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On the set-theoretic strength of the n-compactness of
generalized Cantor cubes

by

Paul Howard (Ypsilanti, MI) and Eleftherios Tachtsis (Karlovassi)

Abstract. We investigate, in set theory without the Axiom of Choice AC, the set-
theoretic strength of the statement

Q(n): For every infinite set X, the Tychonoff product 2X , where 2 = {0, 1} has the
discrete topology, is n-compact,

where n = 2, 3, 4, 5 (definitions are given in Section 1).

We establish the following results:

(1) For n = 3, 4, 5, Q(n) is, in ZF (Zermelo–Fraenkel set theory minus AC), equivalent
to the Boolean Prime Ideal Theorem BPI, whereas

(2) Q(2) is strictly weaker than BPI in ZFA set theory (Zermelo–Fraenkel set theory
with the Axiom of Extensionality weakened in order to allow atoms).

This settles the open problem in Tachtsis (2012) on the relation of Q(n), n = 2, 3, 4, 5,
to BPI.

1. Introduction, terminology and known results. Let X be an
infinite set. The collection BX = {[p] : p ∈ Fn(X, 2)}, where Fn(X, 2) is the
set of all finite partial functions from X into 2 and [p] = {f ∈ 2X : p ⊂ f},
is the standard open base for the product topology on 2X , where 2 = {0, 1}
has the discrete topology. (In fact, for each p ∈ Fn(X, 2), [p] is a clopen
subset of 2X , that is, [p] is simultaneously closed and open in 2X .) The set
DX = {2X \ [p] : p ∈ Fn(X, 2)} consisting of complements of standard open
basic sets is called the standard closed base for the product topology. For
every n ∈ N (= ω \ {0}, where ω denotes, as usual, the set of all natural
numbers), let BnX = {[p] ∈ BX : |p| = n} (i.e., for each [p] ∈ BnX , there is a
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bijection f : p→ n) and Dn
X = {2X \ [p] : [p] ∈ BnX}. For n ∈ N, elements of

BnX are called n-basic open sets of 2X and elements of Dn
X are called n-basic

closed sets. Clearly, BX =
⋃
{BnX : n ∈ N} and DX =

⋃
{Dn

X : n ∈ N}.
The product space 2ω is known as the Cantor cube. Replacing ω with any

infinite set X, we call the corresponding Tychonoff product 2X a generalized
Cantor cube.

The following extension of compactness for generalized Cantor cubes was
introduced in [7]:

Definition 1.1. For X an infinite set and for n ∈ N, 2X is called n-
compact if every cover U ⊆ BnX of 2X has a finite subcover.

Recall the following well-known notion:

Definition 1.2. A non-empty family F of subsets of a set X has the
finite intersection property, which we shall abbreviate by fip, if

⋂
G 6= ∅ for

every (non-empty) finite subfamily G of F .

The concept of n-compactness could equivalently be formulated in terms
of n-basic closed sets:

Fact 1. If X is an infinite set, then 2X is n-compact if and only if every
subset D ⊆ Dn

X with the fip has a non-empty intersection.

Fact 2 ([7]). Assume that X is an infinite set. Then 2X is n-compact
if and only if for every collection F of sets of the form

(1.1)
⋃
{[p] : p ∈ S} where for some Q ⊂ X such that |Q| = n, S ⊆ 2Q,

if F has the fip, then F has a non-empty intersection.

Sets of the form described in (1.1) above were introduced in Keremedis
and Tachtsis [7] and studied there, in Morillon [8], in Tachtsis [12], and in
Howard and Tachtsis [4] and [5]. For sets of the form (1.1), the authors of [7]
used the term “restricted clopen sets”, whereas the author of [8] called them
“elementary closed sets”. We call the reader’s attention to the fact that for
n ∈ N, every n-basic closed set can be written in the form (1.1), while the
converse is not necessarily true, that is, a closed set of the form (1.1) may
not be an n-basic closed set.

In the interest of making our paper self-contained, we give an outline of
the argument for Fact 2.

Proof of Fact 2. For a fixed Q ⊂ X such that |Q| = n, the complement
F ′ (in 2X) of a set F of the form (1.1) can be written in the same form.
Therefore, F is the complement of a finite union of n-basic open sets and
hence F is the intersection of n-basic closed sets. Assuming that 2X is n-
compact and that F is a family of sets of the form given by (1.1) which has
the fip, the family F ′ = {F ′ ∈ Dn

X : ∃F ∈ F such that F ⊆ F ′} is a family
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of subsets of Dn
X with the fip and by our observation at the beginning of the

proof,
⋂
F ′ =

⋂
F . The assumption that 2X is n-compact gives

⋂
F ′ 6= ∅

and therefore
⋂
F 6= ∅.

A related, and quite useful, fact is given by the following result.

Fact 3 ([7], [12]). Let X be an infinite set and assume that 2X is n-
compact for some n ∈ N. Then every cover V ⊆

⋃
{BmX : m ≤ n} of 2X has

a finite subcover. Equivalently, every collection W of sets of the form

(1.2)
⋃
{[p] : p ∈ S} where for some Q ⊂ X such that |Q| ≤ n, S ⊆ 2Q,

with the fip, has a non-empty intersection. In particular, 2X is m-compact
for every positive integer m < n.

Notation 1. (1) For n ∈ N, let (following the notation in [7] and [12])
Q(n) stand for the following statement:

Q(n): For every infinite set X, 2X is n-compact.

(2) The Boolean Prime Ideal Theorem BPI is the principle: Every non-
trivial Boolean algebra has a prime ideal. Equivalently, every proper filter
of a non-trivial Boolean algebra is included in an ultrafilter (see [2] and [6]).

We conclude this section with a summary of what is known and not
known about Q(n), n ∈ N.

Q(1) is a theorem of ZF set theory (see [7]) and we have Mycielski’s
characterization of BPI in [9]:

Fact 4. The following statements are equivalent in ZF:

(i) BPI,
(ii) For every infinite set X, 2X is compact.

It follows that BPI implies Q(n) for all n ∈ N. Furthermore, Keremedis
and Tachtsis [7] showed

Fact 5. For every integer n > 1, Q(n) implies ACn (i.e., AC for
families of n-element sets).

On the other hand, Tachtsis [12] established

Fact 6. For every integer n ≥ 6, Q(n) is equivalent to BPI.

The set-theoretic strength of Q(n), n = 2, 3, 4, 5, and in particular the
question of whether Q(n) is equivalent to BPI for n = 2, 3, 4, 5, is stated
as an open problem in [12]. We settle this problem here. In particular, we
establish in Theorem 3.1 below that, in ZF, Q(3) is equivalent to BPI, hence,
by Fact 3, Q(n) is equivalent to BPI for every natural n ≥ 3.

The situation withQ(2) is strikingly different! In particular, we will prove
in Lemma 3.2 that in the FM model N2∗(3) of [2], Q(2) holds, whereas it
is known (see [2] or [6]) that BPI fails in that model, hence we will infer
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in Theorem 3.4 that Q(2) does not imply BPI in ZFA. We do not know
whether or not BPI is strictly stronger than Q(2) in the stronger theory ZF.
So we pose the following:

Question. Is there a model of ZF in which Q(2) is true and BPI is
false?

2. Diagram of known and new results on Q(n). In the following
diagram we summarize the known and new results which concern the set-
theoretic strength of the principle Q(n), n ∈ N.

Q(1) is a theorem of ZF

Q(n) is, in ZF, equivalent to BPI, for every integer n ≥ 3

(Theorem 3.1 and Fact 6)

In ZF, BPI → Q(2), but Q(2) 9 BPI in ZFA

(Lemma 3.2 and Theorem 3.4)

Diagram: The set-theoretic strength of Q(n), n ∈ N.

3. The two main results. We begin by establishing the equivalence
between BPI and Q(n) for n = 3, 4, 5. Prior to this, let us recall that if
(B,+, ·, 0B, 1B) is a Boolean algebra, then the binary relation ≤ defined on
B by requiring for all x, y ∈ B, x ≤ y if and only if x·y = x, is a partial order
on B, so that (B,≤) is a complemented distributive lattice with smallest
element 0B and largest element 1B. For x, y ∈ B, the supremum of {x, y} is
sup({x, y}) = x+y+x ·y and the infimum of {x, y} is inf({x, y}) = x ·y. The
complement of an element x ∈ B is the unique element x′ ∈ B such that
sup({x, x′}) = 1B and inf({x, x′}) = 0B. Note that for x ∈ B, x′ = x+ 1.

Theorem 3.1. In ZF, Q(3) is equivalent to BPI. Hence, by Fact 3, for
every integer n ≥ 3, Q(n) is equivalent to BPI.

Proof. It suffices to show thatQ(3) implies BPI. AssumingQ(3), we need
to show that every proper filter of a non-trivial Boolean algebra is included
in an ultrafilter. To this end, let (B,+, ·, 0B, 1B) be a non-trivial Boolean
algebra and let F be a proper filter of B. We will show that there exists an
ultrafilter G of B which includes F . To this end, let L be a propositional
language with propositional variables pa, a ∈ B. The intended meaning of
the variable pa is that a belongs to the required ultrafilter. Let

Var = {pa : a ∈ B}.
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Let F be the set of all formulas in the language L, and let Σ be the
subset of F which consists of the following formulas:

(a) pa for each a ∈ F .
(b) pa → pb for all a, b ∈ B such that a ≤ b.
(c) pa ∧ pb → pa·b for all a, b ∈ B.
(d) pa ∨ pa+1 for all a ∈ B.

Consider the generalized Cantor cube 2Var. We define the following clopen
subsets of 2Var:

For each a ∈ F , we let

Ka = [{(pa, 1)}].
For all a, b ∈ B, we let

M(a,b) = [{(pa, 0), (pb, 0), (pa·b, 0)}]
∪ [{(pa, 1), (pb, 0), (pa·b, 0)}]
∪ [{(pa, 1), (pb, 1), (pa·b, 1)}]
∪ [{(pa, 0), (pb, 1), (pa·b, 0)}]

Note that M(a,b) = M(b,a) for all a, b ∈ B. Further, if a, b ∈ B with a ≤ b,
then M(a,b) obtains the following simpler form:

M(a,b) = [{(pa, 1), (pb, 1)}] ∪ [{(pa, 0), (pb, 0)}] ∪ [{(pa, 0), (pb, 1)}].
Finally, for each a ∈ B, we let

Na = [{(pa, 1), (pa+1, 0)}] ∪ [{(pa, 0), (pa+1, 1)}].
Note that for each a ∈ B, Na = Na+1. Set

W = {Ka : a ∈ F} ∪ {M(a,b) : a, b ∈ B} ∪ {Na : a ∈ B}.

Clearly, W is a collection of closed subsets of 2Var of the form (1.2) in
Fact 3; in our case here, n = 3. Furthermore, as every filter of a finite
Boolean algebra A can be extended to an ultrafilter of A, it is reasonably
easy to verify that W has the fip. Indeed, if V = {W1, . . . ,Wn} ⊆ W, let
S be the set of all a ∈ B such that for some i, 1 ≤ i ≤ n, a appears as a
subscript in the notation of Wi as Kx or M(x,y) or Nx. Let A be the Boolean
subalgebra of B which is generated by S. Since A is finite, we may define
effectively (i.e., without using any form of choice) an ultrafilter G of A which
extends the filter base F ∩A, which without loss of generality we assume to
be non-empty. Let f be such that for each a ∈ A, f(pa) = 1 if and only if
a ∈ G. Via induction on the complexity of all formulas in F we may extend
f to a valuation mapping f ′ ∈ 2F . Then f ′�Var ∈

⋂
V and W has the fip as

asserted.
By our assumption, that is, by Q(3), and using Fact 3, let f ∈

⋂
W and

let f ′ ∈ 2F be the valuation mapping which extends f . By the definition of
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the members of W, it easily follows that f ′(φ) = 1 for all φ ∈ Σ. Let

G = {a ∈ B : f ′(pa) = 1}.

Then G is an ultrafilter of the Boolean algebra B which includes the filter F ,
since f ∈

⋂
{Ka : a ∈ F} and f ⊆ f ′. This completes the proof of the

theorem.

We show next that Q(2) does not imply BPI in ZFA, hence, Q(2) is
strictly weaker than BPI in ZFA. We need to prove first the following lemma
which asserts that Q(2) is valid in the FM model N2∗(3) of [2].

Lemma 3.2. In the FM model N2∗(3) of [2], Q(2) is true.

Proof. To construct the model N2∗(3), we begin with a model M of
ZFA + AC which has a countable set A of atoms written as a disjoint union⋃

n∈ω Tn of triples Tn = {an, bn, cn}. Unless otherwise specified we will work
in the modelM. LetG be the group generated by the following permutations
ψn of A:

ψn�Tn is the 3-cycle (an, bn, cn) and ψn(x) = x for all x ∈ A \ Tn.

Note that G is commutative since the ψns commute and that every non-
identity element of G has order 3. For any finite E ⊆ A we let fixG(E) =
{φ ∈ G : ∀e ∈ E, φ(e) = e}. Let Γ be the (normal) finite support filter of
subgroups of G generated by {fixG(E) : E ∈ [A]<ω}, where [A]<ω is the set
of all finite subsets of A. N2∗(3) is the permutation model determined by
G and Γ .

For the remainder of the proof we will use N for N2∗(3). For each sub-
group H of G and each element x ∈ N we let OrbH(x) be the orbit of x
under the action of the group H. That is, OrbH(x) = {φ(x) : φ ∈ H}. If
E is a finite subset of A and H = fixG(E) we will abbreviate OrbH(x) by
OrbE(x).

We will need the following fact about N which follows from Lemma 4.2
of [3]:

for all x ∈ N and for all subgroups H of G, |OrbH(x)| = 3k for some(3.1)

k ∈ ω.

For the reader’s convenience, we shall simplify here the notation for
1-basic open sets and 2-basic closed sets. In particular, let X be an element
of N , x an element of X and λ in {0, 1}. Then we let

〈x, λ〉 = {f ∈ 2X ∩M : f(x) = λ}

or

〈x, λ〉 = {f ∈ 2X : f(x) = λ}
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since we are working in M, and we let

〈x, λ〉N = {f ∈ 2X ∩N : f(x) = λ} = 〈x, λ〉 ∩ N .
(Using the notation of Section 1, we could have denoted 〈x, λ〉 by [{(x, λ)}],
which might be more cumbersome due to technical details appearing in the
proof.) With this new notation, a 2-basic closed subset of 2X in M has the
form

〈x, λ〉 ∪ 〈y, µ〉
and a 2-basic closed subset of 2X in N has the form

〈x, λ〉N ∪ 〈y, µ〉N = (〈x, λ〉 ∪ 〈y, µ〉) ∩N
for some x and y in X and some λ and µ in {0, 1}. We leave it to the reader
to verify that the set of pairs H = {

(
〈x, λ〉N ∪ 〈y, µ〉N , 〈x, λ〉 ∪ 〈y, µ〉

)
:

x, y ∈ X and λ, µ ∈ {0, 1}} is a one-to-one function from the 2-basic closed
sets in N onto the 2-basic closed subsets in M. (Some care is required
when x = y and λ 6= µ, since for any x ∈ X and distinct λ, µ ∈ {0, 1},
〈x, λ〉N ∪ 〈x, µ〉N = 2X ∩N .) Since N ⊆M we have

〈x, λ〉N ∪ 〈y, µ〉N ⊆ 〈x, λ〉 ∪ 〈y, µ〉 = H(〈x, λ〉N ∪ 〈y, µ〉N ).

In order to prove that Q(2) is true in N we assume that X ∈ N and that
F is a collection of 2-basic closed subsets of 2X (in N ) with finite support
E and with the fip (in N ). Let

F ′ = {〈x, λ〉 ∪ 〈y, µ〉 : 〈x, λ〉N ∪ 〈y, µ〉N ∈ F} (= {H(F ) : F ∈ F}).
We first note that since F has support E,

(3.2) ∀〈x, λ〉 ∪ 〈y, µ〉 ∈ F ′, ∀φ ∈ fixG(E), 〈φ(x), λ〉 ∪ 〈φ(y), µ〉 ∈ F ′.
Or in more compact form

(3.3) ∀F ′ ∈ F ′, ∀φ ∈ fixG(E), φ(F ′) ∈ F ′.
Since F ⊆ H(F ) for every F ∈ F , the set F ′ is a collection of 2-basic closed
sets in M which has the fip. Since AC is true in M and Q(2) follows from
AC, there is a function f0 ∈

⋂
F ′. Our plan is to use f0 to define a function

f1 which is in
⋂
F ′ and in N . This will suffice since such an f1 will be in⋂

F .

For any finite subset Y of X with an odd number of elements, we let
Maj(Y, f0) be the element λ of {0, 1} for which |{y ∈ Y : f0(y) = λ}| is
largest. Since OrbE(x) is finite and has an odd number of elements for every
x ∈ N (by (3.1)), we may define f1 : X → {0, 1} by

(3.4) f1(x) = Maj(OrbE(x), f0).

Since f1 is constant on OrbE(x) for all x ∈ X, f1 has support E and is
therefore in N .



248 P. Howard and E. Tachtsis

Now we argue that f1 ∈
⋂
F ′. Assume that F ∈ F ′ and that F =

〈x, λ〉 ∪ 〈y, µ〉. The easiest case to handle is when x = y and λ 6= µ since in
this case F = 2X . For the remaining cases we note that, by (3.3), for every
J ∈ OrbE(F ), f0 ∈ J . We will use this fact to show that f1 ∈ F .

Case 1: x = y and λ = µ. In this case F = 〈x, λ〉 for some x ∈ X and
λ ∈ {0, 1}. Assume that t ∈ OrbE(x). Then t = φ(x) for some φ ∈ fixG(E).
By the comments preceding Case 1, f0 ∈ φ(F ) = 〈φ(x), λ〉 = {f ∈ 2X :
f(t) = λ}. So f0(t) = λ for every t ∈ OrbE(x). By the definition of f1,
f1(x) = λ and therefore f1 ∈ F .

Case 2: x 6= y, OrbE(x) = OrbE(y) and λ 6= µ. Since x and y are in
the same orbit and f1 is constant on orbits f1(x) = λ = f1(y) or f1(x) =
µ = f1(y). In either case, f1 ∈ F .

Case 3: x 6= y, OrbE(x) = OrbE(y) and λ = µ. In this case F = 〈x, λ〉∪
〈y, λ〉. Choose ψ ∈ fixG(E) such that ψ(x) = y and let ψ2(x) = z. Since ψ
has order 3, x, y and z are different elements of OrbE(x) and ψ(z) = x.

For each t ∈ OrbE(x) we let Ct = {t, ψ(t), ψ2(t)}. Since ψ has order 3,
we could also write

(3.5) Ct = {ψn(t) : n ∈ Z}.
We also claim the following:

(1) For t ∈ OrbE(x) the set Ct has exactly three elements.
(2) The set P = {Ct : t ∈ OrbE(x)} is a partition of OrbE(x).
(3) The 2-basic closed sets Ft = 〈t, λ〉 ∪ 〈ψ(t), λ〉, ψ(Ft) = 〈ψ(t), λ〉 ∪
〈ψ2(t), λ〉 and ψ2(Ft) = 〈ψ2(t), λ〉 ∪ 〈t, λ〉 are in OrbE(F ), for all
t ∈ OrbE(x).

To prove item (1) we first note that Cx = {x, ψ(x), ψ2(x)} = {x, y, z} has
three elements as we remarked above. If we choose an η ∈ fixG(E) such that
η(x) = t, then

η(Cx) = {η(x), η(ψ(x)), η(ψ2(x))} = {t, ψ(t), ψ2(t)} = Ct

(where the second to last equality has used the fact that the group G is
commutative). Since Cx has three elements and η is an isomorphism of the
model, η(Cx) = Ct has three elements.

For item (2) we show that for any t and t′ in OrbE(x), if Ct ∩ Ct′ 6= ∅
then Ct = Ct′ . Using the characterization of Ct given in (3.5), it follows
from the assumption Ct ∩Ct′ 6= ∅ that there are integers m and k such that
ψm(t) = ψk(t′). Using (3.5) again, it follows that Ct = Ct′ .

For the proof of item (3) we assume t ∈ OrbE(x) and that t = η(x) where
η ∈ fixG(E). Then η(F ) = 〈η(x), λ〉 ∪ 〈η(y), λ〉 = 〈t, λ〉 ∪ 〈η(ψ(x)), λ〉 =
〈t, λ〉 ∪ 〈ψ(t), λ〉 = Ft. (The second to last equality uses the fact that G
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is commutative.) So Ft ∈ OrbE(F ), and since ψ ∈ fixG(E), it follows that
ψ(Ft) and ψ2(Ft) are also in OrbE(F ).

It follows from item (3) and (3.3) that for each t ∈ OrbE(x), the three sets
Ft, ψ(Ft) and ψ2(Ft) are in F ′. Since f0 ∈

⋂
F ′, f0 ∈ Ft∩ψ(Ft)∩ψ2(Ft) from

which it follows that |{s ∈ {t, ψ(t), ψ2(t)} : f0(s) = λ}| ≥ 2. (If f0(s) = 1−λ
for two or more elements of {t, ψ(t), ψ2(t)} then it fails to be in at least
one of the three sets Ft, ψ(Ft) or ψ2(Ft).) Since the sets {t, ψ(t), ψ2(t)} for
t ∈ OrbE(x) partition OrbE(x) we conclude that Maj(OrbE(x), f0) = λ.
Therefore f1(t) = λ for all t ∈ OrbE(x). In particular f1(x) = λ, so f1 ∈ F .

Case 4: x 6= y, OrbE(x) 6= OrbE(y). We first argue that

(3.6) Maj(OrbE(x)), f0) = λ or Maj(OrbE(y), f0) = µ

(where, recall, F = 〈x, λ〉 ∪ 〈y, µ〉 and f0 ∈
⋂
{φ(F ) : φ ∈ fixG(E)}).

Let

Orby(x) = {φ(x) : φ ∈ fixG(E) and φ(y) = y},
Orbx(y) = {ψ(y) : ψ ∈ fixG(E) and ψ(x) = x}.

Let also

Px = OrbE(Orby(x)) = {η(Orby(x)) : η ∈ fixG(E)},
Py = OrbE(Orbx(y)) = {η(Orbx(y)) : η ∈ fixG(E)}.

Lemma 3.3.

(1) The sets Px and Py are finite and odd-sized partitions of OrbE(x)
and OrbE(y), respectively.

(2) The binary relation R = {(η(Orby(x)), η(Orbx(y))) : η ∈ fixG(E)}
is a one-to-one function from Px onto Py.

(3) For all Z1, Z2∈Px, |Z1| = |Z2|, and for all W1,W2 ∈ Py, |W1|= |W2|.
(4) For every Z ∈ Px, and for all z ∈ Z and w ∈ R(Z), the set 〈z, λ〉 ∪
〈w, µ〉 is in OrbE(F ).

Proof. (1) We only prove (1) for Px. First note that by the definition of
Px and (3.1), it readily follows that Px is a finite odd-sized set. Further, it
is clear that

⋃
Px = OrbE(x), hence in order to prove that Px is a partition

of OrbE(x), it suffices to assume that η1(Orby(x))∩η2(Orby(x)) 6= ∅, where
η1 and η2 are in fixG(E), and prove that η1(Orby(x)) = η2(Orby(x)). By the
assumption there is an element t in the intersection which can therefore be
written as

t = η1(φ1(x)) = η2(φ2(x))

where φ1 and φ2 are in fixG(E) and φ1(y) = φ2(y) = y. Solving the displayed
equation and using the fact that G is commutative we obtain

(3.7) x = η−11 η2φ
−1
1 φ2(x).
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Therefore if z is another element of η1(Orby(x)), z = η1(φ3(x)) where φ3 ∈
fixG(E) and φ3(y) = y, then by (3.7), we have z = η1(φ3(η

−1
1 η2φ

−1
1 φ2(x)))

= η2φ3φ
−1
1 φ2(x) and therefore z ∈ η2(Orby(x)). Similarly every element of

η2(Orby(x)) is in η1(Orby(x)).
(2) It is clear that every element of Px is in the domain of R and every

element of Py is in the range of R. We will prove R is a function. The proof
that R is one-to-one is similar and we take the liberty of omitting it. It suf-
fices to prove that for all η1, η2 ∈ fixG(E), if η1(Orbx(y)) 6= η2(Orbx(y)) then
η1(Orby(x)) 6= η2(Orby(x)). Letting β = η−12 η1 this is equivalent to show-
ing that for all β ∈ fixG(E), if β(Orbx(y)) 6= Orbx(y) then β(Orby(x)) 6=
Orby(x). Assume the hypothesis holds and the conclusion is false. Then
β(y) /∈ Orbx(y) (otherwise, β(Orbx(y)) ∩Orbx(y) 6= ∅, hence β(Orbx(y)) =
Orbx(y), since Py is a partition, a contradiction) and therefore β(x) 6= x
(by the definition of Orbx(y) if β(x) = x then β(Orbx(y)) = Orbx(y)).
Since β(Orby(x)) = Orby(x), β(x) ∈ Orby(x) and therefore β(x) = φ(x) for
some φ ∈ fixG(E) for which φ(y) = y. But then φ−1β(x) = x and therefore
φ−1β(y) ∈ Orbx(y). But φ−1β(y) = β(y), contradicting our assumption that
β(y) /∈ Orbx(y).

(3) Note that every Z ∈ Px has the same cardinality as Orby(x) since for
some η ∈ fixG(E), Z = η(Orby(x)) and η is an ∈-isomorphism of the model
M. Similarly, any two elements of Py have the same cardinal number.

(4) Let Z ∈ Px, z ∈ Z and w ∈ R(Z). Then there is an η ∈ fixG(E) such
that Z = η(Orby(x)) and R(Z) = η(Orbx(y)). There are also permutations
φ1 and φ2 in fixG(E) such that η(φ1(x)) = z, φ1(y) = y, η(φ2(y)) = w and
φ2(x) = x. The set ηφ1φ2(F ) is in OrbE(F ) and

ηφ1φ2(F ) = 〈ηφ1φ2(x), λ〉 ∪ 〈ηφ1φ2(y), µ〉
= 〈ηφ1(x), λ〉 ∪ 〈ηφ2(y), µ〉 = 〈z, λ〉 ∪ 〈w, µ〉.

The conclusion of (4) follows.

By Lemma 3.3(4), we have

∀Z ∈ Px, ∀z ∈ Z, ∀w ∈ R(Z), 〈z, λ〉 ∪ 〈w, µ〉 ∈ F ′.
Since f0 ∈

⋂
F ′ it follows that

(3.8) ∀Z ∈ Px, either (∀z ∈ Z, f0(z) = λ) or (∀w ∈ R(Z), f0(w) = µ).

Let K0 be the odd integer |Px| = |Py| = |R|. It follows from (3.8) that either

|{Z ∈ Px : ∀z ∈ Z, f0(z) = λ}| > K0/2 or(3.9)

|{W ∈ Py : ∀w ∈W, f0(w) = µ}| > K0/2.(3.10)

(Recall that Py is the image of Px under R. If both of the above inequalities
fail then the set of all pairs (Z,R(Z)) ∈ R such that (∀z ∈ Z, f0(z) = λ)
or (∀w ∈ R(Z), f0(w) = µ) has cardinality smaller than K0 = |R|. There
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would then be a pair (Z,R(Z)) ∈ R for which both (∀z ∈ Z, f0(z) = λ) and
(∀w ∈ R(Z), f0(w) = µ) are false. This contradicts (3.8).)

By Lemma 3.3(3), all elements of Px have the same cardinality. There-
fore, if alternative (3.9) holds, then Maj(OrbE(x), f0) = λ. Similarly, if
(3.10) holds, then Maj(OrbE(y), f0) = µ. Therefore, either f1(x) = λ or
f1(y) = µ and in either case, f1 ∈ F .

We have shown that f1 ∈
⋂
F ′, which, as remarked earlier, is sufficient

to complete the proof.

Theorem 3.4. In ZFA, Q(2) does not imply BPI, hence by Theorem
3.1, Q(2) does not imply Q(n), for any integer n ≥ 3.

Proof. This follows from Lemma 3.2 and the known fact that BPI fails
in the FM model N2∗(3) (see [2] or [6]).

We note that many consequences of the Axiom of Choice are known to
hold in N2∗(3). Of particular interest to us are:

The Axiom of Multiple Choice MC: For every set X of
non-empty sets there is a function f with domain X such that
for each y ∈ X, f(y) is a non-empty finite subset of y,

and its consequence (see [8, Corollary 2])

Rado’s Selection Lemma RL ([10]): Let F be a family of
finite sets and suppose that to every finite subset F of F there
corresponds a choice function φF whose domain is F such that
φF (T ) ∈ T for each T ∈ F . Then there is a choice function f
whose domain is F with the property that for every finite subset
F of F, there is a finite subset F ′ of F such that F ⊆ F ′ and
f(T ) = φF ′(T ) for all T ∈ F .

(For an extensive study on Rado’s selection lemma, the reader is referred to
[1], [4], [8], [10], [11].)

On the other hand, a principle related to generalized Cantor cubes (which
fails in N2∗(3), see Corollary 3.5 below), introduced and studied in [5], is
the following:

MCP: For every infinite set X, the generalized Cantor cube 2X

has the minimal cover property, i.e., for every open cover U of
2X there is a subcover V of U with the property that for every
V ∈ V, V \ {V } does not cover 2X .

The following is shown in [5]:

Fact 7. MCP implies Q(2) + ACfin, where ACfin is the Axiom of
Choice for families of non-empty finite sets.
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Many finite choice axioms, for example ACω
3 , the axiom of choice for

countable sets of 3-element sets, are known to fail in N2∗(3) (see [2] or [6]).
We also note that AC2, the axiom of choice for sets of 2-element sets, holds
in N2∗(3) (see [2] or [6]). A fairly complete list of both kinds of forms can
be found in [2]. As a consequence to the above discussion and results, we
also have

Corollary 3.5. In ZFA, (Q(2) + MC (+RL)) does not imply ACω
3 ,

hence does not imply MCP.
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