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Summary. We construct an embedding of the algebra P(ω)/Fin into the family of
summable ideals with the Katětov order. This construction will be used to solve two
problems: about the relation between the Katětov order and the ideal Baire classes of
functions, and about long chains of ideals alternately with and without the property of
being a P-ideal.

1. Introduction. An ideal on the set ω of natural numbers is a family
I ⊂ P(ω) (where P(ω) denotes the power set of ω) which is closed under
taking subsets and finite unions. We denote by Fin the ideal of all finite
subsets of ω. We assume that all the ideals under consideration are proper
(6= P(ω)) and contain all finite sets.

Given two ideals I and J we write I ≤K J if there exists a function
f : ω → ω such that f−1[A] ∈ J whenever A ∈ I. This preorder is called
the Katětov order and was introduced by Katětov [4, 5].

Many topological and combinatorial properties could be described by
finding a locally minimal (in the Katětov order) ideal among ideals having
a given property (see [10], [12], [1] or [7]). In particular, Katětov investigated
ideal convergence of sequences of continuous functions using this order. In [5]
he proved that if I ≤K J then BI1(T ) ⊂ BJ1 (T ) (where BI1(T ) is the family
of I-Baire class one functions over a topological space T , see Section 2 for a
formal definition). In the same article he asked about the converse implication:

Problem 1.1. If BI1(T ) ⊂ BJ1 (T ) for any topological space T , does it
follow that I ≤K J ?
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The answer can be deduced from [6] where the authors proved that
BId1 (X) = BFin1 (X) where Id is the ideal of sets of asymptotic density zero
and X is a complete metric space. It is easy to prove that Id 6≤K Fin, hence
we have a negative answer to Katětov’s problem. In Corollary 3.8 we give a
stronger counterexample by showing that below any analytic P-ideal there is
a family of size continuum of pairwise incomparable (in the Katětov order)
ideals such that the Baire classes generated by them are equal.

In Section 4 we use the above construction to answer a question of
Wilczyński. During the problem session at the 23th International Summer
Conference on Real Functions Theory in Niedzica the following problem was
formulated:

Problem 1.2. Does there exist, for any n ∈ ω, a sequence of ideals

I0 ⊂ I1 ⊂ · · · ⊂ In
such that Ii is a P-ideal iff i is even?

In Theorem 4.4 we give a positive answer to this question by producing
even a transfinite sequence of ideals with this property.

2. Preliminaries. An ideal I is called dense if for any infinite set A ⊂ ω
there exists an infinite set B ⊂ A which belongs to I.

An ideal I is a P-ideal if for every sequence (An)n∈ω of sets from I there
is A ∈ I such that An ⊂? A, i.e. An \A ∈ Fin for all n.

By identifying sets of naturals with their characteristic functions, we
can treat P(ω) as the Cantor cube with the natural product topology and
therefore we can assign the topological complexity to ideals of sets of integers.
In particular, an ideal I is analytic if it is a continuous image of a Gδ subset
of the Cantor space.

A map φ : P(ω)→ [0,∞] is a submeasure on ω if

φ(∅) = 0, φ(A) ≤ φ(A ∪B) ≤ φ(A) + φ(B),

for all A,B ⊂ ω. It is lower semicontinuous (lsc for short) if for all A ⊂ ω
we have

φ(A) = lim
n→∞

φ(A ∩ {0, 1, . . . , n− 1}).

For any lsc submeasure on ω, let ‖ · ‖φ : P(ω)→ [0,∞] be the submeasure
defined by

‖A‖φ = lim
n→∞

φ(A \ {0, 1, . . . , n− 1}).

Let
Exh(φ) = {A ⊂ ω : ‖A‖φ = 0}.

All analytic P-ideals were characterized by Solecki [11].



Applications of the Katětov Order 23

Theorem 2.1. The following conditions are equivalent for an ideal I
on ω.

(1) I is an analytic P-ideal;
(2) I = Exh(φ) for some lsc submeasure φ on ω.

It is easy to observe that:
Fact 2.2. For any lsc submeasure φ, Exh(φ) is dense iff limn→∞ φ({n})

= 0.

For a function g : ω → R such that
∑

n∈ω g(n) =∞ the family

Ig =
{
A ⊂ ω :

∑
n∈A

g(n) <∞
}

is an analytic P-ideal called a summable ideal generated by g.
Let T be a topological Hausdorff space and I be an ideal on ω. We say

that a sequence (xn)n∈ω in T is I-convergent to x ∈ T if
{n ∈ ω : xn /∈ U} ∈ I

for every open neighborhood U of x.
We say that a sequence (fn : T → R)n∈ω of functions is pointwise I-

convergent if (fn(x))n∈ω is I-convergent for every x ∈ T .
Using this definition we can introduce ideal Baire classes of functions.

We say that a function f is of I-Baire class one if it is an I-pointwise limit
of continuous functions. The family of all I-Baire class one functions over a
Hausdorff space T is denoted by BI1 (T ).

Laczkovich and Recław [8] proved the following theorem.
Theorem 2.3. If I is a non-pathological analytic P-ideal and T is a

Hausdorff space, then BI1 (T ) = B1(T ).
The definition of a non-pathological analytic P-ideal is found in [8]; in

particular, all summable ideals are non-pathological.

3. Katětov’s problem

Theorem 3.1. Let I be a dense analytic P -ideal. There exists an em-
bedding of the algebra P(ω)/Fin into the family of summable ideals included
in I.

A weaker version of this theorem was proved independently by Meza-
Alcántara [10] and published in [2].

To prove this theorem we start with the construction of a family of ideals.
Fix a dense analytic P-ideal I = Exh(φ) for some lsc submeasure φ.

Let (pn)n∈ω be a sequence of natural numbers such that
(1) p0 = 0,
(2) pn

2(p0+p1+···+pn−1)+1 > 22
n ,
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(3) φ({m}) < 1/22
n+1 for all m > p0 + p1 + · · ·+ pn−1.

The fulfillment of the third condition is possible by Fact 2.2.
For all n ≥ 1 let

Sn = {p0 + p1 + · · ·+ pn−1, p0 + p1 + · · ·+ pn−1 + 1, . . . , p0 + p1 + · · ·+ pn}.

Obviously {Sn}n∈ω is a partition of the naturals. For each n define two
measures φ0n and φ1n on Sn by

φ0n(A) =
|A|
22n+1 , φ1n(A) =

|A|
22n

.

For each infinite set M ⊂ ω define the ideal

IM =
{
A ⊂ ω :

∑
n∈M

φ1n(A ∩ Sn) <∞,
∑

n∈ω\M

φ0n(A ∩ Sn) <∞
}
.

Lemma 3.2. For each infinite set M the ideal IM is a summable ideal
contained in I.

Proof. To prove the summability it is enough to observe that IM is gen-
erated by the function

fM (i) =

{
1/22

n if i ∈ Sn and n ∈M ,
1/22

n+1 if i ∈ Sn and n /∈M .

To justify the inclusion in I notice that φ ≤ fM .

Lemma 3.3. Let A,B be infinite subsets of ω. If B ⊂? A, then IA ⊂ IB.

Proof. This follows from the easy observation that B ⊂? A implies that
fB(n) ≤ fA(n) for sufficiently large n.

Lemma 3.4. IA ≤K IB iff B ⊂? A.

Proof. The implication ⇐ follows from Lemma 3.3 and from the impli-
cation

I ⊂ J ⇒ I ≤K J .

To prove the converse, suppose that B \ A is infinite and IA ≤K IB.
Hence there exists a function f : ω → ω such that f−1(I) ∈ IB for any
I ∈ IA.

For each n ∈ ω we have two possibilities:

(a) {i ∈ Sn : f(i) ∈
⋃
i≥n Si} has at least 22

n elements,
(b) {i ∈ Sn : f(i) ∈

⋃
i<n Si} has at least pn/2 elements.

One of them holds for infinitely many n in B \ A. Let N be the set of all
such n.
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Suppose that N consists of those n for which (a) holds. For each n ∈ N
choose Dn ⊂ Sn such that |Dn| = 22

n and f(Dn) ⊂
⋃
i≥n Si. Define

E =
⋃
n∈ω

f(Dn).

Notice that for each n, ∑
m∈ω

φ0m(f(Dn) ∩ Sm) ≤
1

22n
.

Hence E ∈ IA. On the other hand, for each n ∈ N we have |f−1(E) ∩ Sn|
≥ 22

n , hence φ1n(f−1(E) ∩ Sn) = 1. Finally f−1(E) /∈ IB, a contradiction.
Suppose now that N consists of those n for which (b) holds. For each

n ∈ N choose en such that |f−1({en}) ∩ Sn| > 22
n (this is possible by the

condition (1) on (pn)n and the pigeonhole principle). Let E ⊂ {en}n∈N be
such that

• |E ∩ Si| ≤ 1 for all i ∈ ω,
• |f−1(E) ∩ Sn| > 22

n for infinitely many n ∈ N .

The first condition guarantees that E ∈ IA. By the second condition
φ1n(f

−1(E) ∩ Sn) ≥ 1 for infinitely many n ∈ N ⊂ B. This implies that
f−1(E) /∈ IB, a contradiction.

Proof of Theorem 3.1. Consider the mapping

P(ω)/Fin 3M 7→ IM .
It is well defined since if A 4 B ∈ Fin, then fA = fB almost everywhere,
hence IA = IB. The fact that it is an embedding follows from Lemma 3.4.

Definition 3.5. We call a family {Iα}α of ideals an ≤K-antichain if

Iα ≤K Iα′ ⇔ α = α′.

Notice that this definition is different from the classical definition of the
antichain in a Boolean algebra, where there is no element of the algebra
smaller than two distinct elements of the antichain. Such a definition would
be too strong since for any two ideals I,J we have I ⊕ J ≤K I,J where
I ⊕ J is the disjoint union of I and J .

Hrušák and García Ferreira [3] showed that below any dense ideal there
is a ≤K-antichain of size continuum. The ideals constructed by them are
generated by maximal almost disjoint families, so by the result of Mathias [9]
they are not analytic. Since there exists an almost disjoint family in P(ω) of
cardinality continuum, we get the following corollary:

Corollary 3.6. Let I be a dense analytic P-ideal. Below I, there exists
a ≤K-antichain of cardinality continuum consisting of summable ideals.
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Here we cannot replace a dense analytic P-ideal by any dense ideal. Recall
that if A is an almost disjoint family in P(ω) then

{B ⊂ ω : A ∩B is infinite only for finitely many A ∈ A}
is an ideal.

Theorem 3.7. If I is an ideal generated by an almost disjoint family A,
and J is any dense P -ideal, then J 6≤K I.

Proof. Suppose that J ≤K I. Let f : ω → ω be a function from the
definition of the Katětov order.

Choose a countable family {An}n∈ω ⊂ A. Let N be the set of all n such
that f(An) is infinite.

Suppose that N is infinite. Since J is a dense ideal, for each n we can
choose an infinite set En ⊂ f(An) and En ∈ J . Let E ∈ J be such that
En ⊂? E for each n ∈ N . Notice that f−1(E)∩An is infinite for each n ∈ N ,
hence f−1(E) /∈ J—a contradiction.

Suppose that N is finite. For each n ∈ ω \ N choose en ∈ f(An) such
that f−1(en) is infinite. Let E ⊂ {en}n∈ω be an infinite set such that E ∈ J .
Observe that f−1(E) ∩ An is infinite for each n ∈ N . Hence f−1(E) /∈ I—
a contradiction.

Finally, as a corollary from Theorem 2.3 and Corollary 3.6 we get the
following answer to Katětov’s problem:

Corollary 3.8. Let I be a dense analytic P -ideal. There exists a fam-
ily {Iα}α<c of ideals pairwise incomparable in the Katětov order such that
Iα ≤K I and BIα1 (T ) = B1(T ) for each α < c and every Hausdorff space T .

4. Wilczyński’s problem. Recall the definition of the bounded num-
ber b:

b = min{|F | : F ⊂ ωω and ∀g∈ωω ∃f∈F ∀n∈ω ∃m>n g(m) < f(m)}.
Recall that ℵ0 < b ≤ c. Obviously CH implies b = c, but in the Cohen model
we have ℵ1 = b < c.

Definition 4.1. Let γ be an ordinal number. We call a family {Iα}α<γ
of ideals an increasing ≤K-chain if for any α, α′ < γ,

α ≤ α′ ⇔ Iα ≤K Iα′ .
Since there are increasing chains of length b in P(ω)/Fin, we get the

following corollary from Theorem 3.1.

Corollary 4.2. Let I be an analytic P-ideal. Below I, there exists an
increasing ≤K-chain of length b of summable ideals.

In Theorem 4.4 we will use this ≤K-chain to answer Wilczyński’s prob-
lem, but first we need the following proposition:
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Proposition 4.3. If I0 ⊂ I1 ⊂ · · · ⊂ In ⊂ · · · is a strictly increasing
sequence of ideals, then

⋃
n∈ω In is an ideal which is not a P-ideal.

Proof. It is easy to observe that I =
⋃
n∈ω In is an ideal.

We now show that I is not a P-ideal. Since (In)n∈ω is a strictly increasing
sequence of ideals, for each n ∈ ω we can choose An ∈ In+1 \ In. Suppose
that A is such that An \A is finite for each n ∈ ω. Fix n ∈ ω. Since An /∈ In,
also A /∈ In. Hence A /∈ I.

Let α = λ + n be an ordinal, where n ∈ ω and λ is a limit number or
zero. We call α an even [odd ] ordinal if n is even [odd].

Theorem 4.4. Let I be a dense analytic P-ideal. There exists a sequence
(Kα)α<b of dense analytic ideals such that

(1) Kα ⊂ Kβ ⊂ I for α < β < b,
(2) Kα is a P-ideal iff α is even.

Proof. Let {Iα}α<b be an increasing ≤K-chain of ideals from Corol-
lary 4.2 (constructed as in the proof of Theorem 3.1). By Lemma 3.3, if
α < β < b, then Iα ⊂ Iβ .

For α < b define ideals

Jα =

{ Iω·α if α is an even ordinal,⋃
n∈ω Iω·α+n if α is an odd ordinal.

Since (Iα)α<b is an increasing sequence of ideals, the sequence (Jα)α<b is
also increasing. Conclusion (2) holds by Proposition 4.3.
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