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Abstract. We study the different ways in which a weakly compact set can generate
a Banach lattice. Among other things, it is shown that in an order continuous Banach
lattice X, the existence of a weakly compact set K ⊂ X such that X coincides with the
band generated by K implies that X is weakly compactly generated.

1. The general problem. The purpose of this note is to study Banach
lattices which are generated in one way or another by a weakly compact set.
Namely, we will explore the connection between the existence of a weakly
compact set which generates a Banach lattice as a linear space, a lattice,
an ideal or a band. Our motivation starts with the question of J. Diestel of
whether every Banach lattice which is generated, as a lattice, by a weakly
compact set must be weakly compactly generated (i.e., as a linear space). Al-
though this question remains open in full generality, we provide here several
partial results in the affirmative sense.

Recall that a Banach lattice is a Banach space endowed with additional
order and lattice structures which behave well with respect to the norm and
linear structure. This is in particular highlighted by the fact that ‖x‖ ≤ ‖y‖
whenever |x| ≤ |y|, or by the norm continuity of the lattice operations ∧
and ∨. However, for the weak topology, the relation to the order and lattice
structures is more subtle, in particular it is not always true that the lattice
operations are weakly continuous. In fact, on infinite-dimensional Banach
lattices the weak topology fails to be locally solid (see e.g. [1, Theorem 6.9]).
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A Banach space X is called weakly compactly generated (WCG) when-
ever there exists a weakly compact subset of X whose closed linear span
coincides with X. This class of Banach spaces was first studied by Cor-
son [12] and this study was pushed further by the fundamental work of
Amir and Lindenstrauss [5]. Nowadays, WCG spaces play a relevant role in
non-separable Banach space theory. For more complete information on WCG
spaces, see [17, 22, 35].

Weakly compact sets and weakly compact operators in Banach lattices
have been the object of research by several authors (cf. [2, 3, 11, 28], see also
the monographs [4, Chapter 4.2] and [27, Chapter 2.5]). In particular, WCG
Banach lattices have been considered in [8, 32].

Before introducing the main notions of the paper let us recall that a
sublattice of a Banach lattice X is a subspace which is also closed under the
lattice operations ∨ and ∧. Also, an ideal Y of X is a subspace with the
property that |x| ≤ |y| with y ∈ Y implies that x ∈ Y . Finally, a band Z of
X is an ideal for which sup(A) ∈ Z whenever A ⊂ Z and sup(A) exists in X.
Unless otherwise mentioned, all subspaces, sublattices, ideals and bands in
this paper are assumed to be closed. Given a subset A of a Banach lattice X,
we will denote by span(A), L(A), I(A) and B(A) the smallest subspace
(respectively, sublattice, ideal and band) of X containing A.

Definition 1.1. Let X be a Banach lattice. We will say that

(i) X is weakly compactly generated as a lattice (LWCG) if there is a
weakly compact set K ⊂ X such that X = L(K);

(ii) X is weakly compactly generated as an ideal (IWCG) if there is a
weakly compact set K ⊂ X such that X = I(K);

(iii) X is weakly compactly generated as a band (BWCG) if there is a
weakly compact set K ⊂ X such that X = B(K).

Since for a set A ⊂ X the inclusions span(A) ⊂ L(A) ⊂ I(A) ⊂ B(A)
always hold, we clearly have

WCG⇒ LWCG⇒ IWCG⇒ BWCG.

Our interest is whether the converse implications hold. The equivalence be-
tween LWCG and WCG for general Banach lattices seems to be an open
question; it was raised by J. Diestel during the conference “Integration, Vec-
tor Measures and Related Topics IV” held in La Manga del Mar Menor,
Spain, 2011.

The paper is organized as follows:
In Section 2 we provide a first approach to the comparison between the

notion of WCG Banach lattice and the weaker versions introduced above. For
instance, we prove that LWCG = WCG for Banach lattices having weakly
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sequentially continuous lattice operations (Theorem 2.2). We also show that,
in general, IWCG 6= LWCG and BWCG 6= IWCG (Example 2.4 and Propo-
sition 2.9).

In Section 3 we prove that BWCG = WCG for order continuous Banach
lattices (Theorem 3.1). Some related results on Dedekind complete Banach
lattices are also given. As a by-product of our methods we provide applica-
tions to weakly precompactly generated Banach lattices.

In Section 4 we apply the factorization method of Davis–Figiel–Johnson–
Pełczyński in our framework. For instance, it is shown that an IWCG Banach
lattice not containing C[0, 1] is Asplund generated (Theorem 4.5).

In Section 5 we collect some results about the stability of weakly compact
generation properties in Banach lattices. In general, the property of being
LWCG is not inherited by sublattices. We discuss the three-space problem for
LWCG Banach lattices (Example 5.2 and Theorem 5.4) and the connection
of these properties with weakly Lindelöf determined Banach spaces.

We use standard Banach space/lattice terminology as can be found in
[4, 25, 27]. By an operator between Banach spaces we mean a continuous
linear map. The closed unit ball of a Banach space X is denoted by BX and
the dual of X is denoted by X∗. The weak∗ topology of X∗ is denoted by w∗.
The symbol X+ stands for the positive cone of a Banach lattice X and we
write C+ = C ∩X+ for any C ⊂ X.

2. Basic approach. Given a Banach lattice X, for a set A ⊂ X we
define

A∧ :=
{ n∧
i=1

ai : n ∈ N, (ai)ni=1 ⊂ A
}
,

A∨ :=
{ n∨
i=1

ai : n ∈ N, (ai)ni=1 ⊂ A
}
.

We will denote A∧∨ := (A∧)∨ and A∨∧ := (A∨)∧. Using the distributive law
of the lattice operations, it is easy to see that A∨∧ = A∧∨ and that

(2.1) L(A) = span(A)∨∧

(see e.g. [4, p. 204]). Recall that a subset B ⊂ X of a Banach lattice is solid
when |x| ≤ |y| and y ∈ B implies that x ∈ B. The solid hull sol(A) of A is
the smallest solid subset of X containing A, which can be written as

sol(A) =
⋃
x∈A

[−|x|, |x|].

It is not difficult to check that

(2.2) I(A) = span(sol(A)).
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The disjoint complement of A is defined as

A⊥ = {x ∈ X : |x| ∧ |y| = 0 for every y ∈ A}.
It is well known that

(2.3) B(A) = A⊥⊥

(see e.g. [27, Proposition 1.2.7]).
Recall that an operator between Banach lattices T : X → Y is:

• a lattice homomorphism if T (x1 ∨ x2) = (Tx1) ∨ (Tx2) for x1, x2 ∈ X;
• interval preserving if it is positive and T [0, x] = [0, Tx] for every
x ∈ X+.

Proposition 2.1. Let X and Y be Banach lattices and T : X → Y an
operator with dense range.

(i) If X is LWCG and T is a lattice homomorphism, then Y is LWCG.
(ii) If X is IWCG and T is an interval preserving lattice homomorphism,

then Y is IWCG.

Proof. (i) Since T is a lattice homomorphism, we have L(T (A)) =

T (L(A)) for any A ⊂ X. In particular, if K ⊂ X is a weakly compact
set such that X = L(K), then T (K) is a weakly compact set in Y such that
Y = T (X) = L(T (K)).

(ii) Since T is an interval preserving lattice homomorphism, I(T (A)) =
T (I(A)) for any A ⊂ X. Therefore, if K ⊂ X is a weakly compact set
such that X = I(K), then T (K) is a weakly compact set in Y satisfying
Y = T (X) = I(T (K)).

Recall that a Banach lattice is said to have weakly sequentially continuous
lattice operations if (xn ∨ yn) converges weakly to x ∨ y whenever (xn) and
(yn) converge weakly to x and y, respectively. The basic examples of Banach
lattices having weakly sequentially continuous lattice operations are AM-
spaces (e.g. C(K) spaces where K is a compact Hausdorff topological space),
see e.g. [4, Theorem 4.31], and atomic order continuous Banach lattices (e.g.
Banach spaces with unconditional basis), see e.g. [27, Proposition 2.5.23].

Theorem 2.2. Let X be a Banach lattice having weakly sequentially
continuous lattice operations. Then X is LWCG if and only if it is WCG.

Proof. Let K ⊂ X be a weakly compact set such that L(K) = X. By the
Krein–Shmul’yan theorem (see e.g. [4, Theorem 3.42]), we can assume thatK
is absolutely convex. Hence span(K) =

⋃
n∈N nK is weakly σ-compact (that

is, a countable union of weakly compact sets). Since X has weakly sequen-
tially continuous lattice operations, for any weakly σ-compact set A ⊂ X we
see that both A∨ and A∧ are weakly σ-compact. In particular, span(K)∨∧
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is weakly σ-compact, and since

X = L(K)
(2.1)
= span(K)∨∧,

we conclude that X is WCG.

Corollary 2.3. Let K be a compact Hausdorff topological space. Then:

(i) C(K) is IWCG.
(ii) C(K) is LWCG if and only if it is WCG.

Proof. (i) follows from the fact that for the constant function 1K we
clearly have

C(K) = I({1K}).

(ii) is a direct consequence of Theorem 2.2 and the comments preced-
ing it.

Example 2.4. It is well known that C(K) is WCG if and only if K
is Eberlein compact [5] (cf. [17, Theorem 14.9]). If ω1 denotes the first un-
countable ordinal, then the ordinal segment [0, ω1] with its usual topology is
a compact space which is not Eberlein. Thus, C[0, ω1] provides an example
of an IWCG Banach lattice which is not LWCG. Another example of this
situation is given by the space `∞ (see also Corollary 2.8 below).

In general, it is not true that the solid hull of a weakly relatively com-
pact set is also weakly relatively compact (see e.g. [27, p. 108]). Banach
lattices with this stability property are order continuous and were charac-
terized in [10, Theorem 2.4]: these include atomic order continuous Banach
lattices, as well as Banach lattices not containing c0.

Theorem 2.5. Let X be a Banach lattice with the property that the solid
hull of any weakly relatively compact set is weakly relatively compact. Then
X is BWCG if and only if it is WCG.

Proof. Since X is order continuous, every ideal of X is a band (see e.g.
[27, Corollary 2.4.4]) and so X is BWCG if and only if it is IWCG. Let
K ⊂ X be a weakly compact set such that X = I(K). Then sol(K) is
weakly relatively compact and

X = I(K)
(2.2)
= span(sol(K)),

hence X is WCG.

It is clear that the discussion of this paper is only meaningful for non-
separable Banach lattices. However, for Banach lattices with a separable
predual we have some reformulations of the lattice versions of WCG: see
Corollary 2.8 below. Recall first that a positive element u of a Banach lat-
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tice X is said to be:

• a quasi-interior point ofX if for every x ∈ X+ we have ‖x−x∧nu‖ → 0
as n→∞, or equivalently I({u}) = X (cf. [4, Theorem 4.85]);
• a weak order unit of X if {u}⊥ = {0}, or equivalently B({u}) = X.

In particular, every Banach lattice having a quasi-interior point (resp. weak
order unit) is IWCG (resp. BWCG).

Proposition 2.6. Let X be a Banach lattice. Then X has a quasi-inter-
ior point (resp. weak order unit) if and only if X = I(C) (resp. X = B(C))
for some separable set C ⊂ X.

Proof. It suffices to prove the “if” parts. We can assume that C is norm
bounded. Let (xn)n∈N be a dense sequence in C and define

u :=
∑
n∈N

|xn|
2n
∈ X+.

Since xn ∈ I({u}) ⊂ B({u}) for all n ∈ N, we have

I(C) ⊂ I({u}) and B(C) ⊂ B({u}).
So, u is a quasi-interior point (resp. a weak order unit) of X whenever
X = I(C) (resp. X = B(C)).

The density character of a topological space T , denoted by dens(T ), is
the minimal cardinality of a dense subset of T . For an arbitrary Banach
space X we have

dens(X) ≥ dens(X∗, w∗)

(see e.g. [17, p. 576]), and equality holds whenever X is WCG (see
e.g. [17, Theorem 13.3]). We next show that equality holds for any LWCG
Banach lattice.

Theorem 2.7. Let X be an LWCG Banach lattice. Then

dens(X) = dens(X∗, w∗).

Proof. It suffices to prove that dens(X) ≤ dens(X∗, w∗). Let K ⊂ X be
a weakly compact set such that

X = L(K)
(2.1)
= span(K)∨∧.

Consider the WCG subspace Y := span(K) ⊂ X. According to the com-
ments preceding the theorem, dens(Y ) = dens(Y ∗, w∗). Since Y ∨∧ is dense
in X, we have dens(Y ) = dens(X). Moreover, since the restriction oper-
ator X∗ → Y ∗ is w∗-w∗-continuous and onto, we have dens(Y ∗, w∗) ≤
dens(X∗, w∗). It follows that dens(X) ≤ dens(X∗, w∗), as required.

Corollary 2.8. Let X be a Banach lattice such that X∗ is w∗-separable
(e.g. X = Y ∗ for a separable Banach lattice Y ).
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(i) X is LWCG if and only if X is separable.
(ii) X is IWCG if and only if X has a quasi-interior point.
(iii) X is BWCG if and only if X has a weak order unit.

Proof. (i) is an immediate consequence of Theorem 2.7. Since any weakly
compact subset of X is separable, (ii) and (iii) follow from Proposition 2.6.

The following illustrates the difference between BWCG and IWCG.

Proposition 2.9. For 1 < p <∞ the Lorentz space Lp,∞[0, 1] is BWCG
but not IWCG.

Proof. Recall that, for 1 < p <∞, the Lorentz space Lp,∞[0, 1] consists
of those (equivalence classes of) measurable functions f : [0, 1] → R for
which

‖f‖p,∞ := sup
t>0

tλ({x ∈ [0, 1] : |f(x)| > t})1/p <∞,

where λ denotes the Lebesgue measure on [0, 1]. Although the expression
‖f‖p,∞ just defines a lattice quasi-norm, it is actually equivalent to a lattice
norm (cf. [7, p. 219, Lemma 4.5 and Theorem 4.6]).

It is clear that Lp,∞[0, 1] is BWCG since χ[0,1] is a weak order unit of it.
On the other hand, it is well known that Lp,∞[0, 1] is the dual of a separ-
able Banach lattice, namely, the Lorentz space Lp′,1[0, 1] with 1/p+ 1/p′ = 1
(cf. [7, p. 220, Theorem 4.7]). Therefore, to prove that Lp,∞[0, 1] is not IWCG
it suffices to check that it has no quasi-interior point (Corollary 2.8). Al-
though this is probably known to any expert in the field, we include a proof
since we did not find a suitable reference.

Suppose Lp,∞[0, 1] has a quasi-interior point, say v. Consider f0 ∈
Lp,∞[0, 1] defined by f0(x) := 1/x1/p for x∈ [0, 1]. Observe that λ({x∈ [0, 1] :
f0(x) > t}) = 1/tp for every t > 0 and so ‖f0‖p,∞ = 1. Set

u :=
v + f0

‖v + f0‖p,∞
∈ Lp,∞[0, 1].

Clearly, u is also a quasi-interior point of Lp,∞[0, 1]. Note that for any t > 0,

{x ∈ [0, 1] : f0(x) > t‖v + f0‖p,∞} ⊂ {x ∈ [0, 1] : u(x) > t},
and so, bearing in mind that ‖u‖p,∞ = 1, we get

1

(t‖v + f0‖p,∞)p
≤ λ({x ∈ [0, 1] : u(x) > t}) ≤ 1

tp
.

Hence we can choose t0 > 0 large enough such that

0 < λ({x ∈ [0, 1] : u(x) > t0}) < 1.

Let A0 := {x ∈ [0, 1] : u(x) ≤ t0}, A1 := [0, 1] \ A0 and r0 := λ(A0)
∈ (0, 1). There exists a measure-preserving transformation σ : [0, 1]→ [0, 1]
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such that σ(A0) = [0, r0] and σ(A1) = [r0, 1] (see e.g. [7, p. 81, Proposi-
tion 7.4]). Define fσ := f ◦ σ ∈ Lp,∞[0, 1]. We claim that

(2.4) ‖fσ − fσ ∧Nu‖p,∞ = 1

for every N ∈ N. This would imply that u cannot be a quasi-interior point,
a contradiction.

In order to prove (2.4), note first that since ‖fσ‖p,∞ = 1 and u > 0,
we have ‖fσ − fσ ∧Nu‖p,∞ ≤ 1. For the converse inequality, fix ε > 0 and
choose t > 0 large enough such that

1

(t+Nt0)p
≤ r0 and

t

t+Nt0
≥ 1− ε.

Define
B := σ−1

([
0,

1

(t+Nt0)p

))
⊂ A0

and note that for every x ∈ B we have

fσ(x) > t+Nt0 ≥ t+Nu(x),

hence (fσ ∧Nu)(x) = Nu(x) and so fσ(x)− (fσ ∧Nu)(x) > t. Thus

‖fσ − fσ ∧Nu‖p,∞ ≥ tλ({x ∈ [0, 1] : fσ(x)− (fσ ∧Nu)(x) > t})1/p

≥ tλ(B)1/p =
t

t+Nt0
≥ 1− ε.

As ε > 0 is arbitrary, (2.4) holds and the proof is complete.

3. Order continuous Banach lattices. The next result provides an
improvement of Theorem 2.5.

Theorem 3.1. Let X be an order continuous Banach lattice. Then X is
BWCG if and only if it is WCG.

For the proof we need two lemmas. Recall that a subset K of a Banach
space is called weakly precompact (or conditionally weakly compact) if every
sequence in K has a weakly Cauchy subsequence. Thanks to Rosenthal’s
`1-theorem (see e.g. [17, Theorem 5.37]), this is equivalent to saying that K
is bounded and contains no sequence equivalent to the usual basis of `1.

Lemma 3.2. Let X be an order continuous Banach lattice, K ⊂ X a
weakly precompact set and A ⊂ sol(K) a set of pairwise disjoint vectors.
Then sol(A) is weakly compact.

Proof. Let (yn)n∈N be a sequence in sol(A) ⊂ sol(K). By passing to a
further subsequence, not relabeled, we can assume that one of the following
cases holds.

Case 1: There is x ∈ A such that yn ∈ [−|x|, |x|] for all n ∈ N. Since
every order interval of an order continuous Banach lattice is weakly compact
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(see e.g. [27, Theorem 2.4.2]), (yn)n∈N admits a subsequence which weakly
converges to some vector in [−|x|, |x|] ⊂ sol(A).

Case 2: There is a sequence (xn)n∈N of distinct elements of A such that
yn ∈ [−|xn|, |xn|] for all n ∈ N. In particular, (yn)n∈N is a disjoint sequence.
Since K is weakly precompact and yn ∈ sol(K) for all n ∈ N, the sequence
(yn)n∈N weakly converges to 0 ∈ sol(A) (see e.g. [27, Proposition 2.5.12(iii)]).

This proves that sol(A) is a weakly compact set.

Lemma 3.3. Let X be an order continuous Banach lattice, C ⊂ X a solid
set and A ⊂ C+ a maximal set of pairwise disjoint vectors. Then C ⊂ I(A).

Proof. We follow the ideas of [25, Proposition 1.a.9]. For each x ∈ A, let
Px : X → X be the band projection onto B({x}), so that

Px(z) =
∨
n∈N

(z ∧ nx) = lim
n→∞

n∨
k=1

(z ∧ kx)

for all z ∈ X+ (see e.g. [25, pp. 8–10 and Proposition 1.a.8]).
In order to see that C ⊂ Y := I(A) it is enough to prove that C+ ⊂ Y

(because C is solid). To this end, pick z ∈ C+. For every x ∈ A we have
Px(z) ∈ Y (bear in mind that

∨n
k=1(z∧kx) ∈ n sol(A) ⊂ Y for all n ∈ N) and

0 ≤ Px(z) ≤ z. Moreover, the sum
∑

x∈A Px(z) unconditionally converges
to some y ∈ [0, z] (see the proof of [25, Proposition 1.a.9]). We claim that
z = y. Indeed, if this were not the case, then z−y > 0 and, since z−y ∈ C+

(remember that C is solid), by the maximality of A there would be at least
one x ∈ A such that x ∧ (z − y) 6= 0. However, this is impossible since

0 ≤ x ∧ (z − y) ≤ x ∧ (z − Px(z)) = 0.

Here, the last equality follows from the fact that Px is the band projection
onto the band generated by x. Hence, z = y ∈ Y .

Proof of Theorem 3.1. SupposeX is BWCG. SinceX is order continuous,
every ideal of X is a band (see e.g. [27, Corollary 2.4.4]) and so X is IWCG.
Hence there is a weakly compact set K ⊂ X such that

X = I(K)
(2.2)
= span(sol(K)).

Fix a maximal set A ⊂ sol(K)+ of pairwise disjoint vectors. By Lemma 3.3
(applied to C := sol(K)), we have sol(K) ⊂ I(A) = span(sol(A)) and so
X = span(sol(A)). Since sol(A) is weakly compact (by Lemma 3.2), it follows
that X is WCG.

Remark 3.4. The proof of Theorem 3.1 makes it clear that an order con-
tinuous Banach lattice X is WCG if and only if there is a weakly precompact
set K ⊂ X such that X = B(K).
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Following [23, p. 28], a Banach space X is called weakly precompactly
generated (WPG) if there is a weakly precompact set K ⊂ X such that
X = span(K).

Corollary 3.5. Let X be an order continuous Banach lattice. Then X
is WCG if and only if it is WPG.

It is known that order continuous Banach lattices with order continuous
dual are WCG (see [8, p. 194]). We next provide another proof of this fact.
For geometrical properties of this class of Banach lattices, see [18].

Corollary 3.6. Let X be a Banach lattice. If X and X∗ are order
continuous, then X is WCG.

Proof. The assumption implies that BX is weakly precompact (see e.g.
[4, Theorem 4.25]). Hence X is WPG and Corollary 3.5 applies.

Let us now turn to the larger class of Dedekind complete (and σ-com-
plete) Banach lattices. Recall that a Banach lattice X is called Dedekind
complete (respectively, σ-Dedekind complete) if every order bounded set (re-
spectively, sequence) has a supremum in X. It is well known that every
Banach lattice which is the dual of another Banach lattice is Dedekind com-
plete.

Theorem 3.7. Let X be a Banach lattice and Z ⊂ X a Dedekind com-
plete sublattice. If I(Z) is LWCG, then Z is LWCG.

Proof. Note that

Y := {x ∈ X : ∃z ∈ Z with |x| ≤ z}

is the smallest (not necessarily closed) ideal of X containing Z, so that
I(Z) = Y . By the Lipecki–Luxemburg–Schep theorem (see e.g. [4, Theo-
rem 2.29]), the identity on Z can be extended to a lattice homomorphism
T0 : Y → Z (we use the Dedekind completeness of Z and the fact that Z is
a majorizing sublattice of Y ). By the density, T0 admits a further extension
to a lattice homomorphism T : I(Z)→ Z. Since T is surjective and I(Z) is
LWCG, Proposition 2.1 ensures that Z is LWCG.

Corollary 3.8. Let X be a Dedekind σ-complete Banach lattice. If
every ideal of X is LWCG, then X is WCG.

Proof. According to Theorem 3.1, it suffices to prove that X is order
continuous. Suppose it is not. Since X is Dedekind σ-complete, X contains
a sublattice Z which is lattice isomorphic to `∞ (see e.g. [4, Theorem 4.51]).
In particular, Z is Dedekind complete and not LWCG. From Theorem 3.7 it
follows that I(Z) cannot be LWCG, a contradiction.
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These results motivate the question: Can an LWCG Banach lattice con-
tain a sublattice isomorphic to `∞? If the answer were negative, then every
Dedekind σ-complete LWCG Banach lattice would be WCG.

4. Applications of the Davis–Figiel–Johnson–Pełczyński factor-
ization. The Davis–Figiel–Johnson–Pełczyński (DFJP) [13] factorization
method is a keystone of Banach space theory. Given an absolutely convex
bounded subset W of a Banach space X, the DFJP interpolation Banach
space obtained from W is denoted by ∆(W,X) (cf. [4, Theorem 5.37]). As
a set, ∆(W,X) is a linear subspace of X. The identity map J : ∆(W,X)→
X is an operator and J(B∆(W,X)) ⊃ W . The space ∆(W,X) is reflexive
(resp. contains no isomorphic copy of `1) if and only if W is weakly rela-
tively compact (resp. weakly precompact)—see e.g. [4, Theorem 5.37] (resp.
[21, Theorem 5.3.6]).

Bearing in mind that the absolutely convex hull of any weakly precompact
set in a Banach space is also weakly precompact (see e.g. [31, p. 377]), we
deduce from the DFJP factorization method that a Banach space X is WPG
if and only if there exist a Banach space Y not containing `1 and an operator
T : Y → X with dense range. As an application we get the following result
(cf. [33, Corollary 2.3.1]).

Proposition 4.1. If X is a WPG Banach space, then X contains no
subspace isomorphic to `∞.

Proof. The property of being WPG is clearly inherited by complemented
subspaces, and therefore it suffices to prove that `∞ is not WPG. Suppose
that `∞ is WPG. Let Y be a Banach space not containing `1 and T : Y → `∞
an operator with dense range. Then the adjoint T ∗ : `∗∞ → Y ∗ is injective.
In particular, (BY ∗ , w∗) contains a homeomorphic copy of βN. Now, a result
by Talagrand [34] ensures that Y contains a subspace isomorphic to `1(c),
a contradiction.

In order to apply Proposition 4.1 to Banach lattices, recall that the fol-
lowing statements are equivalent for a Banach lattice X (see e.g. [4, Theo-
rem 4.69]):

(i) X∗ is order continuous;
(ii) X∗ contains no subspace isomorphic to c0;
(iii) X∗ contains no subspace isomorphic to `∞;
(iv) X contains no sublattice which is lattice isomorphic to `1.

Corollary 4.2. Let X be a Banach lattice. Then X∗ is WCG if and
only if it is WPG.

Proof. In view of the comments above and Proposition 4.1, ifX∗ is WPG,
then X∗ is order continuous and so the result follows from Corollary 3.5.
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The question of whether LWCG = WCG for arbitrary Banach lattices
can be reduced to Banach lattices with order continuous dual, thanks to the
following result.

Theorem 4.3. Let X be a Banach lattice. If X is LWCG (resp. IWCG),
then there exist an LWCG (resp. IWCG) Banach lattice Y and a lattice ho-
momorphism (resp. an interval preserving lattice homomorphism) J : Y →X
such that:

(i) Y ∗ is order continuous;
(ii) X = J(Y ).

Proof. Let K ⊂ X be a weakly compact set such that X = L(K) (resp.
X = I(K)) and let W := co(sol(K)) be its convex solid hull (which is
absolutely convex and bounded). Then Ψ := ∆(W,X) is a Banach lattice,
the identity operator J : Ψ → X is an interval preserving lattice homo-
morphism and J(Ψ) is a (not necessarily closed) ideal of X (see e.g. [4,
Theorem 5.41]).

Moreover, from the weak compactness of K it follows that Ψ∗ is order
continuous (see e.g. [4, Theorem 5.43]). Since J is a weak-to-weak homeo-
morphism when restricted to BΨ (see e.g. [4, p. 313, Exercise 11]), the set
K0 =: J−1(K) is weakly compact in Ψ . Then Y := L(K0) (resp. Y := I(K0))
is an LWCG sublattice (resp. IWCG ideal) of Ψ . Since the property of having
order continuous dual in inherited by sublattices (see the comments preced-
ing Corollary 4.2), Y ∗ is order continuous. Finally, from the fact that J is
an interval preserving lattice homomorphism it follows that X = J(Y ) (see
the proof of Proposition 2.1).

Remark 4.4. The DFJP factorization and the result from [8] isolated
in Corollary 3.6 provide an alternative proof of Theorem 3.1. Indeed, let Ψ
and J be as in the proof of Theorem 4.3. If we assume further that X is
order continuous, then so is Ψ (see e.g. [4, Theorem 5.41]). From the order
continuity of Ψ and Ψ∗ we infer that Ψ is WCG (see [8, p. 194]). Finally, the
equality X = J(Ψ) ensures that X is WCG.

An order continuous Banach lattice cannot contain a subspace isomor-
phic to C[0, 1] (see e.g. [27, Corollary 5.1.12]). In Theorem 4.5 below we
give an improvement of Theorem 4.3 within the class of Banach lattices not
containing C[0, 1].

Recall first that a Banach space X is said to be Asplund if every sepa-
rable subspace of X has separable dual or, equivalently, X∗ has the Radon–
Nikodým property [14, p. 198]. A Banach space X is said to be Asplund gen-
erated if there exist an Asplund Banach space Y and an operator T : Y → X
with dense range. By the DFJP factorization, every WCG Banach space is
Asplund generated.
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Theorem 4.5. Let X be a Banach lattice not containing subspaces iso-
morphic to C[0, 1]. If X is LWCG (resp. IWCG), then there exist an LWCG
(resp. IWCG) Banach lattice Y and a lattice homomorphism (resp. an in-
terval preserving lattice homomorphism) J : Y → X such that:

(i) Y is Asplund;
(ii) X = J(Y ).

In particular, X is Asplund generated.

Proof. Fix a weakly compact set K ⊂ X such that X = L(K) (resp.
X = I(K)) and consider the set W := co(sol(K)). Since X contains no
isomorphic copy of C[0, 1], the convex solid hull of any weakly precompact
subset of X is weakly precompact (see [19, Corollary II.4]), and so is W .
Let Ψ , J and Y be as in the proof of Theorem 4.3. Since W is weakly pre-
compact, Ψ contains no isomorphic copy of `1. Hence the Banach lattice Ψ
is Asplund (see [14, p. 95] and [20, Theorem 7]) and the same holds for its
subspace Y .

In view of the previous theorem, if the equality LWCG = WCG were
true for Asplund Banach lattices, then it would also be true for all Banach
lattices not containing isomorphic copies of C[0, 1].

5. Miscellaneous properties. Rosenthal [30] gave the first instance of
a WCG Banach space with a non-WCG subspace. Likewise, LWCG/IWCG/
BWCG are not hereditary properties:

Example 5.1. Let X be the Banach space constructed in [6, Section 2],
which is WCG and has an uncountable unconditional basis E = {e(σ,m) :

σ ∈ NN, m ∈ N}. In particular, X is an LWCG Banach lattice. Define
xσ :=

∑
m∈N 2−m/2 ·e(σ,m) for any σ ∈ NN. In [6, Theorem 2.6] it was proved

that B = {xσ : σ ∈ NN} is a block basis of E such that Y := span(B) is
not WCG. Note that Y is a sublattice of X (because the coordinates of the
xσ’s with respect to E are positive) which is not LWCG (by Theorem 2.2).
In fact, Y cannot be BWCG (by Theorem 3.1).

It is well known that being WCG is not a three-space property, that is,
there exist non-WCG Banach spacesX having a WCG subspace Y ⊂ X such
that X/Y is WCG. For complete information on the three-space problem for
WCG Banach spaces, see [9, Section 4.10] and the references therein. If X is
a Banach lattice and Y ⊂ X is an ideal, then X/Y is a Banach lattice and
the quotient operator X → X/Y is a lattice homomorphism (see e.g. [25,
p. 3]). Some counterexamples to the three-space problem for WCG spaces
fit into the Banach lattice setting, like the following construction which goes
back to [24] (cf. [9, Section 4.10]).
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Example 5.2. Let 2<ω be the dyadic tree (finite sequences of 0s and 1s),
2ω the set of its branches (countable infinite sequences of 0s and 1s) and K
the one-point compactification of 2<ω ∪ 2ω equipped with the topology de-
fined by: (i) all points from 2<ω are isolated; (ii) any x = (xk)k<ω ∈ 2ω has
a neighborhood basis made of the sets {x} ∪ {(xk)k<m : m > n} for n < ω.
Then L := 2ω∪{∞} is a closed subset ofK and so Y := {f ∈C(K) : f |L ≡ 0}
is an ideal of C(K). It is not difficult to check that Y is isomorphic to c0,
and that the quotient space C(K)/Y is isomorphic to C(L), which in turn
is isomorphic to c0(c). Hence Y and C(K)/Y are WCG. On the other hand,
C(K) is not WCG, because it is not separable and every weakly compact
subset of C(K) is separable (since K is separable). For the same reason,
C(K) is not LWCG (cf. Corollary 2.3).

However, a Banach space X is WCG if there exists a reflexive subspace
Y ⊂ X such that X/Y is WCG (see [24]; cf. [9, Proposition 4.10.d]). Theo-
rem 5.4 below collects some positive results on the three-space problem for
WCG and LWCG Banach lattices. We first need a result on WPG Banach
spaces which might be of independent interest.

Proposition 5.3. Let X be a Banach space and Y ⊂ X a subspace
containing no isomorphic copy of `1. If X/Y is WPG, then X is WPG.

Proof. Let q : X → X/Y be the quotient operator and K ⊂ X/Y
a weakly precompact set such that X/Y = span(K). Since q is open and
K is bounded, there is a bounded set G ⊂ X such that q(G) = K. Since
Y contains no subspace isomorphic to `1 and K is weakly precompact, G is
weakly precompact as well (see e.g. [9, 2.4.a]). Then G1 := G ∪ BY ⊂ X is
weakly precompact. We claim that Z := span(G1) equals X. Suppose that
X 6= Z. By the Hahn–Banach separation theorem, there is x∗ ∈ X∗ \ {0}
such that x∗(x) = 0 for all x ∈ Z. In particular, x∗ vanishes on Y and so it
factorizes as x∗ = φ ◦ q for some φ ∈ (X/Y )∗. Note that φ vanishes on q(Z).
But X/Y = q(Z) (because q(Z) is a linear subspace of X/Y containing
q(G) = K), hence φ = 0 and so x∗ = 0, a contradiction. This shows that
X = Z, as claimed. Therefore X is WPG.

Theorem 5.4. Let X be a Banach lattice and Y ⊂ X an ideal.

(i) If X is LWCG, then X/Y is LWCG.
(ii) If Y is reflexive and X/Y is LWCG, then X is LWCG.
(iii) If X is order continuous, Y contains no isomorphic copy of `1 and

X/Y is WCG, then X is WCG.

Proof. (i) This follows at once from Proposition 2.1 because the quotient
operator q : X → X/Y is a surjective lattice homomorphism.

(ii) Let K ⊂ X/Y be a weakly compact set such that X/Y = L(K).
Bearing in mind that q is open and that K is bounded and weakly closed,
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we can find a bounded and weakly closed set K0 ⊂ X such that q(K0) = K.
Since Y is reflexive and K is weakly compact, K0 is weakly compact as well
(see e.g. [9, 2.4.b]). Then the set K1 := K0 ∪ BY ⊂ X is weakly compact.
We claim that X = L(K1). Indeed, define Z := L(K1). Since q is a lattice
homomorphism and Z is a sublattice, q(Z) is a (not necessarily closed) sub-
lattice of X/Y . Recalling q(Z) ⊃ q(K0) = K, we conclude that q(Z) is dense
in X/Y . As in the proof of Proposition 5.3, it follows that X = Z = L(K1)
and so X is LWCG.

(iii) This follows from Corollary 3.5 and Proposition 5.3.

In connection with part (iii) of the previous theorem, note that if X is
an order continuous Banach lattice and Y ⊂ X is an ideal, then the quotient
space X/Y is order continuous (see e.g. [4, p. 205, Exercise 13]).

A Banach space X is said to be weakly Lindelöf determined (WLD) if
(BX∗ , w

∗) is a Corson compact , i.e. it is homeomorphic to a set S ⊂ [−1, 1]Γ
for some non-empty set Γ such that {γ ∈ Γ : s(γ) 6= 0} is countable for all
s ∈ S. Every WCG space is WLD, but the converse does not hold in general.
For a complete account on this class of Banach spaces, we refer the reader
to [16, 17, 22].

Theorem 5.5. Let X be a Banach lattice such that the order intervals
of X and X∗ are separable and w∗-separable, respectively. If there is a WLD
subspace Y ⊂ X such that X = I(Y ), then X is WLD.

Before proving Theorem 5.5, let us mention that a Banach space is
WCG if (and only if) it is Asplund generated and WLD (see e.g. [16, Theo-
rem 8.3.4])). This fact together with Theorems 4.5 and 5.5 yields:

Corollary 5.6. Let X be a Banach lattice such that the order intervals
of X and X∗ are separable and w∗-separable, respectively. If X is IWCG
and contains no subspace isomorphic to C[0, 1], then X is WCG.

In order to prove Theorem 5.5 we first need two lemmas. Given a Banach
space X, we say that a set C ⊂ X countably supports X∗ if for every x∗ ∈ X∗
the set {x ∈ C : x∗(x) 6= 0} is countable.

Lemma 5.7. Let X be a Banach lattice such that the order intervals
of X∗ are w∗-separable. If C ⊂ X countably supports X∗, then for every
x∗ ∈ X∗ the set {x ∈ C : x∗(|x|) 6= 0} is countable.

Proof. Since every element of X∗ is the difference of two positive func-
tionals, it suffices to check that the set {x ∈ C : x∗(|x|) 6= 0} is countable
for every x∗ ∈ X∗+. Fix a w∗-dense sequence (x∗n)n∈N in [−x∗, x∗]. Then for
every x ∈ X we have

x∗(|x|) = sup
{
y∗(x) : y∗ ∈ [−x∗, x∗]

}
= sup

n∈N
x∗n(x)
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(see e.g. [4, Theorem 1.23]). Therefore

{x ∈ C : x∗(|x|) 6= 0} ⊂
⋃
n∈N
{x ∈ C : x∗n(x) 6= 0},

and so {x ∈ C : x∗(|x|) 6= 0} is countable, as required.

Lemma 5.8. Let X be a Banach lattice such that the order intervals of X
and X∗ are separable and w∗-separable, respectively. If C ⊂ X countably
supports X∗, then there is a set P ⊂ sol(C) such that sol(C) ⊂ P and
P countably supports X∗.

Proof. For every x ∈ C we take a countable dense set Ax ⊂ [−|x|, |x|].
Therefore, P :=

⋃
x∈C Ax is dense in sol(C) =

⋃
x∈C [−|x|, |x|]. Fix x∗ ∈ X∗+.

By Lemma 5.7, the set C0 := {x ∈ C : x∗(|x|) 6= 0} is countable. Since
x∗(y) = 0 for every y ∈ [−|x|, |x|] whenever x ∈ C \ C0, we have

{y ∈ P : x∗(y) 6= 0} ⊂
⋃
x∈C0

Ax,

and so {y ∈ P : x∗(y) 6= 0} is countable. As x∗ ∈ X∗+ is arbitrary and every
element of X∗ is the difference of two positive functionals, P countably
supports X∗.

Proof of Theorem 5.5. Any WLD Banach space admits an M-basis (see
e.g. [22, Corollary 5.42]). Let {(yi, y∗i ) : i ∈ I} ⊂ Y × Y ∗ be an M-basis
of Y , that is, a biorthogonal system such that Y = span({yi : i ∈ I})
and {y∗i : i ∈ I} separates the points of Y . We can assume without loss
of generality that ‖yi‖ ≤ 1 for all i ∈ I. The fact that Y is WLD ensures
that C := {yi : i ∈ I} countably supports X∗ (see e.g. [22, Theorem 5.37]).
Let P ⊂ sol(C) be such that sol(C) ⊂ P and P countably supports X∗
(Lemma 5.8). Since X = I(Y ), we have

X = I(C)
(2.2)
= span(sol(C)) = span(P ).

It is now clear that the mapping

φ : BX∗ → [−1, 1]P , φ(x∗) := (x∗(x))x∈P ,

is a w∗-pointwise homeomorphic embedding witnessing that (BX∗ , w
∗) is a

Corson compact.

Besides the separable case, the following Banach lattices have the prop-
erty that the order intervals of their dual are w∗-separable:

(i) WLD Banach spaces with unconditional basis, like c0(Γ ) and `p(Γ )
for any 1 < p < ∞ and any non-empty set Γ . In this case, the
order intervals of the dual have the stronger property of being w∗-
metrizable.
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(ii) C(K), whenever K is a compact space with the property that L1(µ)
is separable for every regular Borel probability µ on K. This
class of compact spaces includes all compacta which are Eberlein,
Radon–Nikodým, Rosenthal or linearly ordered, among others (see
[15, 26, 29]). In this case, the order intervals of the dual are norm
separable.

On the other hand, it is not difficult to check that L1({0, 1}ω1) is a Banach
lattice for which the conclusion of Lemma 5.7 fails.
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