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characters with conductor below a given bound
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Joshua Zelinsky (Orono, ME)

1. Introduction. Fix a positive integer a, and write ordn(a) for the
order of a in the multiplicative group of invertible residue classes modulo n
when (a, n) = 1. Let

G(x) =
∑

n≤x, (n,a)=1

φ(n)

ordn(a)
.

We show that for any α we have G(x) = O(x2/logα x). The motivation
for investigating these sums stems from two distinct problems: the Artin
primitive root conjecture and the problem of counting Artin representations.

Artin conjectured that for any given rational integer a, a 6= 1 and a
not a perfect square, the set rational primes p such that a is a primitive
root modulo p has positive density and he conjectured a formula for that
density. Major work on Artin’s conjecture is due to Hooley [Hool], Murty
and Gupta [GM], and Heath-Brown [H-B]. Since then, work has been done
generalizing the Artin conjecture in a variety of directions. Our result con-
cerning G(x) represents one such direction. Instead of confining ourselves to
prime moduli, we also consider composite moduli, and instead of consider-
ing moduli for which a is of maximal order, we consider the average order
of the index of the cyclic group generated by the residue class of a. There
is an earlier paper similar in theme to this paper’s approach by Murty and
Srinivasan [MS].

Our second motivating problem, that of counting Artin representations,
is actually connected not with G(x) itself but rather with a closely related
sum over number fields. Let K be a number field with ring of integers OK .
Let UK be the set of units of OK , and for any ideal I let UK(I) be the
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subgroup of UK formed by elements which are 1 (mod I). Let UK(I)+ be
the subgroup of UK(I) formed by elements which are positive in all real
embeddings of K. Let

PK(x) =
∑
NI≤x

φ(I)

[UK : UK(I)]

with the sum over non-zero ideals of OK . Assume that the unit group of
OK has positive rank. Then for any α, we have PK(x) = O(x2/logα x). We
remark that PK represents an analog of G for number fields.

Let us now explain the connection between these sums and the prob-
lem of estimating the number of Artin representations of fixed dimension,
fixed base field, and conductor of bounded norm. We focus on the case of
dimension 1, so one is essentially counting primitive ray class characters.
Let K be a number field and let δK,1(x) count the number of 1-dimensional
Artin representations up to isomorphism with norm of the conductor at
most x. Rohrlich [Rohr] has noted the elementary estimate δK,1(x) = O(x2),
and if K is the rationals or a quadratic imaginary field, then this is the
correct order of growth and one can in fact produce an asymptotic formula,
with the constant depending on the field. The method of proof is to note
that

δK,1(x) ≤
∑
NI≤x

hnarK (I)

where hnarK (I) is the order of the narrow ray class group of K with modulus I.
In fact,

δK,1(x) =
∑
NI≤x

∑
Q|I

µ

(
I

Q

)
hnarK (Q)

where µ is the generalization of the Möbius function to ideals.
One has (see [L2])

hnarK (I) =
2r1hKφ(I)

[UK : UK
+(I)]

.

Note that [UK : UK
+(I)] and [UK : UK(I)] differ by at most a power of 2,

the maximum exponent of which is bounded in terms of the rank of the
unit group of the field. Thus, estimating PK(x) gives us information about
the number of Artin representations, since the other parts in the formula
for the order of the narrow class group all depend only on K. Prior to
this work, lower bounds for both P (x) and G(x) have been obtained by
Ambrose [Ambr], who also conjectured that for both functions, the correct
growth order is x2+o(1). The estimates for G(x) and PK(x) are similar, as
one can think of G(x) as the analog to PK(x) in the S-integers with S equal
to the set of prime divisors of a, but the proofs are presented separately; it
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is likely that a framework can be constructed which subsumes both results
into a single proof, but as of yet, attempts at such an approach lead to
technical difficulties.

Note that while this paper was under review, Sungjin Kim [Kim] used a
method of Pomerance to obtain a better bound than that appearing here. It
is likely that Kim’s method along with some of the techniques in this paper
can be combined to obtain a bound which is stronger than either.

2. Over the rational integers. We will first collect some technical
lemmas needed for our proofs. We will write ω(n) to be the number of
distinct prime divisors of n. When we move to the case over number fields,
we will write ω(I) for the number of distinct prime ideals dividing an ideal I.

Lemma 2.1. If 2 ≤ y ≤ x/2, then

xx

(x− y)x−y
< e2yxy.

Proof. Consider

log
xx

(x− y)x−y
= x log x−(x−y) log(x−y) = x

(
log x−

(
1− y

x

)
log(x−y)

)
.

We have

x

(
log x−

(
1− y

x

)
log(x− y)

)
< x

(
log

x

x− y
+
y log x

x

)
.

Set u = x/(x− y) − 1 = y/(x− y). Since y ≤ x/2 and log(1 + u) ≤ u we
have log x/(x− y) ≤ 2y/x. Thus

log
xx

(x− y)x−y
≤ x

(
2y

x
+
y log x

x

)
= 2y + y log x,

so exponentiating now gives the desired result.

Lemma 2.2. If 1 ≤ j ≤ (k − 2)/3, then(
k

j

)
≤
(
k
j+1

)
2

.

Proof. Note that
(
k
j

)
/
(
k
j+1

)
= (j+1)/(k− j). We have (j + 1)/(k − j) ≤

1/2 when j ≤ (k − 2)/3.

Lemma 2.3. If 2 ≤ m ≤ (k − 2)/3, then
m∑
j=1

(
k

j

)
≤
(
e2k

m

)m
.

Proof. We will first estimate
(
k
m

)
and then use Lemma 2.2 to bound∑m

j=1

(
k
j

)
. We require the following version of Stirling’s formula, valid for
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n ≥ 2:
√

2πn

(
n

e

)n
e

1
12n+1 < n! <

√
2πn

(
n

e

)n
e

1
12n

(see for example [L1]). We have

k!

m!(k −m)!
<

√
2πk

(
k
e

)k
e

1
12k

√
2πm

(
m
e

)m√
2π(k −m)

(
k−m
e

)k−m
e

1
12m+1 e

1
12(k−m)+1

.

Since m < k, we obtain(
k

m

)
<

√
k kk

√
mmm

√
2π(k −m) (k −m)k−m

.

By Lemma 2.1 with x = k and y = m , we have kk/(k −m)k−m < e2mkm,
and thus (

k

m

)
<

e2mkm
√
k

mm
√
m
√

2π(k −m)
.

Since m ≤ (k − 2)/3 < k/2, we see that k −m > k/2 and so(
k

m

)
<

e2mkm
√
k

mm
√
m
√
πk

=
e2mkm√
m
√
πmm

.

By Lemma 2.2, we obtain

m∑
j=1

(
k

j

)
≤
(
k

m

)
+

(
k
m

)
2

+

(
k
m

)
4

+ · · · = 2

(
k

m

)
< 2

e2mkm√
m
√
πmm

.

Since m ≥ 2, we find that 2/
√
πm < 1, so we are done.

Lemma 2.4. Let ε > 0 and let Dε(x) be the number of positive integers
with ω(n) for n ≤ x satisfying ω(n) ≥ (log x)ε. Then for all α > 0,

Dε(x) = O

(
x

(log x)α

)
.

Proof. We have
∑

n≤x τ(n) = O(x log x) where τ(n) is the number of

positive divisors of n. Note that τ(n) ≥ 2ω(n) for all n. If ω(n) ≥ (log x)ε,
then

τ(n) ≥ 2(log x)
ε
.

Thus, Dε2
(log x)ε = O(x log x), from which the result follows.

Theorem 2.5. For any α, we have

G(x) = O

(
x2

(log x)α

)
.
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Proof. We will prove the equivalent result that for any fixed α > 1,

G(x) = O

(
x2(log log x)2

(log x)α

)
.

Let S(x) be the set of n ≤ x with (n, a) = 1. Define S(x, p, q) to be the
subset of S(x) with p ≤ ordn(a) ≤ q. Set t = (log x)α. Note that if x is
sufficiently large, then t > 3 loga x. Write `(x) = 3 loga x. Here by loga x we
mean log x/log a rather than the a-fold logarithm. Then

(2.1) G(x) ≤ I(x) + II(x) + III(x)

where

I(x) =
∑

n∈S(x,1,`(x))

n

ordn(a)
,(2.2)

II(x) =
∑

n∈S(x,`(x),t)

n

ordn(a)
,(2.3)

III(x) =
∑

n∈S(x,t,∞)

n

ordn(a)
.(2.4)

We will estimate each of these sums separately.
The easiest are I(x) and III(x). I(x) has at most

∑
1≤r≤`(x) τ(ar − 1)

terms. We have ∑
1≤r≤`(x)

τ(ar − 1) ≤ `(x)τm(x)

where τm(x) is the maximum of τ(ar−1) with r ranging from 1 to `(x). Since
τ(n) = O(nε) for any ε > 0, τm(x) = O(xε). Any term in I(x) is bounded
above by x, and so we conclude that I(x) = O(xε`(x)x) = O(x1+ε log x).
Thus in fact, for any ε > 0 we have I(x) = O(x1+ε).

Next, we need to estimate III(x). In this case we use the fact that it has
at most x terms and each term is at most x/t and so III(x) ≤ x2/t.

To estimate II(x) we need some preliminary remarks.
Given any ε > 0, we have ω(n) < (1 + ε) log n/log log n for all but finitely

many n. For simplicity, we take ε = 1 and so for all but finitely many n we
have ω(n) < 2 log n/log logn. Let N be the set of d such that (a, d) = 1 and
d |n for some n satisfying ω(n) ≥ 2 log n/log logn. Note thatN is finite; hence∑

n∈N,n≤x

φ(n)

ordn(a)
= O(1).

Let β be a real number with 0 < β < 1, let H(x) be the subset of elements
of S(x, `(x), t) \N with at most (log x)β distinct prime factors, and set

(2.5) II1(x) =
∑

n∈H(x)

n

ordn(a)
.
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Similarly, let J(x) be the elements with more than (log x)β distinct prime
factors and not in N , and set

(2.6) II2(x) =
∑

n∈J(x)

n

ordn(a)
.

Thus, II(x) = II1(x)+II2(x)+O(1). So we need only bound II1(x) and II2(x).

For II1(x), we need to estimate H(x). If d ∈ H(x), then d | ar − 1 with
`(x) ≤ r ≤ t. So we need to estimate how many divisors ar − 1 can have
which are less than or equal to x and not in N . Note that the number of
prime factors of ar − 1 is bounded by

ω(ar − 1) ≤ 2 log ar

log log ar
≤ (3 log a)r

log r
≤ t.

The last inequality above is valid for sufficiently large values of t. Recall
that t grows with x.

Thus, each ar−1 whose divisors contribute to H(x) has at most t distinct
prime divisors. However, each element in H(x) has j distinct prime divisors,
for some j satisfying 1 ≤ j ≤ (log x)β. So for any given r, there are at
most

∑m
j=1

(
k
j

)
possible choices for the distinct prime divisors where k is the

largest integer ≤ t = (log x)α and m is the largest integer ≤ (log x)β. Any
prime factor of such a divisor can be raised to at most the log2 x power, so

the total number of divisors is bounded by
(∑m

j=1

(
k
j

))
(log2 x)(log x)

β

. There
are at most t possible values of r. Thus,

|H(x)| ≤ t
m∑
j=1

(
k

j

)
(log2 x)(log x)

β
.

Applying Lemma 2.3 and using the values of k and m then gives

|H(x)| ≤ t
(

e2t

(log x)β

)(log x)β

(log2 x)(log x)
β
.

(Again, by log2 x we mean log x/log 2.) We can replace the floor of (log x)β

with (log x)β since (e2t/s)s is an increasing function in s when s is small
compared to t.

Thus we have

log |H(x)| ≤ C(log x)β(log log x) + log t+ (log log2 x)(log x)β

for some constant C, and this is O((log x)β log log x). Since β < 1 we con-
clude that |H(x)| = O(xε0), and so II1(x) = O(x1+ε0) for any ε0 > 0 since
the terms in II1(x) are at most x.
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To estimate II2(x) we apply Lemma 2.4, so that the number of terms
of J is O(x/(log x)kβ) for any k, and thus we conclude that

II2(x) = O

(
x2

(log x)k

)
for any k since every term in II2(x) is at most x/`(x).

3. Number fields. Let K be a number field and let OK be its ring of
integers. Set d = [K : Q]. Define ω(I) to be the number of distinct prime
ideal divisors of I, where I is an ideal of OK . Define jK(x) =

∑
NI≤x ω(I)2

and τ(I) =
∑

A|I 1 (that is, τ(I) counts the number of ideals which divide I).

Lemma 3.1.
∑

NI≤x τ(I) = O(x log x).

Versions of this lemma can be found in some number theory textbooks
such as [Nar, Chap. 7] using the zeta function of the number field. We include
a proof below for completeness and because it is worth noting that a purely
elementary proof of the statement can be provided.

Proof of Lemma 3.1. We may rewrite
∑

NI≤x τ(I) as∑
NI≤x

L

(
x

NI

)
where L(x) counts the number of ideals with norm at most x. Since L(x) ∼
cx for some constant c, we have L(x) = O(x), and thus∑

NI≤x
L

(
x

NI

)
= O

( ∑
NI≤x

x

NI

)
.

Since L(x) ∼ cx, if we list the ideals of OK in the order of increasing norm,
as In (without paying attention to the order when the ideals have the same
norm), then we must have a constant c0 such that Ii > c0i for all sufficiently
large i. Thus, ∑

NI≤x

(
x

NI

)
= O

(∑
i≤x

x

i

)
which gives the desired result.

Lemma 3.2. For β > 0, let Dβ(x) be the number of ideals I with ω(I) ≥
(log x)β and NI ≤ x. Then for any fixed β and any γ > 0 we have Dβ(x) =
O(x/(log x)γ), where the implied constant depends on β and γ.

Proof. This follows essentially by the same method of proof as in Lemma
2.4 by noting that τ(I) ≥ 2ω(I).

Henceforth, we will assume that OK has a unit a of infinite order (that
is, K is not the rationals or a quadratic imaginary field).
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Lemma 3.3. For any a in O×K , there exists a constant C > 1 such that
for all k,

|NK/Q(ak − 1)| ≤ Ck.
Proof. We may take C to be 1 plus the absolute value of the product of

all the conjugates of a.

For any ideal I of OK let oa(I) be the smallest positive integer such that
I | (aoa − 1). So, oa is the order of a in the group (OK/I)×.

Lemma 3.4. There is a constant C > 1 depending on K and a such that
for any ideal I of OK we have oa(I) ≥ logC NI.

Proof. Assume that I | (ak − 1). So NI ≤ N(ak − 1) = |NK/Q(ak − 1)|
since (ak − 1) is a principal ideal. By Lemma 3.3, there is a constant C > 1
depending only on a such that |NK/Q(ak − 1)| ≤ Ck, from which the result
follows.

Corollary 3.5. Assume that the group of units of OK has positive
rank. Then there is a constant C > 1 such that [UK : UK(I)] ≥ logC NI.

Proof. Apply Lemma 3.4, and note that if a is a unit of infinite order,
then I | (u[UK :UK(I)] − 1).

Lemma 3.6. For all but finitely many ideals I, we have

ω(I) < 2d
log NI

log log NI
.

Moreover, if τ(I) is the number of distinct ideal divisors of I then τ(I) =
O((NI)ε) for any ε > 0.

Proof. Recall that for any ε > 0 and for all but finitely many n we have
ω(n) < (1 + ε) log n/log log n. As before, we will take ε = 1, and so for all
but finitely many n, ω(n) < 2 log n/log log n. Let N be the set of positive
integers violating the prior inequality, and let M be the set of ideals with
norm in N or with norm less than or equal to ee. Note that since N is finite,
so is M . Let CM be the maximum number of distinct prime divisors of any
element of M .

Now, for any given ideal I, set I0 = rad(I) to be the largest squarefree
ideal divisor of I.

So we need to just estimate ω(I0). If I0 ∈ M , then ω(I0) ≤ CM . If
I0 /∈ M , then since any prime in Z factors into at most d distinct prime
ideals in K, we have

ω(I0) ≤
2d log NI0
log log NI0

≤ 2d log NI

log log NI
.

The last inequality follows from the fact that for x > ee, log x/log log x is
an increasing function.
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To prove the result for τ(I), note that τ(n) = O(nε) and it suffices to
prove that there is a constant m such that

τ(I) = o(τ(NI)m),

which we only need to prove for ideals whose norm is a power of a prime since
τ(I) is a multiplicative function. Assume that NI = pa, so that τ(NI) =
a+1. Then the number of divisors of I is bounded by the number of solutions
in non-negative integers to the inequality

x1 + · · ·+ xd ≤ a+ 1,

which is (a + d + 1)!/(d!(a + 1)!). Since d = [K : Q] is fixed, the result
follows.

Theorem 3.7. For any α we have PK(x) = O(x2/(log x)α).

Proof. The proof is similar to our earlier estimate for G(x).

We will show the equivalent result that for any fixed α such that 1 < α,
we have PK(x) = O(x2(log log x)2/(log x)α).

We will write ord(I) to be the smallest positive integer o such that ao−1
is in I. We note that

PK(x) ≤
∑
NI≤x

NI

ord(I)
.

Let C be the constant from Lemma 3.4. Also, let `(x) = 3 logC x, and set
t = (log x)α.

We set T (x, p, q) to be those I with norm at most x and satisfying p ≤
ord(I) < q. Then

PK(x) ≤ I(x) + II(x) + III(x)

where we have sums defined in an analogous fashion as earlier:

I(x) =
∑

I∈T (x,1,`(x))

NI

ord(I)
,(3.1)

II(x) =
∑

I∈T (x,`(x),t)

NI

ord(I)
,(3.2)

III(x) =
∑

I∈T (x,t,∞)

NI

ord(I)
.(3.3)

We will first estimate I(x). The number of terms in I(x) is bounded by∑
1≤r≤`(x) τ((ar − 1)). This sum is at most `(x)τm(x) where τm(x) is the

maximum of τ((ar − 1)) over r satisfying 1 ≤ r ≤ `(x). By Lemma 3.6 we
have τm(I) = O(xε). Any term in I(x) is bounded above by x and so

I(x) = O(x1+ε3(logc x)) = O(x1+ε log x).



306 J. Zelinsky

Since log x = o(xε) for any ε > 0 we conclude that

I(x) = O(x1+ε).

Next, we estimate III(x). It has at most O(x) terms (since the number
of ideals of norm at most x is O(x)) and each term is at most x/t and so

III(x) = O

(
x2

t

)
= O

(
x2

(log x)α

)
.

To estimate II(x) we will break it into two sets of terms depending on
how many distinct prime factors J has, along with an O(1) as before.

Let k be a constant that satisfies Lemma 3.6. We define Nk to be the set
of ideals which divide some J with ω(J) ≥ C log NJ/log log N. Note that
Nk is finite.

Fix a real number β with 0 < β < 1. Let H(x) be the subset of elements
of T (x, `(x), t) with are not in Nk and which have at most (log x)β distinct
prime factors, and set

(3.4) II1(x) =
∑

I∈H(x)

NI

ord(I)
.

Similarly, let J(x) be the set of elements of T (x, `(x), t) with more than
(log x)β distinct prime ideal factors, and not in Nj , and set

(3.5) II2(x) =
∑
I∈J(x)

NI

ord(I)
.

To estimate II1(x) we will estimate |H(x)|. If I ∈ H(x) then I | (ar − 1)
for some r with `(x) ≤ r ≤ t and (ar − 1) not in Nk. Then by Corollary 3.5
and Lemma 3.6 we have, for some constant M ,

ω((ar − 1)) <
Mr

log r
< t.

The last inequality is valid for t sufficiently large, which occurs when x
is sufficiently large. However, each element of |H(x)| has j distinct prime
divisors with 1 ≤ j ≤ (log x)β. So for any fixed r, there are at most

∑m
j=1

(
k
j

)
possible choices for the distinct prime divisors where k is the largest integer
≤ t and m is the largest integer ≤ (log x)β. Any prime can be raised to
at most the log2 x power, so the total number of divisors is bounded by(∑m

j=1

(
k
j

))
(log2 x)(log x)

β
. There are at most t possible values of r. Thus,

|H(x)| ≤
m∑
j=1

(
k

j

)
t(log2 x)(log x)

β
.
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Applying Lemma 2.3 and using the values of k and m then gives

|H(x)| ≤ t
(

e2t

(log x)β

)(log x)β

(log2 x)(log x)
β
.

Now, since t = (log x)α,

log |H(x)| ≤ C(log x)β log log x+ log t+ (log log2 x)(log x)β

for some constant C, and this is O((log x)β log log x). Thus |H(x)| = O(xε0),
and so II1(x) = O(x1+ε0) for any ε0 > 0.

To estimate II2(x), apply Lemma 3.2 so that the number of terms of
J(x) is O(x(log log x)2/(log x)γ) for any γ > 0, and thus conclude that

I2(x) = O

(
x2(log log x)2

(log x)γ

)
for every γ.
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