).

Now we show that the title curves are connected to each other.

Proposition 14. For any a and n we have

Q2n,a = Qn,a × Pn,a.
In particular,

#J2n,a(Fp) = #Jn,a(Fp) #Jn,a(Fp).
Proof. By Lemma 13, we get

#C2n,a(Fpk) = 2 + pk + ψ2n,k(a),

and

#Cn,a(Fpk) + #Cn,a(Fpk) =

{
2

1
+ pk + ψn,k(a) +

{
1

2
+ pk + φn,k(a)

= 3 + 2pk + ψ2n,k(a).

Hence
#C2n,a(Fpk) = #Cn,a(Fpk) + #Cn,a(Fpk)− (1 + pk).

Now by (3.7)–(3.10), we have

Q2n,a(T ) =

2(n−1)∏
i=1

(1− αiT ),

Qn,a(T ) =

2[(n−1)/2]∏
i=1

(1− βiT ),

Pn,a(T ) =

2[n/2]∏
i=1

(1− γiT ),

where

#C2n,a(Fpk) = 1 + pk − (αk1 + · · ·+ αk2(n−1)),

#Cn,a(Fpk) = 1 + pk − (βk1 + · · ·+ βk2[(n−1)/2]),

#Cn,a(Fpk) = 1 + pk − (γk1 + · · ·+ γk2[n/2]).
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Since n− 1 = [(n− 1)/2] + [n/2], we obtain

αk1 + · · ·+ αk2(n−1) = βk1 + · · ·+ βk2[(n−1)/2] + γk1 + · · ·+ γk2[n/2]

for any k ∈ N. Consequently, the polynomialsQ2n,a(T ) andQn,a(T )×Pn,a(T )
have the same coefficients, and we are done.

Remark 15. By Proposition 14 and the famous result of Tate [17], the
abelian varieties J2n,a and Jn,a × Jn,a are isogenous over Fp. This can be
proved directly by using the maps C2n,a → Cn,a, (x, y) 7→ (x2, y), and
C2n,a → Cn,a, (x, y) 7→ (x2, xy).

Using properties of Gauss and Jacobi sums, in some cases we can explicity
compute the zeta functions of these curves. First, let us write down a useful
result concerning indices.

Lemma 16. Let p be an odd prime and let k ≥ 1 be an integer. Let γk de-
note a generator of the multiplicative group F∗

pk
. For c ∈ F∗

pk
let indγk c denote

the index of c with respect to γk, i.e., the unique number n ∈ {0, . . . , pk − 2}
such that c = γnk . Set γ := γ1+p+···+p

k−1

k . Then γ is a primitive root modulo p
(i.e., a generator of F∗p) and for a ∈ F∗p we have

(3.11) indγk a ≡ (1 + p+ · · ·+ pk−1) indγ a (mod pk − 1).

Proof. This is well known: see for example [6, p. 665].

Proposition 17. If p ≡ −1 (mod n) and p - 2a then

Qn,a(T ) = (1 + pT 2)[(n−1)/2].

In particular,

#Jn,a(Fp) =

{
(1 + p)(n−1)/2 if 2 - n,
(1 + p)(n−2)/2 if 2 |n.

Proof. We give the proof only for n even. The case of n odd is similar,
and it is left to the reader. Assume that n = 2m. In order to compute Qn,a
we need to find #Cn,a(Fpk) for k = 1, . . . ,m − 1. For this purpose we will
apply Lemma 12 to the equation y2 − x2m = a. By assumption,

pk ≡

{
1 (mod 2m) if 2 | k,
−1 (mod 2m) if 2 - k,

hence

gcd(2m, pk − 1) =

{
2m if 2 | k,
2 if 2 - k.
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Therefore by Lemma 12,

#Cn,a(Fpk) = 2 + pk + χm(a)×


2m−1∑
j=1

χj(−a)Jk(χ
m, χj) if 2 | k,

χm(−a)Jk(χ
m, χm) if 2 - k,

where χ denotes a character of order 2m on Fpk . Note that by Lemma 11,
we have χm(a)χm(−a)Jk(χ

m, χm) = −χ2m(−1) = −1. Hence we can rewrite
the above formula as

#Cn,a(Fpk) = 1 + pk + χm(a)×


∑

1≤j≤2m−1
j 6=m

χj(−a)Jk(χ
m, χj) if 2 | k,

0 if 2 - k.

Now assume that k = 2r. By the Hasse–Davenport formula [2, Corollary
11.5.3] we have

J2r(χ
m, χj) = (−1)r−1(J2(χ̃

m, χ̃j))r,

where χ̃ denotes a character of order 2m on Fp2 such that χ = χ̃ ◦NFp2r/Fp2 .
Consequently,

#Cn,a(Fp2r) = 1 + p2r + χ̃mr(a)
∑

1≤j≤2m−1
j 6=m

(−1)r−1χ̃jr(−a)(J2(χ̃
m, χ̃j))r.

In the notation of Lemma 16, any character η of order 2m on Fp2 has the form
η(x) = ζ

t indγ2 (x)
n , where ζn is a primitive nth root of unity and 1 ≤ t ≤ n,

gcd(t, n) = 1. Then by the same lemma, we have χ̃(±a) = 1, and so

#Cn,a(Fp2r) = 1 + p2r +
∑

1≤j≤2m−1
j 6=m

(−1)r−1(J2(χ̃
m, χ̃j))r.

Now we compute the Jacobi sums J2(χ̃m, χ̃j). Let j ∈ {1, . . . , 2m− 1} and
j 6= m. By Lemma 11,

J2(χ̃
m, χ̃j) =

G2(χ̃
m)G2(χ̃

j)

G2(χ̃m+j)
.

Since p≡−1 (mod 2m), by [2, Theorem 11.6.1]we getG2(χ̃
i) = (−1)(p+1)/rip,

where ri = 2m/gcd(2m, i) is the order of character χ̃i. Therefore J2(χ̃m, χ̃j)
= p, and consequently

#Cn,a(Fpk) =

{
1 + p2r + (−1)r−12(m− 1)pr if k = 2r,

1 + pk if 2 - k.

Thus, by (3.8) and (3.10), we conclude that

Q2m,a(T ) = (1 + pT 2)m−1,
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and by (3.6) we get
#J2m,a(Fp) = (1 + p)m−1,

and the assertion follows.

Proposition 18. If p ≡ −1 (mod 2n) and p - a then

Pn,a(T ) = (1 + pT 2)[n/2].

In particular,

#Jn,a(Fp) =

{
(1 + p)(n−1)/2 if 2 - n,
(1 + p)n/2 if 2 |n.

Proof. By Propositions 14 and 17, we have

Pn,a(T ) =
Q2n,a(T )

Qn,a(T )
=

(1 + pT 2)[(2n−1)/2]

(1 + pT 2)[(n−1)/2]
= (1 + pT 2)[n/2],

and we are done.

Now we are ready to prove the first two main results of this paper.

Proof of Theorem 1. First assume that n is even, say n = 2m. Let l be a
prime such that l - 2m. We will show that l - #J2m,a(Q)tors. By the Chinese
Remainder Theorem and the Dirichlet Prime Number Theorem, there exists
a prime p such that p - a, p ≡ −1 (mod 2n) and p ≡ 1 (mod l). Then
by Proposition 18, we get #J2m,a(Fp) = (1 + p)m ≡ 2m 6≡ 0 (mod l), and
consequently by (3.3), l - #J2m,a(Q)tors.

Now we will give the desired upper bound for #J2m,a(Q)tors. Let
2α0pα1

1 · · · p
αt
t be the prime factorization of n. Choose a prime p such that

p - a and p ≡ −1 + pαii (mod pαi+1
i ) (i = 1, . . . , t), and p ≡ −1 + 2α0+1

(mod 2α0+2). Again by Proposition 18, we have #J2m,a(Fp) = (1+p)m. Since
ord2(1 + p) = α0 + 1 = ord2(2n) and ordpi(1 + p) = αi = ordpi(n), we see
that ord2(#J2m,a(Fp)) = m ord2(2n) and ordpi(#J2m,a(Fp)) = m ordpi(n).
Then (3.3) establishes the formula for even n. Moreover, in the notation of
Lemma 7, t is odd and s ≥ 2, hence r = dimF2 J2m,a(Q)[2] ≥ 1 (in fact the
divisor (0, 0)−∞ has order 2 in J2m,a(Q)tors).

Now let n = 2m+ 1. We proceed in a similar way. Let l be a prime such
that l - 2(2m+1). Then we choose a prime p such p - a, p ≡ −1 (mod 2n) and
p ≡ 1 (mod l). Consequently, by Proposition 18 and (3.3), we deduce that
l - #J2m+1,a(Q)tors. If we take a prime p such that p - a, p ≡ 1 (mod 4) and
p ≡ −1 + pαii (mod pαi+1

i ) for i = 1, . . . , t, then again by Proposition 18 and
(3.3), we have ord2(#J2m+1,a(Q)tors) ≤ m and ordpi(#J2m+1,a(Q)tors) ≤
m ordpi(n). Now consider the divisor D = ∞+ − ∞− ∈ J2m+1,a(Q). By
Lemma 6, D has order > m (= the genus of C2m+1,a). On the other hand,
nD = div(h(x, y)) where h(x, y) = −2yxm + 2xn + a. Indeed, h has a zero
at ∞+ of order n, a pole at ∞− of order n, and no other zeroes or poles.
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Consequently, the order of D divides 2m + 1 and is ≥ m + 1, hence it is
2m+ 1 = n, which is our claim.

Proof of Theorem 2. We only prove the ‘moreover’ part; the proof of the
rest follows by the same method as in the proof of Theorem 1, and it is left
to the reader.

Assume that n = 2m. Let D1 := ∞+ −∞− ∈ J2m,a(Q). By Lemma 6,
D1 has order > m − 1 (= the genus of C2m,a). On the other hand, mD1 =
div(y − xm), hence D1 has order m, and so Z/mZ ⊂ J2m,a(Q)tors.

Now assume moreover a = c2 and consider the divisor D2 = (0, c)−∞−.
ThenmD2 = div(xm+c−y). By Lemma 6, the divisors lD2 for 1 ≤ l ≤ m−1
are not principal and are pairwise inequivalent (indeed, take d1 = l and
d2 = 0). Consequently, D2 has order m. Moreover, by Lemma 6, the divisors
kD1 and lD2 are pairwise inequivalent for 1 ≤ k, l ≤ m − 1. Therefore
(Z/mZ)2 ⊂ J2m,a(Q)tors.

Now assume a = c2 but n = 2m+1. Consider the divisorD3 = (0, c)−∞.
By Lemma 5, the divisors kD3 for k = 1, . . . ,m are not principal and
are pairwise inequivalent, so D3 has order ≥ m + 1. On the other hand,
(2m+1)D3 is principal (it is the divisor of the function y−c). Consequently,
D3 has order n, and we are done.

4. The curve y2 = x(x8 + a). In this section we will prove Theorem 4.
By Corollary 3 we know that J8,a(Q)tors is a 2-group of order ≤ 212 = 4096.
In order to prove Theorem 4, it is sufficient to show that this group has no
elements of order 4. To this end we compare #J8,a(Fp) with #J8,a(Fp)[2],
and then use the embedding (3.1).

We start with the description of the groups J8,a(Fp)[2] (for p - 2a) and
J8,a(Q) [2] (note that we do not need the full characterization over Fp).

Proposition 19. We have (without loss of generality a is a 16th pow-
erfree integer):

(1)

J8,a(Fp)[2] ∼=



(Z/2Z)2 if p ≡ 1 (mod 4), a = −b2 and
(
b
p

)
= −1,

(Z/2Z)4 if p ≡ 1 (mod 8), a = −b4 and
(
b
p

)
= −1,

(Z/2Z)5 if p ≡ 3 (mod 4) and a = −b2,
(Z/2Z)6 if p ≡ 5 (mod 8) and a = −b4,
(Z/2Z)8 if p ≡ 1 (mod 8) and a = −b8.

and
(Z/2Z)2 ⊂ J8,a(Fp)[2] if a = 4b4.
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(2)

J8,a(Q)[2] ∼=


Z/2Z if a 6= 4b4 and a 6= −b2,
(Z/2Z)2 if a = 4b4 or (a = −c2 and c 6= b2),

(Z/2Z)3 if a = −b4 and b 6= c2 and b 6= 2c2,

(Z/2Z)4 if a = −c8 or a = −16c8.

Proof. LetK = Q or Fp. By Lemma 7, the group J8,a(K)[2] is completely
determined by the factorization of the polynomial fa(x) := x(x8+a) over K.
More precisely, J8,a(K)[2] ∼= (Z/2Z)r where r is 1 less than the number of
irreducible factors of fa(x) over K. Obviously for any a, fa(x) is reducible
and has at most nine factors, therefore Z/2Z ⊂ J8,a(K)[2] ⊂ (Z/2Z)8 for
any a.

We need to consider a few cases. Let ζn denote an nth primitive root of
unity. First assume that −a is an 8th power in K and ζ8 ∈ K. Note that
ζ8 /∈ Q, and ζ8 ∈ Fp if and only if p ≡ 1 (mod 8). In this case f(x) splits
completely over K, hence J8,a(K)[2] ∼= (Z/2Z)8.

Now assume that −a = b8 (b ∈ K), ζ8 /∈ K and ζ4 ∈ K. Clearly, ζ4 /∈ Q,
and ζ4 ∈ Fp if and only if p ≡ 1 (mod 4). In this case we have the factorization

fa(x) = x(x− b)(x+ b)(x− bζ4)(x+ bζ4)(x
2 − b2ζ4)(x2 + b2ζ4),

and consequently J8,a(K)[2] ∼= (Z/2Z)6.
Assume −a = b8 and ζ4 /∈ K. If K = Q then

fa(x) = x(x− b)(x+ b)(x2 + b2)(x4 + b4),

and so J8,a(Q)[2] ∼= (Z/2Z)4. If K = Fp then p ≡ 3 (mod 4). Therefore√
2 ∈ Fp if p ≡ 7 (mod 8) and

√
−2 ∈ Fp if p ≡ 3 (mod 8). Consequently,

fa(x) has the factorization

x(x− b)(x+ b)(x2 + b2)(x2 −
√

2 bx+ b2)(x2 +
√

2bx+ b2)

or

x(x− b)(x+ b)(x2 + b2)(x2 −
√
−2bx− b2)(x2 +

√
−2bx− b2),

and J8,a(Fp)[2] ∼= (Z/2Z)5.
Now observe that if K = Fp where p ≡ 3 (mod 4) and −a is a square

then it is an 8th power in K (in fact −a is a 2kth power for any k). Indeed,
let a = −b2. Since

(−1
p

)
= −1, we have

(
b
p

)
= 1 or

(−b
p

)
= 1. Hence

a = −(±b)2 = −c4. Similarly,
(
c
p

)
= 1 or

(−c
p

)
= 1, and a = −(±c)4 = −d8

etc. Also if K = Fp where p ≡ 5 (mod 8) and −a is a 4th power then it is
an 8th power in K. Indeed, let a = −b4. We know that ζ4 ∈ K but ζ8 /∈ K,
hence

( ζ4
p

)
= −1. Consequently,

(
b
p

)
= 1 or

( bζ4
p

)
= 1, i.e., b = c2 or bζ4 = c2,

and so a = −c8.
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Assume that −a is a 4th power but not an 8th power in K. Then in
particular, by the above, K = Q or K = Fp with p ≡ 1 (mod 8). Assume
a = −b4 and ±b is not a square in K. Over the rationals, fa(x) has the
factorization x(x2 − b)(x2 + b)(x4 + b2) if b is not twice a square, and

x(x2 − 2c2)(x2 + 2c2)(x2 − 4cx+ 2c2)(x2 + 4cx+ 2c2)

if b = 2c2 (so a = −16c8). Therefore J8,a(Q) [2] ∼= (Z/2Z)4 if a = −16c8, and
J8,a(Q) [2] ∼= (Z/2Z)3 if a = −b4 and b 6= c2, 2c2. Over Fp we have

fa(x) = x(x2 − b)(x2 + b)(x2 + bζ4)(x
2 − bζ4),

hence J8,a(Fp)[2] ∼= (Z/2Z)4 for such a and p.
Now suppose that −a is a square but not a 4th power in K. Hence in

particular,K = Q orK = Fp with p ≡ 1 (mod 4). Let a = −b2 where±b ∈ K
is not a square. Then overK the polynomial fa(x) factors as x(x4−b)(x4+b),
and so J8,a(K)[2] ∼= (Z/2Z)2.

Note that if a = 4b4 inK then fa(x) = x(x4+2bx2+2b2)(x4−2bx2+2b2),
and consequently (Z/2Z)2 ⊂ J8,a(K)[2], which establishes part (1). Now
let K = Q. Then J8,4b4(Q)[2] ∼= (Z/2Z)2 because the above factors are
irreducible over the rationals.

It remains to check the case a 6= 4b4 and a 6= −b2. But then x8 + a is
irreducible over Q, by [18, Lemma 4.6.9], which completes the proof.

In order to calculate #J8,a(Fp) we apply [7]. We write down only selected
cases from [7, Section 6], useful for our purposes. The values of #J8,a(Fp)
will be displayed in the tables below, and we indicate the residuacity of
a ∈ Fp \ {0}.

Lemma 20.
(1) If p ≡ 3 (mod 8) then

#J8,a(Fp) square

(1− p2)2 no
(1 + p2)2 yes

(2) If p ≡ 5 (mod 8) then

#J8,a(Fp) square 4th power

1 + p4 no no
(1− p)2(1 + p)2 yes no
(1 + p2)2 yes yes



114 T. Jędrzejak

(3) If p ≡ 9 (mod 16) then

#J8,a(Fp) square 4th power 8th power

1 + p4 no no no
(1 + p2)2 yes no no
(1− p)4 yes yes no
(1 + p)4 yes yes yes

Proof. See [7, Section 6.3].

Now we are ready to prove our third main result.

Proof of Theorem 4. First note that J8,a(Q)tors = J8,a(Q)[2] if and
only if J8,a(Q)tors contains no element of order 4. Next, if p - 2a for a
prime p, then J8,a(Q)tors is isomorphic to a subgroup of J8,a(Fp); in particular
ord2(#J8,a(Q)tors)≤ord2(#J8,a(Fp)). If ord2(#J8,a(Fp))=ord2(#J8,a(Fp)[2])
then J8,a(Fp) contains no elements of order 4, and hence the same is true for
J8,a(Q)tors. Now we need to consider a few cases.

Assume that a is not of the form ±1,±2 times a square in Z. By the
Chinese Remainder Theorem and the Dirichlet Prime Number Theorem,
we can choose a prime p such that p - a, p ≡ 9 (mod 16), and

(
a
p

)
= −1.

Hence, by Lemma 20, we obtain #J8,a(Fp) = 1+p4 ≡ 2 (mod 16). Therefore
obviously J8,a(Fp) has no point of order 4, and consequently J8,a(Q)tors =
J8,a(Q)[2] for such a.

Now assume that a = ±c2 (without loss of generality c ∈ N) and
c is neither a square nor twice a square. Then, as above, there exists a
prime p such that p - a, p ≡ 9 (mod 16), and

(
c
p

)
= −1. In particular,

√
−1 ∈ Fp, and moreover

(√−1
p

)
= 1. Hence, a is a square but not a 4th

power in Fp, and by Lemma 20, we get #J8,a(Fp) = (1 + p2)2 ≡ 4 (mod 16).
So ord2(#J8,a(Fp)) = 2. Next, writing a = −(

√
−1 c)2 or a = −c2, and ap-

plying Proposition 19, we obtain ord2(#J8,a(Fp))[2] = 2, and consequently
J8,±c2(Q)tors = J8,±c2(Q)[2] for such c.

Now let a = ±2c2 (c ∈ N). In this case we choose a prime p such that
p - a, p ≡ 5 (mod 8). Since

(
a
p

)
=
(±2
p

)
= −1, we have, by Lemma 20,

#J8,a(Fp) = 1 + p4 ≡ 2 (mod 8). Hence J8,±2c2(Fp) has no point of order 4,
and consequently J8,±2c2(Q)tors = J8,±2c2(Q)[2].

It remains to check the case a = ±b4,±4b4 (b ∈ N). Let a = 4b4. Then
take a prime p such that p - a and p ≡ 3 (mod 8). Clearly a is a square
in Fp, hence by Lemma 20, we get #J8,a(Fp) = (1 + p2)2 ≡ 4 (mod 8),
so ord2(#J8,a(Fp)) = 2. On the other hand, by Proposition 19, we have
(Z/2Z)2 ⊂ J8,a(Fp)[2]. Therefore J8,a(Fp) has no point of order 4, and so
J8,4b4(Q)tors = J8,4b4(Q)[2].
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Let a = −4b4 or a = b4, and choose a prime p such that p - a and p ≡
5 (mod 8). Note that

√
−1 ∈ Fp and

(√−1
p

)
= −1. Hence

(
2
√
−1
p

)
= 1, and

a = (2b2
√
−1)2 or a = b4, so in both cases a is a 4th power in Fp. Conse-

quently, by Lemma 20, we obtain #J8,a(Fp) = (1 + p2)2 ≡ 4 (mod 8). More-
over, a = −(2b2)2 and

(
2b2

p

)
= −1 or a = −(b2

√
−1)2 and

(
b2
√
−1
p

)
= −1,

therefore by Proposition 19, we get J8,a(Fp) [2] ∼= (Z/2Z)2, and J8,a(Q)tors =
J8,a(Q)[2] for a = −4b4, b4.

Now assume a = −b4. Consider a prime p with p - a and p ≡ 5 (mod 8).
In the same manner we can see that a is a square but not a 4th power in Fp.
Then by Lemma 20, we have #J8,a(Fp) = (1−p)2(1+p)2, and ord2(#J8,a(Fp))
= 6. Clearly, by Proposition 19, we also have ord2(#J8,a(Fp)[2]) = 6. There-
fore J8,−b4(Q)tors = J8,−b4(Q)[2], which completes the proof.

5. Other title curves with special n. In this section we compute
the torsion part of Jp,a(Q), where p is an odd prime, and of Jn,a(Q), where
n = 4, 6, 8.

5.1. The curves y2 = x(xp + a). For odd n (say n= 2m+1) the curve
Cn,a is isomorphic to Cn,an−1. Indeed, the map C2m+1,a→C2m+1,a2m given by

(x, y) 7→
(
a

x
,
amy

xm+1

)
,

has inverse C2m+1,a2m → C2m+1,a given by

(x, y) 7→
(
a

x
,
ay

xm+1

)
.

In particular, the curves y2 = x(xp + a) and y2 = xp + ap−1 are isomorphic
(p is an odd prime, a is a 2pth powerfree integer). Therefore, by (1.3), we
obtain the following.

Proposition 21. We have

Jp,a(Q)tors ∼=

{
Z/pZ if a is not a pth power,
Z/2pZ if a is a pth power.

5.2. The curves y2 = x4 +a. The curve C4,a : y2 = x4 +a is an elliptic
curve (so we can identify C4,a with J4,a) and has Weierstrass equation

Y 2 = X3 − 4aX.

Indeed, setting u = y + x2, we get y − x2 = a/u, and so 2x2 = u − a/u.
Multiplying by u2 and setting v = xu, we obtain 2v2 = u3 − au. Finally,
on setting X = 2u and Y = 4v, the equation takes the required Weier-
strass form. Consequently, by (1.2), we have the following (note that a is 8th
powerfree):



116 T. Jędrzejak

Proposition 22.

J4,a(Q)tors ∼=


(Z/2Z)2 if a = c2,
Z/4Z if a = −c4,
Z/2Z if a 6= c2 and a 6= −c4.

5.3. The curves y2 = x6+a. By Theorem 2, we know that #J6,a(Q)tors
= 2α3β , where 0 ≤ α ≤ 2 and 1 ≤ β ≤ 2. In this subsection we will give an
almost full characterization of these groups. More precisely, we will prove

Proposition 23. For any nonzero a,
J6,a(Q)tors = J6,a(Q)[2]× J6,a(Q)[9],

where

J6,a(Q)[2] ∼=


(Z/2Z)2 if a = −c6 or a = 27c6,
Z/2Z if a = b3 and b 6= 3c2 and b 6= −c2,
0 if a 6= b3,

J6,a(Q)[9]

∼=


(Z/3Z)2 if a = c2 or a = −432b6,
Z/3Z if a 6= c2 and a 6= −3c2 and a 6= 2b3,
Z/9Z or (Z/3Z)2 or Z/3Z if (a = −3c2 and a 6= −432b6) or

(a = 2b3 and a 6= −3c2 and a 6= c2).

Remark 24. Numerical computations in Magma [3] suggest that in fact
J6,a(Q) [9] ∼= Z/3Z in the last case.

Before proving Proposition 23, let us prepare some introductory results.
First, by Proposition 14, we have #J6,a(Fp) = #J3,a(Fp)#J3,a(Fp) for any
prime p - 6a. Secondly, J3,a is simply the elliptic curve C3,a : y2 = x3 + a.
Similarly J3,a is the elliptic curve y2 = x(x3 + a), which after the trans-
formation (x, y) 7→ (a/x, ay/x2) has Weierstrass form C3,a2 : y2 = x3 + a2.
Therefore combining Proposition 17, Lemma 13 and evaluation of Jacobsthal
sum ψ3,1 given in [1, Thm. 4.1], we obtain

Lemma 25. Let p - 6a. Then

#J6,a(Fp)

=



(1 + p)2 if p ≡ 2 (mod 3),(
1 + p+ 2u

(
a
p

))
(1 + p+ 2u) if p ≡ 1 (mod 3) and

a is a cube in Fp,(
1 + p−

(
a
p

)
(u+ 3|v|ε)

)
(1 + p− (u+ 3|v|ε)) if p ≡ 1 (mod 3) and

a is not a cube in Fp,
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where p = u2 + 3v2 with u ≡ 2 (mod 3), and ε = ±1. Moreover, if 2 is cubic
nonresidue modulo p then

ε ≡

{
|v| (mod 3) if 2a is a cube in Fp,
−|v| (mod 3) if 4a is a cube in Fp.

Remark 26. One can show (using Lemma 25) that if a = −3c2 or
a = 2b3 then 9 |#J6,a(Fp) for any p - 6a. Therefore in this case the “reduction
method” (i.e., formula (3.4)) is useless.

Proof of Proposition 23. Since #J6,a(Q)tors = 2α3β with 0 ≤ α ≤ 2 and
1 ≤ β ≤ 2, we see that

J6,a(Q)tors = J6,a(Q)[4]× J6,a(Q)[9].

Therefore it remains to show that J6,a(Q)tors has no point of order 4, and
to prove the above formulae for J6,a(Q)[m] for m = 2, 9.

We begin by proving the formula for J6,a(Q)[2]. By Lemma 7, the group
J6,a(Q)[2] is completely determined by factorization of the polynomial ga(x)
:= x6 + a over Q. Note that ga has a rational root if and only if a = −c6 for
some integer c. In this case ga(x) factors over Q as

(x− c)(x+ c)(x2 − cx+ c2)(x2 + cx+ c2).

Hence, by Lemma 7, we obtain r = 2. It is easy to check that ga is irreducible
over Q if and only if a is neither a cube nor minus a square. Then J6,a(Q)[2]
is trivial. Assume now that ga has no rational roots but is reducible over Q. If
a = b3 and b 6= 3c2,−c2 then ga(x) = (x2 + b)(x4− bx2 + b2), so by Lemma 7,
we get r = 1. If a = −b2 and b 6= c3 then ga(x) = (x3 − b)(x3 + b), and
consequently J6,a(Q)[2] is trivial. If a = 27c6 then

ga(x) = (x2 + 3c2)(x2 − 3cx+ 3c2)(x2 + 3cx+ 3c2),

and we get r = 2, which proves the desired formula.
Now consider J6,a(Q)[9]. By Theorem 2, we have Z/3Z ⊂J6,a(Q) [9],

and moreover (Z/3Z)2=J6,a(Q) [9] if a = c2. Assume that a = −432b6 =
−3(12b3)2 and consider the divisor D = (2b

√
3, 36b3) + (−2b

√
3, 36b3) −

∞+−∞−. It is easy to see that D is Q-rational divisor on C6,−432b6 , and by
Lemma 6, D is not principal. But using the algorithm from [4, Chapter 8],
we see that 2D ∼ −D, and consequently J6,−432b6(Q) [9] = (Z/3Z)2. Now
assume a 6= c2, a 6= −3c2 and a 6= 2b3. Then, by the Chebotarev Density
Theorem, there exist (in fact infinitely many) primes p such that p - 2a,
p ≡ 1 (mod 3),

(
a
p

)
= −1, a is a cube in Fp, and 2 is not a cube in Fp. For

such p, we have p = u2 + 3v2 with u ≡ 2 (mod 3) and 3 - v (note that 2 is a
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cubic residue modulo p iff 3 | v), and moreover by Lemma 25, we get
#J6,a(Fp) = (1 + p− 2u)(1 + p+ 2u)

= ((1− u)2 + 3v2)((1 + u)2 + 3v2),

so ord3(#J
6,a(Fp)) = 1. Hence by (3.4), 9 - J6,a(Q)tors, and consequently

J6,a(Q)[9] = Z/3Z, which proves the desired formula.
Now we prove (much as in the proof of Theorem 4) that J6,a(Q)tors has

no point of order 4. Let p be a prime such that p - a and p ≡ 5 (mod 12).
Then, by Lemma 25, we obtain #J6,a(Fp) = (1 + p)2 ≡ 4 (mod 8), i.e.,
ord2(#J

6,a(Fp)) = 2. On the other hand, for such p, −a is necessarily a
cube in Fp, say a = −b3. If moreover

(
b
p

)
= 1 then a = −c6, and x6 + a

factors over Fp as
(x− c)(x+ c)(x2 − cx+ c2)(x2 + cx+ c2).

But if
(
b
p

)
= −1 then

(−3b
p

)
= 1, and

x6 + a = (x2 − b)(x2 +
√
−3b x− b)(x2 −

√
−3b x− b).

Therefore, by Lemma 7, we have J6,a(Fp)[2] = (Z/2Z)2. Consequently,
J6,a(Fp) has no point of order 4, and we are done.

5.4. The curves y2 = x8+a. By Theorem 2, we know that J8,a(Q)tors is
a 2-group of order ≤ 29 = 512 and has an element of order 4 (so J8,a(Q)tors 6=
J8,a(Q)[2], in contrast to J8,a(Q)tors). Moreover, (Z/4Z)2 ⊂ J8,a(Q)tors if a
is a square. In this subsection we will improve those results. We will show

Proposition 27. We have

J8,a(Q)tors ∼=

{
(Z/4Z)2 if a = c2 and a 6= 4b4,
Z/4Z if a 6= ±c2.

Before the proof of Proposition 27, we give some preliminary results.
By Proposition 14, we have #J8,a(Fp) = #J4,a(Fp)#J4,a(Fp) for any prime
p - 2a. As we can see above, J4,a is simply the elliptic curve C4,a which has
Weierstrass form C2,−4a : y2 = x3 − 4ax. On the other hand, J4,a is the
Jacobian of the genus 2 hyperelliptic curve C4,a : y2 = x(x4 + a), which
we considered in [11]. Therefore combining Lemma 13 and evaluation of
appropriate Jacobsthal sums given in [2, Chapter 6] and [11], we get

Lemma 28. If p ≡ 5 (mod 8) and p - a then

#J8,a(Fp)

=


(1 + p)2(1 + p+ 2u) if a is a 4th power in Fp,
(1− p)2(1 + p− 2u) if a is a square but not a 4th power in Fp,
(1 + p2)(1 + p± 2|v|) if a is not a square in Fp,

where p = u2 + v2 and u ≡ 3 (mod 4).
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Proof of Proposition 27. Assume that a is neither a square nor minus a
square in Z. Then by the Dirichlet Prime Number Theorem, there exists a
prime p such that p ≡ 5 (mod 8) and

(
a
p

)
= −1. For such p, by Lemma

28, we get ord2(#J
8,a(Fp)) = 2, and consequently, by (3.4) and Theorem 2,

J8,a(Q)tors ∼= Z/4Z.
Similarly, if a = c2 and a 6= 4b4 (so c 6= ±2b2) then there exists a prime

p such that p ≡ 5 (mod 8) and
(
c
p

)
= 1. Hence, by Lemma 28, we obtain

ord2(#J
8,a(Fp)) = 4, which combined with (3.4) and Theorem 2 completes

the proof.

6. Problems. In the light of the above results it is natural to state the
following problems.

Problem 29. For which even positive integers n 6= 2k, is the group
Jn,a(Q)tors a 2-group for all nonzero a?

We know only one such n, namely J6,a(Q)tors is a 2-group. For those n
for which Jn,a(Q)tors is a 2-group for all a 6= 0 one can ask:

Problem 30. For which positive integers n, do we have

Jn,a(Q)tors = Jn,a(Q)[2]

for all nonzero a?

We only know that for n = 4, 8 we have Jn,a(Q)tors = Jn,a(Q) [2] for all
nonzero a, and for n = 2, 6 this is not the case: for some a (even infinitely
many a for n = 6) there are points of order 4. Note that the analogous
problems for Jn,a(Q)tors are easy. Indeed, by Theorem 2, if n 6= 2k then
the statement ‘Jn,a(Q)tors is a 2-group for all nonzero a’ is false. Even for
n = 2k ≥ 4, the statement ‘Jn,a(Q)tors = Jn,a(Q)[2] for all nonzero a’ is false
because J2k,a(Q)tors has an element of order 4 for some a.

The following problem is of interest.

Problem 31. Give a complete characterization of Jn,a(Q)tors and
Jn,a(Q)tors for all positive integers n and all nonzero 2nth powerfree in-
tegers a.

In particular one can ask about a possible analogy between the formulae
(1.3), (1.4) and the formula for Jn,a(Q)tors.
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