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Relative extensions of number fields and
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1. Introduction. Let p be a fixed rational prime, and letK be a number
field. A Zp-extension of K is a field extension L of K such that L/K is Galois
with Galois group topologically isomorphic to the additive group Zp of p-adic
integers. More generally, for a natural number k ∈ N, a Zkp-extension of K is
a Galois extension L of K such that Gal(L/K) is topologically isomorphic
to Zkp. Each Zkp-extension of K arises as the composite of k independent
Zp-extensions.

In this article, we will be mainly concerned with the composite K of all
Zp-extensions of K. Using class field theory, one can show that

Gal(K/K) ∼= Zdp
for some integer d = d(K) such that

r2(K) + 1 ≤ d ≤ [K : Q].

Here r2(K) denotes the number of pairs of complex conjugate embeddings
of K into a fixed algebraic closure.

Leopoldt’s Conjecture predicts that in fact d(K) = r2(K) + 1. In partic-
ular, if K is a totally real number field, then there should exist exactly one
Zp-extension of K (the so-called cyclotomic Zp-extension of K).

Let L be a Zkp-extension of K, and let Γ := Gal(L/K) ∼= Zkp. For each

integer n ∈ N0 = N ∪ {0}, we consider the intermediate field Ln := LΓ pn

,
which is the subfield of L fixed by Γ p

n
. Then each Ln is abelian over K

with Galois group isomorphic to (Z/pnZ)k. We let An denote the p-Sylow
subgroup of the ideal class group of the number field Ln.
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Let m,n ∈ N, m ≥ n. The norm map

NLm|Ln
: Lm → Ln

induces a map Nm,n : Am → An. Let A(L) := lim←−An denote the projective

limit of the An with respect to these maps. Then A(L) is called the Greenberg
module attached to the Zkp-extension L/K.

We note that A(L) bears in a natural way the structure of a
Zp[[Gal(L/K)]]-module. Moreover, one can show that the group ring
Zp[[Gal(L/K)]] is algebraically and topologically isomorphic to the ring
Λk := Zp[[T1, . . . , Tk]] of formal power series in k variables over Zp. Here the
isomorphism is induced by mapping a set of topological generators γ1, . . . , γk
of Gal(L/K) ∼= Zkp to the elements T1+1, . . . , Tk+1, respectively. R. Green-

berg [Gr73] has shown that A(L) is a finitely generated torsion Λk-module.
A finitely generated Λk-module M is called pseudo-null if M is anni-

hilated by two relatively prime elements g, h of the unique factorisation
domain Λk. If k = 1, then this condition is equivalent to saying that M is
finite.

Now we are ready to state the main problem to be investigated in this
article.

Conjecture 1.1 (Greenberg’s Generalised Conjecture (GGC); cf. [Gr01,
Conjecture 3.5]). Let K denote the composite of all Zp-extensions of the
number field K. Then A(K) is pseudo-null as a Λd-module, where we let
d = rankZp(Gal(K/K)).

If, for example,K denotes a totally real number field such that Leopoldt’s
Conjecture holds for K, then d(K) = 1, and (GGC) reduces to the claim
that the p-Sylow subgroups An of the ideal class groups of the intermediate
fields in the cyclotomic Zp-extension of K remain bounded as n → ∞. In
this form, the above conjecture has already been formulated in [Gr76].

Let us stress here that (GGC) only concerns the composite of all Zp-
extensions of K; it does not make predictions about the Greenberg modules
A(L) of Zkp-extensions of K for k < d (in fact, it is known that Greenberg
modules of such smaller composites are not necessarily pseudo-null).

The conjecture has been verified numerically for many fields (most of
them being real quadratic extensions of Q). Moreover, J. Minardi has proved
in his Ph.D. thesis [Mi86] that (GGC) holds for imaginary quadratic fields
whose class number is coprime to p, and also for some special sets of imag-
inary quadratic fields having class number divisible by p. Besides these two
classes of examples, the conjecture has been verified in several further special
cases (cf., for example, [MS03] and [Ba03]; in the latter reference, (GGC)
is proved for certain normal extensions of Q having two-elementary Galois
groups).
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In this article, we will first be concerned with two main problems, both
of which are motivated by the wish to transfer the property of being pseudo-
null from one given module to certain other modules. Throughout the paper,
we will assume that K is a number field such that there exist at least two
(and thus infinitely many) different Zp-extensions of K.

We will distinguish two kinds of transfer, namely ‘lifting’ and ‘shifting’.
Here ‘lifting’ means that we are given a number field K and a Zkp-extension

L of K, k ∈ N, such that A(L) is pseudo-null over Zp[[Gal(L/K)]] ∼= Λk, and
we want to show that for some Zdp-extension K of K containing L, d > k,

the Greenberg module A(K) is pseudo-null over Zp[[Gal(K/K)]] ∼= Λd.

Our main result concerning ‘lifting’ implies that in the study of pseudo-
null Greenberg modules of Zkp-extensions, it is sufficient to restrict to the
case k = 2:

Theorem 2.8. Let K be a number field. We assume that there exist at
least two independent Zp-extensions of K. Then (GGC) holds for K if and
only if there exists a Z2

p-extension L of K such that

• A(L) is pseudo-null over Zp[[Gal(L/K)]] ∼= Λ2, and
• only finitely many primes of L ramify in the composite K of all Zp-ex-

tensions of K.

Note that the ‘if’ part of Theorem 2.8 goes back to [Mi86]. We can go
one step further: it is sometimes even sufficient to consider Zp-extensions
of K (k = 1):

Theorem (see Corollary 2.5 below). Let K/K be a Zkp-extension, and
suppose that K contains a Zp-extension L of K such that

• A(L) is finite, and
• only one prime of L ramifies in K.

Then A(K) is pseudo-null over Zp[[Gal(K/K)]] ∼= Λk.

This last result is particularly useful for proving (GGC) via numerical
computations.

On the other hand, ‘shifting’ pseudo-nullity shall mean that we want to
transfer the pseudo-nullity of some Zkp-extension L/K to the Zkp-extension
L′/K ′, where K ′/K is a suitable finite p-extension and L′ = L ·K ′.

One of our main results in this context is based on the following

Theorem 3.1. Let K be a number field, let L/K be a Zkp-extension.
Suppose that K ′/K denotes a finite extension. Let L′ := L ·K ′.

(i) If A(L′) is pseudo-null as a Zp[[Gal(L′/K ′)]] ∼= Λk-module, then A(L)

is pseudo-null as a Zp[[Gal(L/K)]]-module.
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(ii) Suppose now that K ′/K is a finite normal p-extension which is un-
ramified outside p, let k = 2, and suppose that each prime of K
ramifying in K ′ is only finitely decomposed in L. Then A(L)/(pA(L))
is finite if and only if A(L′)/(pA(L′)) is finite. In particular, in this
case A(L′) is pseudo-null over Zp[[Gal(L′/K ′)]].

We will study the above questions in Sections 2 and 3, respectively.
Our method shows its full strength if we combine ‘lifting’ with ‘shifting’.

This enables us to prove the following result.

Theorem. Suppose that K denotes a number field for which a statement
slightly stronger than (GGC) holds (details to be explained in Sections 3
and 4). Then (GGC) holds for every finite normal p-extension of K which
is unramified outside p over K.

In the last section, we will give several applications of the results ob-
tained, including for example the following theorem.

Theorem 4.6. Let K be a number field containing exactly one prime
above p. If the p-Sylow subgroup A(K) of the ideal class group of K is cyclic,
generated by the prime of K dividing p, then (GGC) holds for K.

Moreover, if K̃ denotes any finite extension of K contained in the com-
posite K of all Zp-extensions of K, and if K ′ denotes any finite normal

p-extension of K̃ such that K ′/K̃ is unramified outside p, then (GGC) holds
for K ′, and in fact

|A(K′)| ≤ |A(K̃)| <∞.
It is easy to find number fields satisfying the conditions of Theorem 4.6;

let us just mention one concrete example here (some more are given at the
end of Section 4). Suppose that K is the non-normal cubic field defined by
the polynomial x3 − 9x2 + 9x + 141. Then Theorem 4.6 may be applied to
K (p = 3), and the Greenberg module A(K) of the Z2

3-extension K/K is
isomorphic to Z/3Z.

Notation. For every algebraic extension (finite or infinite) F of Q we
denote byH(F ) the maximal abelian unramified pro-p-extension of F . If F is
a Zkp-extension of some number field K, then we write A(F ) for the Greenberg
module of F/K, i.e., the projective limit of the p-Sylow subgroups of the
ideal class groups of the finite extensions of K contained in F . Note that
Gal(H(F )/F ) is isomorphic to A(F ), by class field theory.

2. Lifting pseudo-nullity. In this section, we will deal with the prob-
lem of ‘lifting’ pseudo-nullity, as described in the Introduction. Let K be
a fixed number field, and suppose that L/K denotes a Zlp-extension such

that A(L) is a pseudo-null Zp[[Gal(L/K)]]-module. Let moreover K be a
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Zkp-extension of K, k > l, containing L. We would like to conclude that A(K)

is pseudo-null as a Zp[[Gal(K/K)]]-module. Obviously it is enough to handle
the case k = l + 1.

We start with the following simple observation:

Lemma 2.1. Let K/K be a Zkp-extension, k ≥ 2. We assume that L ⊆ K
is a Zk−1p -extension of K such that

• A(L) is a pseudo-null Zp[[Gal(L/K)]]-module, and
• the Zp-extension K/L is unramified.

Then A(K) is a pseudo-null Zp[[Gal(K/K)]] ∼= Λk-module.

Proof. We lift any fixed topological generator γ ∈ Gal(K/L) ∼= Zp to an
element γ ∈ Gal(H(K)/L) (which is uniquely determined by γ sinceH(K)/K
is abelian), and we define T := γ − 1 ∈ Zp[[Gal(K/K)]]. Then the field
H(K)〈γ〉 fixed by γ is the maximal subextension of H(K) which is abelian
over L, i.e., H(K)〈γ〉 = H(L).

We therefore obtain an injective Zp[[Gal(L/K)]] ∼= Λk−1-module homo-
morphism

Gal(H(K)〈γ〉/K) ↪→ Gal(H(K)〈γ〉/L) = Gal(H(L)/L).

Now Gal(H(L)/L) ∼= A(L) is pseudo-null as a Λk−1-module, and

Gal(H(K)〈γ〉/K) ∼= A(K)/(T ·A(K)).

This shows that A(K)/(T ·A(K)) is pseudo-null over Zp[[Gal(L/K)]]. It follows
by a standard argument (cf. [PR94, Lemme 2]) that A(K) is pseudo-null over
Zp[[Gal(K/K)]] ∼= (Zp[[Gal(L/K)]])[[T ]].

Secondly, we mention the following result.

Lemma 2.2 (Minardi [Mi86, Proposition 4.B]). Let K/K be a Zkp-exten-

sion, k ≥ 3. We assume that L ⊆ K is a Zk−1p -extension of K such that

• A(L) is pseudo-null as a Zp[[Gal(L/K)]]-module, and
• for every prime p of K that divides a prime of L which ramifies in
K/L, the decomposition group Dp ⊆ Gal(L/K) of p has Zp-rank at
least two.

Then A(K) is pseudo-null as a Zp[[Gal(K/K)]]-module.

Remarks 2.3. (1) The second condition of Lemma 2.2 is satisfied, for
example, if K contains a Z2

p-extension L of K such that only finitely many
primes of L lie above p.

(2) Another important example is the case of a ground field K containing
exactly one prime dividing p. Then this prime is only finitely decomposed
in K, i.e., the Zp-rank of the corresponding decomposition group equals
k ≥ 3.
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In general, the above condition is quite restrictive for primes p of K
having small ramification indices ep and inertia degrees fp over Q, because
in the composite K of all Zp-extensions of K, we have rankZp(Dp) ≤ ep · fp.

(3) In some situations (see the applications in Section 4), the module
A(L) is not only pseudo-null, but in fact the trivial module. Whereas this
immediately implies that A(K) is pseudo-null if K/L is unramified (compare
the proof of Lemma 2.1), an analogous conclusion does not seem obvious in
the setting of Lemma 2.2 (exception: exactly one prime p of L ramifies in
the extension K/L).

We will now deduce two important special cases.

Corollary 2.4. Let K/K be a Zkp-extension. Suppose that K contains

a Z2
p-extension L of K such that

• A(L) is pseudo-null over Zp[[Gal(L/K)]] ∼= Λ2, and
• only finitely many primes of L ramify in K/L.

Then A(K) is pseudo-null over Zp[[Gal(K/K)]] ∼= Λk.

Proof. This follows inductively by repeatedly using Lemma 2.2. We may
assume that k ≥ 3. Let L(l) ⊆ K, 2 ≤ l < k, be any Zlp-extension of K

containing L such that A(L(l)) is pseudo-null over Zp[[Gal(L(l)/K)]]. Choose
any Zl+1

p -extension L(l+1) ⊆ K of K containing L(l).

Let p denote a prime of L(l) ramifying in L(l+1). Then p ∩ L ramifies
in L(l+1)/L and therefore also in K/L, implying that p ∩K is only finitely
decomposed in L/K. Therefore the rank of the corresponding decomposition
group in L(l)/K is at least two, so that we may apply Lemma 2.2 and

conclude that A(L(l+1)) is pseudo-null over Zp[[Gal(L(l+1)/K)]].

Corollary 2.5. Let K/K be a Zkp-extension, and suppose that K con-
tains a Zp-extension L of K such that

• A(L) is finite, and
• only one prime p of L ramifies in K.

Then A(K) is pseudo-null over Zp[[Gal(K/K)]] ∼= Λk.

The ramification condition is satisfied, for example, if L contains only
one prime dividing p. Note that this can only happen if the ground field K
itself contains only one prime dividing p, and if this unique prime does not
split in L/K.

Proof of Corillary 2.5. We may assume that k ≥ 2. Note that since
A(K) is finite, the prime p of L which ramifies in K has to be almost totally
ramified. Let L ⊆ K be a Z2

p-extension of K containing L. Then p ramifies
already in L/L.
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We will show now that A(L) is pseudo-null over Zp[[Gal(L/K)]] ∼= Λ2.
The statement will then follow from the previous corollary.

Since p ramifies in the Zp-extension L/L, there exists a minimal integer
e ∈ N0 = N∪{0} such that the extension Le/L is totally ramified, where Le
denotes the unique intermediate field of the extension L/L which is cyclic
of degree pe over L.

We have a surjection

Gal(H(L)/L) � Gal
(
(L ·H(L))/L

) ∼= Gal(H(L)/Le)

with kernel Gal(H(L)/(L ·H(L))), since H(L) ∩ L = Le.
This induces a Zp[[Gal(L/L)]]-module homomorphism

Φ : A(L) → A(L) ∼= Gal(H(L)/L).

It is easy to see that T · A(L) is contained in the kernel of Φ, where we let
T := γ−1 for some topological generator γ of Gal(L/L) ∼= Zp. Since A(L) is
finite by assumption, there exists some power px of p which annihilates the
image of Φ. Furthermore, one can show that the kernel of the induced map

Φ : A(L)/(T ·A(L))→ A(L)

is annihilated by pe (cf. Lemma 2.6 below). Therefore

px+e · (A(L)/(T ·A(L))) = {0}.

Let M = H(L)〈γ〉. Then M is the maximal subextension of H(L) which
is abelian over L.

If P denotes a prime of M dividing p, then the decomposition group

D ⊆ Gal(L/K)

of p := p∩K acts trivially on the inertia subgroup I ⊆ Gal(M/L) of P. In-
deed, since I∩Gal(M/L) = {0}, we may identify I with the inertia subgroup
Ip of p in Gal(L/L). The group D acts on Ip (and I) via conjugation, since
each element of D fixes p. But Gal(L/K) ∼= Z2

p is abelian, and therefore D
acts trivially on Ip.

Note that p is the unique prime of L dividing p, since L/K is normal
and so every conjugate of p in L would have to ramify in L/L.

Therefore D = Gal(L/K). If γ2 ∈ Gal(L/K) denotes a topological gen-
erator, and if T2 := γ2 − 1, then this means that T2 · I = {0}.

Since T · Gal(H(L)/L) ∼= T · A(L) is the closure of the commutator
subgroup of Gal(H(L)/L) (cf. the proof of [Gr73, Proposition 2]), the kernel
of Φ is generated by the inertia subgroup I ⊆ Gal(M/L) of P. The above
observation therefore shows that the kernel of Φ is annihilated by pe, T
and T2, and hence is finite.
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It follows that A(L)/(T ·A(L)) is a finite, i.e., pseudo-null, Zp[[T2]]-module,
by the assumption that A(L) is finite. But this means that A(L) is pseudo-null
over Zp[[Gal(L/K)]] ∼= Zp[[T, T2]].

The following lemma has been used in the proof of Corollary 2.5.

Lemma 2.6. Let L/K be a Zkp-extension, k ≥ 2. Suppose that L contains

a Zk−1p -extension L of K such that exactly one prime p ramifies in L/L. Let
pe be the index of the inertia subgroup Ip ⊆ Gal(L/L) of p in Gal(L/L). Let
T := γ−1, where γ denotes a topological generator of Gal(L/L) ∼= Zp. Then
there exists a Zp[[Gal(L/L)]]-module homomorphism

A(L)/(T ·A(L))→ A(L)

whose kernel and cokernel are annihilated by pe.

Proof. This is part of [Kl14, Lemma 5.98]. For convenience, we include
a proof.

Let P be any prime of H(L) dividing the unique prime p of L which
ramifies in L/L, and let I ⊆ G := Gal(H(L)/L) denote the inertia subgroup
of P.

Let X := Gal(H(L)/L) ∼= A(L). The exact sequence

0→ X → G→ G/X → 0,

together with the fact that G/X ∼= Gal(L/L) is Zp-free, implies that G
is isomorphic to the semidirect product X o G/X. Note that I may be
identified with pe · (G/X), since I ∩X = {0} and thus I ∼= Ip ⊆ Gal(L/L).

Since T ·X equals the commutator subgroup of G, G/(T ·X) is isomorphic
to the direct product

(X/(T ·X))× (G/X),

and

G/(T ·X + I) ∼= (X/TX)× ((G/X)/I) ∼= (X/TX)× (Z/peZ).

Therefore

pe · (X/(T ·X)) ∼= (G/(T ·X + I))p
e ∼= Gal(H(L)/L)p

e
.

We have thus shown that

pe · (A(L)/TA(L)) ∼= pe ·A(L).

Note that this formula nicely generalises the well-known isomorphism in the
case of e = 0.

Now we consider the composite map

ϕ : A(L)/TA(L) � pe · (A(L)/TA(L)) ∼= pe ·A(L) ↪→ A(L),
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where the first map is simply multiplication by pe. Then the cokernel
A(L)/(pe ·A(L)) of ϕ is annihilated by pe, and the first map is the only
one which might have a kernel. The lemma follows.

Remark 2.7. Suppose that K/K denotes a Zkp-extension containing a
Zp-extension L of K such that at most one prime of L ramifies in K. Let

n ∈ N, and let L̃ ⊆ K be a Zp-extension of K such that [(L̃ ∩ L) : K] ≥ pn.

Then at most one prime ramifies in K/L̃, provided that n is large enough.

Therefore we can reformulate Corollary 2.5 as follows: suppose that A(K)

is not pseudo-null. If L ⊆ K is a Zp-extension of K such that at most one

prime of L ramifies in K, then there exists some n ∈ N such that µ(L̃/K) > 0
or λ(L̃/K) > 0 for each Zp-extension L̃/K satisfying [(L̃∩L) : K] ≥ pn (here

µ(L̃/K) and λ(L̃/K) denote the Iwasawa invariants of the Zp-extension

L̃/K; note that A(L̃) is finite if and only if µ(L̃/K) = λ(L̃/K) = 0).

We will finally develop a converse of Corollary 2.4 and apply it to proving
pseudo-nullity; in fact, this result shows that it is sufficient to be able to
handle the case of Z2

p-extensions.

Theorem 2.8. Let K be a number field. We assume that there exist at
least two independent Zp-extensions of K. Then (GGC) holds for K if and
only if there exists a Z2

p-extension L of K such that

• A(L) is pseudo-null over Zp[[Gal(L/K)]] ∼= Λ2, and
• only finitely many primes of L ramify in the composite K of all Zp-ex-

tensions of K.

Proof. If d(K) = 2, i.e., the composite of all Zp-extensions of K is a
Z2
p-extension, then we can simply take L = K. From now on, we will assume

that d(K) ≥ 3.

The ‘if’ statement immediately follows from Corollary 2.4. We will thus
assume that K satisfies (GGC). Let I = {p1, . . . , pt} be the set of primes
of K dividing p. Since each of these primes ramifies in the cyclotomic Zp-
extension Kcyc

∞ ⊆ K of K, the inertia subgroups

Ipi(K/K) ⊆ Dpi(K/K) ⊆ Gal(K/K)

must have Zp-rank at least one for 1 ≤ i ≤ t.
We will construct a Z2

p-extension L of K containing Kcyc
∞ which satisfies

the desired conditions. Each prime pj whose inertia subgroup has Zp-rank
equal to one will be unramified in K/L, since it is in fact unramified in
K/Kcyc

∞ .

Therefore such primes may be ignored. Let p1, . . . , ps denote the re-

maining primes. The inertia subfields Tpi := KIpi are contained in Zd(K)−2
p -

extensions of K for 1 ≤ i ≤ s.
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Let d := d(K). For each pi, we define a Zd−1p -extension Lpi of K by
letting

(a) Lpi := Kcyc
∞ ·Tpi if Tpi is a Zd−2p -extension of K (i.e., rankZp(Ipi) = 2),

or
(b) Lpi := Kcyc

∞ · Tpi · T̃pi if r := rankZp(Ipi) > 2, where T̃pi is any

Zr−2p -extension of K such that the composite Lpi is a Zd−1p -extension
of K.

Now we choose a Zd−1p -extension L(d−1) of K containing Kcyc
∞ such that

for every 1 ≤ i ≤ s, L(d−1)∩Lpi is contained in a Zd−2p -extension of K. Then

the primes of L(d−1) dividing some prime pi of case (a) are unramified in
K/L(d−1). Indeed, there exists a Zp-extension L ⊆ Tpi which is not contained
in L(d−1). Then L(d−1) ·L is of finite index in K, and unramified over L(d−1)

at the primes dividing pi.

The primes of L(d−1) dividing some pi of case (b) may ramify in K/L(d−1);
however, for such pi,

rankZp(Ipi(L
(d−1)/K)) ≥ rankZp(Ipi(K/K))− 1 ≥ 3− 1 = 2.

In both cases, rankZp(Ipi(L(d−1)/K)) ≥ 2.

Inductively, we obtain a Z2
p-extension L = L(2) of K containing Kcyc

∞
such that rankZp(Ipi(L/K)) = 2 for every prime pi of K which is divisi-
ble by primes ramifying in K/L. In particular, each of these primes splits
into finitely many primes of L, i.e., only finitely many primes of L ramify
in K.

Note that we constructed L = L(2) by an inductive procedure, exclud-
ing in every step finitely many possible Zjp-extensions. We will now see that
it is possible to choose L such that moreover A(L) is pseudo-null as a Λ2-
module.

Since (GGC) holds for K, A(K) is a pseudo-null Zp[[Gal(K/K)]] ∼= Λd-

module. But then A(L(d−1)) is pseudo-null over Zp[[Gal(L(d−1)/K)]] ∼= Λd−1
for all but finitely many possible choices of L(d−1). This follows from [Mi86,
Corollary 1 of Proposition 4.D]. In order to be allowed to apply Minardi’s
result, we have to check that K contains a Zp-extension M of K such that
no prime of K dividing p is totally split in M , and such that µ(M/K) = 0.
Now Kcyc

∞ is contained in K, and therefore the set of Zp-extensions of K
in which all the primes of K dividing p ramify is dense in the set of all
Zp-extensions of K. Moreover, since A(K) is pseudo-null, µ(M/K) = 0 for
all Zp-extensions M of K which are not contained in a finite number of
certain Zd−1p -extensions (this has been proved by P. Monsky [Mo81, Theo-

rem I]; note that m0(K/K) = 0 in Monsky’s notation, since A(K) is pseudo-
null).
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We may therefore choose L(d−1) as described above, with the additional
restriction of avoiding the finitely many Zd−1p -extensions that do not share
the pseudo-nullity property.

Inductively, we may construct a Z2
p-extension L of K as claimed in the

statement of the theorem.

Remark 2.9. The Z2
p-extension L of K constructed in the proof of The-

orem 2.8 always contains the cyclotomic Zp-extension of K. Therefore the
fact that A(L) is a pseudo-null Zp[[Gal(L/K)]]-module implies that the di-
rect limit lim−→An of the ideal class groups of the intermediate fields of L/K
is trivial (this follows from [LN00, Proposition 3.6]).

More briefly: if (GGC) holds for K, then there exists a Z2
p-extension of

K in which all the ideals of K of p-power order capitulate.

Lannuzel and Nguyen Quang Do proved in [LN00] that (GGC) for K im-
plies that one can expect capitulation in the composite K of all Zp-extensions
of K; we have just proved that it is in fact possible to obtain capitulation
already at a lower dimension (cf. also [Ba07]).

3. Shifting pseudo-nullity. We will now deal with the second of the
two problems stated in the Introduction, i.e., we want to transfer the pseudo-
nullity of a Zkp-extension L/K to the pseudo-nullity of the Zkp-extension
(L ·K ′)/K ′ where K ′ is a suitable finite extension of K.

In view of Theorem 2.8, we will most of the time restrict to the case of
a Z2

p-extension L/K.

Theorem 3.1. Let K be a number field, let L/K be a Zkp-extension.
Suppose that K ′/K denotes a finite extension. Let L′ := L · K ′. In what
follows, we will identify Zp[[Gal(L′/K ′)]] ∼= Λk ∼= Zp[[Gal(L/K)]].

(i) If A(L′) is pseudo-null as a Zp[[Gal(L′/K ′)]]-module, then A(L) is
pseudo-null as a Zp[[Gal(L/K)]]-module.

(ii) Suppose now that K ′/K is a finite normal p-extension which is un-
ramified outside p, let k = 2, and suppose that each prime of K
ramifying in K ′ is only finitely decomposed in L. Then A(L)/(pA(L))
is finite if and only if A(L′)/(pA(L′)) is finite. In particular, in this
case A(L′) is pseudo-null over Zp[[Gal(L′/K ′)]].

Proof. Class field theory implies that

A(L) ∼= Gal(H(L)/L) and A(L′) ∼= Gal(H(L′)/L′).

Since H(L) is normal over L, we may conclude that H(L) · K ′ = H(L) · L′ is
a normal extension of L · L′ = L′ and that Gal((H(L) ·K ′)/L′) is isomorphic
to a subgroup of the abelian group Gal(H(L)/L). Hence H(L) ·K ′ ⊆ H(L′).
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We summarise the relations between the fields in the following diagram.

H(L′)

H(L) H(L) ·K ′

H(L) ∩ L′ L′ = L ·K ′

L

K ′

K

There exists a surjective Λk-module homomorphism

Gal(H(L′)/L′) � Gal((H(L) ·K ′)/L′) ∼= Gal
(
H(L)/(L′ ∩H(L))

)
.

Our assumption about A(L′) therefore implies that the Galois group

∆ := Gal
(
H(L)/(L′ ∩H(L))

)
is pseudo-null as a Λk-module.

Now we look at the exact sequence

0→ ∆→ Gal(H(L)/L)→ Gal
(
(L′ ∩H(L))/L

)
→ 0.

Since H(L)∩L′ is a finite extension of L, it follows that Gal((L′∩H(L))/L)
is pseudo-null as a Λk-module, proving that also Gal(H(L)/L) ∼= A(L) is
pseudo-null. This shows (i).

Turning to the proof of (ii), we will write A := A(L) and A′ := A(L′).

We may in fact assume that L ∩K ′ = K. Indeed, letting K̃ := L ∩K ′,
we have L · K̃ = L and L′ · K̃ = L′. Therefore we may replace K by K̃ (note
that K ′ is a normal p-extension of K̃, unramified outside p).

Moreover, since every finite p-group is solvable, we may assume that
K ′/K is cyclic of degree p (the conclusion then follows by induction).

Let σ denote a generator of G := Gal(K ′/K), and write S := σ − 1.
We may thus identify the group ring Zp[G] with a suitable quotient of the
ring Zp[S] of polynomials over Zp in the variable S, dividing out the ideal
generated by the element (S + 1)p − 1.

Now, L′ is normal (and in fact abelian) over K, and G may be lifted to
a subgroup of Gal(L′/K), corresponding to Gal(L′/L). In particular, G acts
on A′ = A(L′) in a natural way. Moreover,

Sp = (σ − 1)p ≡ σp − 1 mod p

annihilates the quotient A′/(p ·A′).
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We note that

rankp(A
′) = dimFp(A′/(p ·A′)) = rankp(A

′/(Sp ·A′))

(here Fp denotes the field with p elements). This means that

rankp(A
′) ≤ rankp(A

′/(S ·A′)) + rankp((S ·A′)/(S2 ·A′)) + · · ·(3.1)

+ rankp((S
p−1 ·A′)/(Sp ·A′))

≤ p · rankp(A
′/(S ·A′)),

where we have used the fact that for every integer j ∈ N the map

Sj : A′/(S ·A′)→ (Sj ·A′)/(Sj+1 ·A′)

given by the action of Sj on A′ is a well-defined and surjective homomor-
phism.

Now we translate the inequality (3.1) into a Galois-theoretic statement.
Recall that A′ ∼= Gal(H(L′)/L′). We describe the quotient A′/(S · A′). If
M ′ ⊆ H(L′) denotes the maximal subextension which is abelian over L,
then L′ ⊆M ′, and

Gal(M ′/L′) ∼= A′/(S ·A′).

We consider the abelian extension M ′/L. If K ′/K is unramified, then
actually

M ′ = H(L).

In the general situation of Theorem 3.1 (i.e.,K ′/K unramified outside p), the
field H(L) ⊆ M ′ corresponds to the maximal unramified subextension. In
particular, since M ′/L is abelian, Gal(M ′/H(L)) is generated by the inertia
subgroups of the primes of L ramifying in M ′. Since M ′/L′ is unramified,
each of the corresponding inertia subgroups has order p = [L′ : L]. Since
rankp(Gal(M ′/L′)) is finite if and only if rankp(Gal(M ′/L)) is finite, and
since our assumptions concerning K ′ imply that only finitely many primes
ramify in L′/L, it follows that

rankp(A
′/(S ·A′)) = rankp(Gal(M ′/L′))

is finite if and only if

rankp(H(L)/L)) = rankp(A)

is finite.

Now suppose that rankp(A) is finite. Since

rankp(A
′) ≤ p · rankp(A

′/(S ·A′))

by inequality (3.1), it follows that rankp(A
′) is finite. If, on the other hand,

rankp(A
′) and therefore also rankp(A

′/(S · A′)) ≤ rankp(A
′) is finite, then

the above shows that rankp(A) <∞.
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Remarks 3.2. (1) If A(L) is pseudo-null over Zp[[Gal(L/K)]] and more-
over torsion-free as a Zp-module, then A(L)/(pA(L)) is finite and thus the
theorem applies (cf. [Gr78, Lemma 3]).

(2) There do of course exist pseudo-null Λ2-modules A having infinite
p-rank, e.g. A = Λ2/(p, T1).

(3) We can prove an analogue of Theorem 3.1(ii) for Zkp-extensions K/K,

k > 2: we assume that there exists a Z2
p-extension L ⊆ K of K such that

• A(L)/(pA(L)) is finite, and
• only finitely many primes of L ramify in K.

This property is more restrictive than just assuming that A(K) is pseudo-null
(compare Theorem 2.8!). One can show that it is equivalent to the following:
for a suitable choice of variables T1, . . . , Tk of Λk = Zp[[Gal(K/K)]], the
quotient

A(K)/((p, T1, . . . , Tk−2) ·A(K))

is finite (idea: if Gal(K/L) is generated topologically by suitable elements
γ1, . . . , γk−2, then we let Ti := γi + 1, 1 ≤ i ≤ k − 2). The proof of
Theorem 3.1 then goes through with minor changes (for example, M ′ is
now defined to be the maximal subextension of H(L′) which is abelian
over L = K〈T1+1,...,Tk−2+1〉; here we identify Zp[[Gal(K′/K ′)]] ∼= Λk with
Zp[[Gal(K/K)]]).

Suppose now that L/K is a Z2
p-extension such that A(L) is pseudo-null

over the group ring Zp[[Gal(L/K)]]. We would like to say something about

the Greenberg module A(L′) of a shift L′ = L · K ′ if A(L) is not finitely
generated over Zp. We start with the following observation.

Recall that for each torsion Λ2-module N , there is an associated charac-
teristic power series fN ∈ Λ2, uniquely determined up to multiplication by
units. Note that N is pseudo-null if and only if fN is a unit.

Lemma 3.3. Suppose that L/K is a Z2
p-extension such that A := A(L) is

pseudo-null over Zp[[Gal(L/K)]]. Let K ′/K be a finite normal p-extension
unramified outside p, let L′ := L · K ′, and suppose that each prime of K
ramifying in K ′ is finitely decomposed in L/K. In what follows, we will
identify Zp[[Gal(L′/K ′)]] ∼= Λ2

∼= Zp[[Gal(L/K)]].

(i) The characteristic power series fA′ ∈ Λ2 of A′ := A(L′) is prime
with p.

(ii) For every γ ∈ Γ := Gal(L′/K ′) ∼= Gal(L/K) with γ 6∈ Γ p, and
T := γ − 1, if there exists some annihilator of A which is not con-
tained in (p, T ) ⊆ Λ2

∼= Zp[[Gal(L/K)]], then also fA′ 6∈ (p, T ).

Proof. Since A is pseudo-null, there exists an annihilator Φ ∈ Λ2 of A
which is prime with p. By [Gr78, Lemma 2] we may choose the variables
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T1, T2 of Λ2 (corresponding to a suitable choice of topological generators of
Gal(L/K) ∼= Z2

p) such that A/((p, T1) ·A) is finite.

Let us first assume that G := Gal(K ′/K) is cyclic of degree p, as in the
proof of Theorem 3.1. We write G = 〈σ〉 and define S := σ − 1.

As in the proof of Theorem 3.1, we may conclude that

A′/((S, p, T1) ·A′)

is finite. An analogue of inequality (3.1) for the module A′/(T1 ·A′) instead of
A′ shows that also A′/((p, T1) ·A′) is finite (note that the module A′/(T1 ·A′)
has a Galois-theoretic meaning: A′/(T1 ·A′) ∼= Gal(X/L′), where X ⊆ H(L′)
denotes the maximal subextension which is abelian over the Zp-extension
L′〈T1+1〉 of K ′).

Inductively, we can prove that A′/((p, T1) · A′) is finite for every p-
extension K ′ of K as in the lemma.

But if A′/((p, T1) ·A′) is finite, then so is Λ2/(fA′ , p, T1) (cf. [Kl14, Corol-
lary 5.62]). This shows that fA′ 6∈ (p, T1), so in particular p does not divide
fA′ , proving (i).

Now suppose that fA′ ∈ (p, T ) for some T = γ − 1. Then the above
shows that A/((p, T ) · A) has to be infinite. However, if there exists some
annihilator g ∈ Λ2 of A such that g 6∈ (p, T ), then Λ2/(p, T, g) is finite.

Indeed, Λ2/(p, T ) ∼= Fp[[T2]], where T2 = γ2 − 1 has been chosen so that
Γ = 〈γ, γ2〉. Now R := Fp[[T2]] is a regular local ring of Krull dimension
one, and the maximal ideal of R is generated by T2. Since g 6∈ (p, T ), the
coset of g is a non-trivial element of R. Assuming that g ∈ Λ2 is a non-unit
(otherwise A/((p, T ) ·A) = {0}, and thus A = {0} by Nakayama’s Lemma),
we may conclude that the coset of g in R contains a power of T2.

Therefore R/(g) and thus also A/((p, T ) · A) = A/((p, T, g) · A) are
finite.

Remarks 3.4. (1) In [Mo81], P. Monsky described the growth of class
numbers of the intermediate fields of multiple Zp-extensions in terms of
so-called m0- and l0-invariants, which generalise Iwasawa’s classical µ- and
λ-invariants. Using this language, Lemma 3.3 shows that m0(L′/K ′) = 0,
and that

l0(L′/K ′) ≤ min{l0(g) | g ∈ Ann(A)},

where Ann(A) ⊆ Λ2 denotes the annihilator ideal of A.

(2) Lemma 3.3(i) generalises a well-known result of K. Iwasawa about
µ-invariants (cf. [Iw73, Theorem 2]). Note that a prime of K which does
not lie above p cannot be finitely decomposed in a Z2

p-extension of K; this
is what makes it necessary to restrict to shifts K ′/K which are unramified
outside p.
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The fact that a Λk-module A is pseudo-null can be expressed by saying
that the Krull dimension of the quotient ring Λk/Ann(A) is at most

k − 1 = (k + 1)− 2,

i.e., the codimension of A is at least two. We will now prove that the stronger
assumption that codim(A) ≥ 3 implies that shifting works very well.

Lemma 3.5. Suppose that L/K denotes a Zkp-extension, k ≥ 2, such

that A := A(L) satisfies codim(A) ≥ 3. Let K ′/K be a finite normal p-
extension unramified outside p, and suppose that each prime of K which
ramifies in K ′ is finitely decomposed in L/K. Then A′ := A(L′) is pseudo-
null over Zp[[Gal(L′/K ′)]] ∼= Λk, where we let L′ := L ·K ′.

Proof. Since the Krull dimension of the local ring Λk/Ann(A) is at most
(k + 1) − 3 = k − 2, there exist elements g1, . . . , gk−2 ∈ Λk such that
Λk/(Ann(A) + (g1, . . . , gk−2)) and therefore also A/((g1, . . . , gk−2) · A) are
finite. Then also A/((p, g1, . . . , gk−2) ·A) is finite.

Let us first assume that K ′/K is cyclic of degree p. Using the notation
from the proof of Theorem 3.1, we may conclude that

A′/((S, p, g1, . . . , gk−2) ·A′)
is finite: indeed, we have shown in that proof that due to our ramification
constraints there exist exact sequences

0→ A′/(S ·A′)→M → N1 → 0

and

0→ N2 →M → A→ 0

with N1 and N2 finite and M a finitely generated Λk-module.

But this means that also

A′/((p, g1, . . . , gk−2) ·A′)
is finite, by an analogue of inequality (3.1) from the proof of Theorem 3.1(ii).
Therefore the Krull dimension of the quotient ring Λk/Ann(A′) is bounded
by

1 + (k − 2) = k − 1 = (k + 1)− 2,

i.e., A′ is pseudo-null over Λk.

The case of a general finite normal p-ramified p-extension (which has a
solvable Galois group) now follows by induction, using the fact that in each
step the finiteness of

A/((p, g1, . . . , gk−2) ·A)

directly transfers, as we have just proved, to the finiteness of

A′/((p, g1, . . . , gk−2) ·A′).
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Remarks 3.6. (1) If k = 2, then the module A = A(L) has codim(A) ≥ 3
if and only if A is finite. In particular, the statement of the previous lemma
then is a special case of Theorem 3.1(ii).

(2) If K/K denotes a Zkp-extension, k ≥ 2, then we can summarise the
main results of the current section as follows. Suppose that K ′/K is a finite
normal p-extension unramified outside p, and that each prime ofK ramifying
in K ′ is finitely decomposed in K/K. Then A(K′), K′ = K ·K ′, is pseudo-null
over Zp[[Gal(K′/K ′)]] in the following two situations (which of course are
not disjoint):

(a) A(L)/(p ·A(L)) is finite for some Z2
p-extension L ⊆ K of K such that

only finitely many primes of L ramify in K,
(b) codim(A(K)) ≥ 3.

In the situation of (a), it is in fact sufficient that the primes of K ramifying
in K ′ are finitely decomposed in the Z2

p-extension L/K (apply first Theorem
3.1 to the extension L′/L, L′ = L ·K ′, and then Corollary 2.4 to K′/L′).

4. Applications. In this section, we will discuss several applications of
the results obtained in the preceding sections.

Theorem 4.1. Let K be a number field, let K denote the composite of
all Zp-extensions of K. Let K ′ be a finite normal p-ramified p-extension
of K. Suppose that one of the conditions mentioned in Remark 3.6(2) holds
for K/K. Assume that for every prime p of K dividing p, the decomposition
group Dp(K/K) has Zp-rank at least two. Then (GGC) holds for K ′.

Proof. In both cases, A(K) is pseudo-null over Zp[[Gal(K/K)]], i.e.,
(GGC) holds for K (in case (a), this follows from Corollary 2.4).

We define K̃′ := K · K ′. Then Theorem 3.1 (or Remark 3.2(3)) and

Lemma 3.5 imply that A(K̃′) is pseudo-null over Zp[[Gal(K̃′/K ′)]].
Let p′ denote any prime of K ′ dividing p, and write p := p′ ∩K. Then

rankZp(Dp′(K̃′/K ′)) = rankZp(Dp(K/K)) ≥ 2

by assumption. This shows that we may apply Lemma 2.2 to (a chain of
multiple Zp-extensions spanning) the extension K′/K̃′, proving that A(K′) is
pseudo-null over Zp[[Gal(K′/K ′)]].

Remarks 4.2. (1) The decomposition constraint in Theorem 4.1 holds
for K/K if K contains a primitive p-th root of unity, or if K contains a
normal extension k of Q which is imaginary (i.e., r2(k) 6= 0), and it is con-
jectured to hold for every imaginary number field K (cf. [LN00, Théorème
3.2 and Remarque 3.3]). Moreover, the constraint holds if K contains exactly
one prime above p. This will be the case in most of our examples.



384 S. Kleine

(2) The above condition is needed in order to ensure that Lemma 2.2
can be applied to the extension K′/(K ·K ′). If the primes of K ·K ′ dividing
some p′ of K ′ are unramified in K′, i.e., if the Zp-ranks of the inertia groups
Ip′((K ·K ′)/K ′) and Ip′(K′/K ′) are equal, then the conclusion of Theorem
4.1 remains true also if the Zp-rank of Dp(K/K), p = p′∩K, is equal to one
(p′ does not affect the applicability of Lemma 2.2).

The following observation significantly enlarges the set of shifts K ′/K to
which we can apply Theorem 4.1; namely, instead of considering shifts of K
itself, we look at suitable extensions of intermediate number fields in K/K.
Since usually the ideal class groups of these fields grow when the degree
over K increases, there do even exist many unramified shifts arising this way.

Corollary 4.3. Let K be a number field. Suppose that there exists a
Z2
p-extension L of K such that

• A(L)/(p ·A(L)) is finite, and
• only finitely many primes of L divide p.

Then (GGC) holds for every number field K ′ arising as a finite normal
p-ramified p-extension of any finite intermediate field of the extension L/K.

Proof. For every finite extension K̃ of K contained in L, L/K̃ is a Z2
p-

extension, and case (a) of Remark 3.6(2) is valid for K̃. Moreover, we may
apply Theorem 4.1 to any finite p-ramified p-extension K ′ of K̃, since all
the primes of K̃ dividing p are finitely decomposed in L/K̃.

We will now mention an important special case; in what follows, an
admissible shift K ′ of a number field K is any finite normal p-ramified p-
extension of any finite extension K̃ of K contained in the composite K of
all Zp-extensions of K.

Corollary 4.4. Let K be an imaginary quadratic field. Assume that
A(K)/(p ·A(K)) is finite. Then (GGC) is valid for every admissible shift K ′

of K.

Proof. Since K/Q is imaginary quadratic, K/K is a Z2
p-extension. More-

over, it is well-known that K contains only finitely many primes dividing p
(cf. [Mi86, Lemma 3.1]). The statement thus follows from the previous corol-
lary.

Another class of examples arises from the number fields K containing
exactly one prime dividing p. If the class number of such a field K is not di-
visible by p, then it is well-known that A(K) = {0}. In particular, conditions
(a) and (b) of Remark 3.6(2) are fulfilled, so that we immediately obtain
the following result.
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Corollary 4.5. Let K be a number field containing exactly one prime
above p. Suppose that the class number of K is coprime to p. Let K ′ denote
an admissible shift of K. Then (GGC) holds for K ′.

We will now describe a more general situation, proving results analogous
to Corollary 4.5.

Theorem 4.6. Let K be a number field containing exactly one prime p
above p. If this prime generates the group A(K), then (GGC) holds for K,
and also for every admissible shift K ′ of K.

Actually we will prove that

|A(K′)| ≤ |A(K̃)| <∞,
where K̃ = K∩K ′ is the intermediate field corresponding to K ′ (i.e., K ′/K̃
is a normal p-ramified p-extension).

To prove Theorem 4.6 we make use of the following two results.

Theorem 4.7 (Chevalley’s Theorem). Let L/K be a cyclic extension of
number fields, let G := Gal(L/K). Then

|(A(L))G| = |A(K)| · e(L/K)

[L : K] · [O∗K : (N(L∗) ∩ O∗K)]
.

Here e(L/K) denotes the product of the ramification indices of all the primes
ramifying in L/K, N : L∗ → K∗ is the norm map, and O∗K denotes the group
of units of K.

Proof. See [La90, §13.4].

Lemma 4.8. Let L/K be an abelian unramified extension of number
fields of degree pr, and suppose that A(K) is cyclic (this implies that L/K
has to be cyclic). Then:

(a) |A(L)| = |A(K)|/pr, and A(L) is again cyclic.
(b) A(L) = i(A(K)), where i denotes the map induced by the lifting of

ideals of K to ideals of L.

Proof. L is one of the intermediate fields of the extension H(K)/K.
Since A(K) is cyclic, these intermediate fields are uniquely determined by
their degrees over K:

K =: K0 ⊆ K1 ⊆ · · · ⊆ Ks := H(K),

where each extension Ki+1/Ki is cyclic and unramified of degree p. In par-
ticular, this means that |A(Ki)| ≤ p · |A(Ki+1)| for every i.

Moreover, A(H(K)) = {0}, since A(K) is cyclic (cf. [Be12, Proposition
2.5.1]). Therefore the above chain of field extensions implies that in fact
|A(Ki)| = |A(K)|/pi for every i ∈ {0, . . . , s} (in other words, H(Ki) = H(K)
for every i). This proves (i).
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For (ii), we note that Chevalley’s Theorem 4.7 implies the equality
|(A(L))G| = |A(K)|/pr, where G := Gal(L/K). Therefore (A(L))G = A(L),
by (i). But L/K is unramified and cyclic, and so (A(L))G = i(A(K)).

Proof of Theorem 4.6. Recall that A(K) is cyclic generated by the prime

ideal p dividing p. Let K̃ := K ∩K ′. Then A(K̃) is again cyclic, generated
by the unique prime of K̃ dividing p.

Indeed, if K̃/K is unramified, then this follows from Lemma 4.8. We
may therefore assume that K̃/K is totally ramified at p. For any number
field F containing K, we define the quotient (A′)(F ) := A(F )/B(F ), where
B(F ) denotes the subgroup generated by the primes of F dividing p. Then
(A′)(K) = {0}, by construction.

Moreover, one can show that

(A′)(K̃)/((T1, . . . , Tr) · (A′)(K̃)) ∼= (A′)(K) = {0},
whereT1 = γ1−1, . . . , Tr = γr−1 for fixed generators γ1, . . . , γr of Gal(K̃/K).

Therefore (A′)(K̃) = {0} by Nakayama’s Lemma.
Now we let M := H(K̃), M ′ := M · K ′. We may assume that K ′/K̃

and M ′/M are cyclic extensions of degree p (the theorem then follows by
induction, since each finite p-group is solvable).

K

M p M ′

K̃ p K ′

K

Since A(K̃) is cyclic, A(M) = {0}. Moreover, M contains exactly one prime
P dividing p. Since M ′/M is unramified outside this unique prime P, we
see that P is actually (totally) ramified in M ′/M .

Therefore

A(M ′)/(S ·A(M ′)) ∼= A(M) = {0},
where now S = σ−1 for some generator σ of Gal(M ′/M). This implies that
A(M ′) = {0}.

Since M ′ contains exactly one prime above p, it follows that A(M′) = {0},
where M′ denotes the composite of all Zp-extensions of M ′.

Theorem 3.1(i) implies that A(K′) is pseudo-null, i.e., (GGC) holds forK ′.
Looking at the proof of Theorem 3.1(i), we can actually say more:

Gal(H(K′)/(M ′ ·K′ ∩H(K′)) = {0},
i.e., M ′ ·K′ ⊇ H(K′) and thus

|A(K′)| ≤ |Gal(M ′/K ′)| ≤ |A(K̃)|.
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Example 4.9. We will finally mention some non-trivial examples. Sup-
pose that p = 3. LetK be a cubic number field such that r1(K) = r2(K) = 1,
where r1(K) and r2(K) denote the numbers of real embeddings and pairs
of complex embeddings of K into a fixed algebraic closure. In particular,
K is not normal over Q. There exist r2(K) + 1 = 2 independent Zp-
extensions of K (since r1(K) + r2(K) − 1 = 1, the group of units of K
is an infinite Z-module of rank 1, and therefore Leopoldt’s Conjecture holds
for K).

Suppose that p = 3 ramifies in K/Q, (3) · OK = p3, and that the
prime p of K dividing 3 generates the (p-primary part of the) ideal class
group of K. Then (GGC) holds for K, and in fact |A(K)| ≤ 3 by Theorem
4.6. It is easy to find examples of cubic fields satisfying the above condi-
tions. For example, consider the fields generated by some root of one of the
polynomials

f1(x) := x3 − 9x2 + 90x+ 141,

f2(x) := x3 − 9x2 + 9x+ 141,

f3(x) := x3 + 18x+ 18.

One might wonder whether the Greenberg modules in the above ex-
amples are non-trivial. In fact, it is easy to see that A(K) will be non-trivial
(and therefore cyclic of order 3) if and only if the maximal unramified
p-abelian extension H(K) of K is not contained in K (use the fact that
|A(H(K))| = 1, and that both K and H(K) contain exactly one prime divid-
ing p = 3).

Therefore the number field K defined by the polynomial f3 has trivial
A(K), since one can check that the first step of the cyclotomic Z3-extension
of K is unramified. It is more difficult to show that the fields defined by the
first two polynomials actually satisfy H(K)∩K = K. One way is to use the
following approach suggested to us by C. Greither.

Class field theory yields an exact sequence

0→ O∗p/O∗K → Jp
cont−−→ Cl(K)→ 0,

where O∗K denotes the group of units of K, which can be embedded into
the group O∗p of units of the local field Kp completed at p. We write O∗K
for the corresponding closure, and Jp := (

∏′
v-3K

∗
v/O∗v ×K∗p )/K∗ (here K∗

is embedded diagonally, and
∏′ denotes the restricted product, i.e., we con-

sider only the elements in
∏
v-3K

∗
v/O∗v which have finitely many non-trivial

components).
The above sequence induces an exact sequence

(?) 0→ (O∗p/O∗K)(3)→ Jp(3)
cont−−→ A(K) → 0

of the corresponding (pro-)3-parts.
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Claim 1. If the sequence (?) splits, then H(K) ∩K = K.

Proof. IfM(K) denotes the maximal pro-3-abelian extension ofK which
is unramified outside p, then

Jp(3) ∼= Gal(M(K)/K)

by class field theory. If (?) splits, then this group contains Gal(H(K)/K) as
a direct summand. Therefore K∩H(K) = K, because H(K) cannot be con-
tained in some Z3-extension L of K. Indeed, if H(K) ⊆ L, then the subgroup
Fix(L) of Gal(M(K)/K) fixing L would be a non-trivial subgroup of

(O∗p/O∗K)(3)× {0} ↪→ Gal(M(K)/K).

But then Gal(L/K) ∼= Gal(M(K)/K)/Fix(L) could not be pro-cyclic.

Now we choose a generator θ of K, i.e., K = Q(θ), f(θ) = 0 for the cor-
responding polynomial f . One can check that in the above examples (i.e.,
f ∈ {f1, f2}), OK = Z[θ], and p = (3, θ). In other words, θ is a uniformiser
of the maximal ideal of the local field Kp.

Moreover, using the equations fi(θ) = 0, i = 1, 2, one sees that in
both cases u := θ3/3 is a 1-unit, in fact u ≡ 1 mod 3, and therefore
u ∈ O∗p(3).

Claim 2. If A(K) ∼= Z/3Z is generated by the prime p of K dividing 3,
then the sequence (?) splits if and only if the class [u] ∈

(
O∗p/O∗K

)
(3) is a

cube.

Proof. Since A(K) ∼= Z/3Z, the sequence (?) splits if and only if there
exists an element m ∈ Jp(3) such that cont(m) = [p] generates A(K) and
m3 = 1 in Jp(3).

Indeed, if such an element m exists, then we can define a split

s : A(K) → Jp(3)

via s([p]) := m. On the other hand, if a split s exists, then m := s([p]) has
the desired properties.

Now suppose that [u] is a cube in (O∗p/O∗K)(3). Writing [u] = [α]3, we
may conclude that the class

[(. . . , 1, (θ/α)3, 1, . . .)] = [(. . . , 1/3, (θ/α)31/3, 1/3, . . .)]

of (θ/α)3 in Jp(3) equals [1], and

cont([(. . . , 1, θ/α, 1, . . .)]) = cont([(. . . , 1, θ, 1, . . .)]) = [p].

This means that m := [(. . . , 1, θ/α, 1, . . .)] ∈ Jp(3) does the job.

If, on the other hand,

cont(m) = [p] = cont([(. . . , 1, θ, 1, . . .)])
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for some m ∈ Jp(3) satisfying m3 = 1, then [(. . . , 1, θ, 1, . . .)]/m lies in the
kernel of cont and so may be identified with some [α] ∈ (O∗p/O∗K)(3).

Moreover,

[(. . . , 1, θ, 1, . . .)3/m3] = [(. . . , 1, θ, 1, . . .)3] = [(. . . , 1, θ, 1, . . .)3/3]

= [(. . . , 1/3, θ3/3, 1/3, . . .)] = [(. . . , 1/3, u, 1/3, . . .)]

equals the image of [u] in Jp(3), and therefore [u] = [α]3 is a cube in
(O∗p/O∗K)(3).

Claim 3. If f(x) = x3 + 3ix2 + 3jx+ 3k for integers

i ≡ 6 mod 9, j ≡ 3 mod 9, k ≡ 20 mod 27,

then the sequence (?) splits for the field K defined by f . Since f1(x) and
f2(x) are of the shape described in Claim 3, this shows that the correspond-
ing Greenberg modules A(K) are isomorphic to Z/3Z.

Proof. We will build on Claim 2. It is sufficient to prove that u is a cube
modulo 9θ. Indeed, in this case we can apply Hensel’s Lemma (cf. [Ei95,
Theorem 7.3]) to the polynomial g(x) := x3 − u ∈ (Z3[θ])[x]; the approxi-
mate root a of g to be found below will satisfy g′(a) ∼ 3, so that we need
to show that

g(a) ≡ 0 mod (32 · (θ)).
Now the conditions on i, j and k imply that

u = θ3/3 = −iθ2 − jθ − k ≡ 3θ2 + 6θ + 7 mod (9θ).

On the other hand, we compute the third power of the element a := 1 + 2θ
in O∗p :

(1 + 2θ)3 ≡ 1 + 6θ + 3θ2 − θ3 = 1 + 6θ + 3θ2 + 3iθ2 + 3jθ + 3k

= 1 + 3k + (6 + 3j)θ + (3 + 3i)θ2 ≡ 7 + 6θ + 3θ2 mod (9θ).

In the previous examples, the Greenberg modules A(K) have in fact been
finite. We will conclude our exposition with an example in which (GGC)
holds, but A(K) is not finite.

Example 4.10. We will again consider p = 3. Let K be the cubic field
defined by the polynomial

f(x) = x3 − 6x2 + 18x+ 30.

Then |A(K)| = 3, r1(K) = r2(K) = 1, and 3 is ramified in K, and K contains
exactly one prime p dividing 3.

We will first prove that (GGC) holds for K, using our Corollary 2.5. If
L denotes the cyclotomic Z3-extension of K, generated by 3-power roots of
unity, then one can see (e.g., using PARI) that L/K is totally ramified at p,
and that the ideal class groups of the first two layers L1 and L2 of L (cyclic
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of degrees 3 and 9 over K) both are isomorphic to Z/3Z × Z/3Z × Z/3Z.
We will now use the following result due to T. Fukuda.

Theorem 4.11 (Fukuda, [Fu94, Theorem 1]). LetL/K be a Zp-extension
with intermediate fields Ln, n ∈ N, L0 := K. Let e ≥ 0 be the smallest
integer such that every prime of K which ramifies in L/K is totally ramified
in L/Le. Then:

(i) If there exists some n ≥ e such that

|A(Ln+1)| = |A(Ln)|,
then |A(Lm)| = |A(Ln)| for all m ≥ n (in particular, we then have
|A(L)| = |A(Ln)| <∞).

(ii) If there exists an integer n ≥ e such that

rankp(A
(Ln)) = rankp(A

(Ln+1)),

then rankp(A
(Lm)) = rankp(A

(Ln)) for all m ≥ n.

This theorem implies that |A(L)| = 27 is finite. Since the prime p of K
dividing 3 is totally ramified in L, Corollary 2.5 implies that (GGC) holds
for K.

On the other hand, we will now prove that A(K) is infinite. We will make
use of the following fact.

Lemma 4.12. Let p be any prime. Let K be a cubic number field such
that r1(K) = r2(K) = 1. Suppose that H(K) is contained in K, and that
A(K) is not generated by primes dividing p. Then A(K) is infinite.

Proof. J. Minardi has proved a stronger version of this lemma for imag-
inary quadratic ground fields K (see [Mi86, Proposition 3.C]).

Let M ⊆ H(K) denote the maximal subextension in which all the primes
of K dividing p are totally decomposed. Our assumption concerning A(K)

implies that M 6= K. If M denotes the composite of all Zp-extensions of M ,
then M/K will be unramified, since for every prime pi of K dividing p,
and any prime Pi of M dividing pi, the Zp-rank of the inertia subgroup
IPi(M/M) ⊆ Gal(M/M) of Pi is equal to rankZp(Ipi(K/K)).

Since M ⊆ H(K) ⊆ K by assumption, we may conclude that M ⊆ H(K).
Moreover, d(K) = r2(K) + 1 = 1 + 1 = 2, whereas

d(M) ≥ r2(M) + 1 ≥ p · r2(K) + 1 = p+ 1,

and therefore the extension M/K and the group A(K) are infinite.

Returning to our example, one can easily (e.g., with PARI) check that
the prime p of K dividing 3 is principal. It therefore remains to show that
H(K) ⊆ K. This can be done by using the approach from the previous
Example 4.9: write K = Q(θ). Using the notation from that example, we
have to show that there does not exist an element m ∈ Jp(3) such that
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cont(m) generates A(K) and m3 = 1. It turns out that the prime 2 also
ramifies in K, and (2) · OK = q3 for a generator q of A(K). Moreover, θ is a
uniformiser of the maximal ideal of Oq.

If there exists an element m ∈ Jp(3) with the above properties, then m
has, modulo some element α ∈ ker(cont) = (O∗p/O∗K)(3), a representative of
the form

t = (. . . , 1, 1, θ, 1, . . .),

where we write θ for the uniformiser θ in the q-component and 1 for the
element 1 in the p-component.

We consider the unit u := 1/2 ∈ O∗p(3). Note that

θ3 = 6 · (θ2 − 3θ − 5) = 2 · w
for some unit w ∈ O∗q , and therefore

[t3] = [(. . . , 1, 1, 2w, 1, . . .)] = [(. . . , 1, 1, 2, 1, . . .)] = [(. . . , 1/2, u, 1, 1/2, . . .)].

This last element equals the image of u in Jp(3), since

[(. . . , 1/2, 1, 1, 1/2, . . .)] = [1]

in Jp(3), because 1/2 is a v-adic unit for every v 6∈ {p, q}.
Since m3 = 1, we may conclude that

[(. . . , 1, u, 1, . . .)] = [t3] = [(t/m)3] = [(. . . , 1, α3, 1, . . .)]

in Jp(3), and therefore u = α3 is a cube in (O∗p/O∗K)(3). However, computing

modulo 9, it is easy to see that neither ±u nor ±uη nor ±uη2, where η
denotes the fundamental unit of K, is congruent to one of the finitely many
representatives of the cubes of

(
O∗p/O∗K

)
(3) modulo 9.

Now Claim 2 of Example 4.9 implies that the exact sequence (?) does
not split for K. Since A(K) ∼= Z/3Z, one can show that this means that
Jp(3) has no finite 3-torsion, i.e., H(K) has to be contained in K.

Remark 4.13. It remains an interesting open question whether our
‘shifting’ procedure, i.e., Theorem 4.1, can be applied to the field K from
Example 4.10. This amounts to showing that rankp(A

(K)) is finite.
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