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Summary. We study powers of ergodic functions on compact subsets of the p-adic field.
The same question is considered for products of compact subsets of the p-adic field.

1. Introduction. H. Diao and C. E. Silva [0] studied rational functions
on the p-adic field. They proved necessary conditions for rational functions
to be locally isometric or measure preserving. They provided digraph repre-
sentations for locally isometric invertible functions on compact subsets of the
p-adic field. Anashin [I] gave a characterization of measure-preserving and
ergodic 1-Lipschitz maps on the set Z, of p-adic integers, which generalizes
some of the results in [4], [5], [7].

In this work we analyse powers and products of ergodic functions on
compact subsets of the p-adic field.

We begin with some basic definitions which can also be found in [6]
and [8].

Let X be a compact subset of the p-adic field Q, and f : X — X an
invertible function. The function f is said to be locally isometric if there
exists an integer [ such that

(%) [f(x) = f(y)| = |z —y| whenever |z —y| <p

It was proved in [6l Theorem 3.1| that any rational function f satisfying
these conditions is measure preserving and that X consists of a union of
p_lZp—cosets which form cycles or orbits of f. Following the same steps as
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in the proof of [6, Theorem 3.1] it can be easily seen that this result can be
extended to any invertible locally isometric function.
If the set X can be written as ;= B,i(y:), where [ is as in (x) and

Bp(2) ={z € Qp:|r—2[ < p*}, then for all m <, X can also be put in

the form X = &J?ﬁ;ﬁm Bym (z;).

f is said to be transitive modulo p~™ if by permuting indices we can get
f(Bym(27)) = Bpm(z441) for i € {1,...,p"™n — 1} and f(Bym (Tpi-mp)) =
Bpm(x1). In other words the f-orbit of Bym(x1) is the whole X.

It was proved in [2, Theorem 4.23] and [2, Proposition 4.35] that an
invertible 1-Lipschitz function f is ergodic on Z, if it is transitive modulo
p~™ for all m < [. Following the steps in the proof of [6], Theorem 3.2] which
was formulated for rational functions, we can see that [2, Theorem 4.23| and
[2, Proposition 4.35] are also valid on any compact subset of Q,,.

2. Main results

LEMMA 2.1. Let X = ;" Byi(w;) be a compact subset of Qp,, where |
1s an arbitrary integer. Let f : X — X be invertible and locally isometric
such that | f(z) — f(y)| = |z —y| whenever |z —y| < p!. Let k be any positive
integer.

(i) If k and n are not relatively prime, then f* is not transitive mod-
ulo pt.
(ii) If k and n are relatively prime, then f* is transitive modulo p~" if

and only if f is transitive modulo p~*.

Proof. Tt is clear that if f is not transitive modulo p~* then no power
of f can be transitive. Therefore, it suffices to prove this result with the
assumption that f is transitive modulo p~!. Without loss of generality we
may assume that

f(Bpi(zi)) = Bpi(zit1) fori € {1,...,n — 1} and f(B(zn)) = By(71),

so that
(21) fs_l(Bpl(xl)) = Bpl<ms(modn))a Vs > 2.

(i) Let k = sd and n = td, where s and t are relatively prime and d > 1.
Then

(f) By (21)) = (f*)*(Bpi(21)) = Bpi(a1).

The result follows since ¢ < n.

(ii) Suppose that k and n are relatively prime. If f¥ is not transitive then
there exists i € {2,...,n} such that f**(B,(21)) # By (%;(modn)) for every
positive integer s. From (2.1)) we see that i — 1 # ks (mod n) or equivalently

i — 1 # ks — rn for all nonnegative integers r, s, which obviously contradicts
the Euclidean algorithm. =
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THEOREM 2.2. Let X = Wi Byi(z;) be a compact subset of Qp, where
l is an arbitrary integer, and let k be any positive integer. Let f : X — X
be invertible and locally isometric such that |f(x) — f(y)| = |z — y| whenever
|z —y| < p'. Then f* is ergodic if and only if:

(1) f is ergodic,
(2) p-n and k are relatively prime.

Proof. Suppose that (1) and (2) are true. By Lemma we infer that
f* is transitive modulo p~* for every integer s < [.

On the other hand, if (1) is not valid then obviously f* is not ergodic.
Moreover, if f is ergodic and (2) is not valid, Lemma implies that f* is
not transitive modulo p!~', so f* is not ergodic. =

PROPOSITION 2.3. Let X = ;. Byi(xi) be a compact subset of Qp,
where | is an arbitrary integer, and let k be any positive integer. Let f :
X — X be invertible and locally isometric such that |f(x) — f(y)| = |x — y|
whenever |z —y| < pl. Assume in addition that f is transitive modulo p~".
Then f is ergodic if and only if for every subset Y = -, Bpi(wi,) of X,
the function g : Y — Y defined by

[ fisrTi(z), @€ By(w,), s€{L,...,m— 1},
g(x) - {filim+n(x), T € Bpl (_rim)’

is ergodic.

Proof. 1t suffices to prove the claim for Y of the form Lﬂ?;ll B (z;) and
show that the choice of x,, is arbitrary and can be replaced by any other
element from {z1,...,z,—1}. Indeed, if the previous assertion is proved then
recursively we can generalise the result. In this way we would also have
proved that f is ergodic if and only if there exists one subset Y composed
of a disjoint union of p~‘Zy-cosets on which g is ergodic.

First suppose that f is ergodic. Let m < I. For every y € B (z,-1) we
have g(Bym(y)) = f?(Byn(y)) C Byi(x1). Thus the g-orbit of Bym (21) is its
f-orbit from which we have removed the set B, (). Hence this is in fact
the whole set Y where each p~""Zs-coset appears only once. By [6, Theorem
3.2] we conclude that g is ergodic.

Suppose that for some m < [, f is not transitive modulo p~™. Then the
f-orbit of Bym (y) is strictly contained in X for every y € By (7,—1). Since f
is transitive modulo p~!, the intersection of the f-orbit of Bym(y) with any
of the balls By (x;), i € {1,...,n}, is not empty and it is strictly contained
in that ball. Since g(y) = f?(y) is also in the f-orbit of 3, we conclude that
the g-orbit of Bym(y) remains strictly contained in Y, hence g cannot be
transitive modulo p~"". u
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By means of the characterization of ergodic 1-Lipschitz functions on Zy
given in [9], [3] and Proposition we suggest an ergodicity test for some
subsets of Zy, for example a union of two 4Zs-cosets as shown in the example
below.

First we recall Yurova and Anashin’s theorem on ergodicity of 1-Lipschitz
functions on Zs.

THEOREM 2.4 (Yurova and Anashin [9], [3], [1]). A 1-Lipschitz function
f is ergodic on Zso if and only if the following conditions are satisfied:

1) £(0) =1 (mod 2),

(
(2) £(0)+ f(1) = 3 (mod 4),
) LOIOLIO 10 (0
(4) [f(m) — f(m —2")| =27" for all m € {2,...,2" "1 — 1},
2n -1
(5) 27"+l Z (f(m) — f(m —2"71)) = 0 (mod 4) for all n > 3.
m=2n—1

EXAMPLE 2.5. Let g : 479 U 1 4 479 — 475 U 1 + 475 be isometric
inwvertible and transitive modulo 4. Then g is ergodic if and only if:

L a(1) —g(0) 1

5 =2 (mod 4),
o > (g(m)—g(m—4)) =2% (mod 2%),
m=4,5
. Z (g(m) — g(m —2"71)) = 0 (mod 2") for n > 4,
m=0,1 (mod 4)
where the last sum over m is taken over m € {2"~1 ... 2" —1}.
Proof. Let f : Zo — Zs be defined as follows:

9(x), x € 47,

r+ 2, x €14 47,

r—1, x €3+ 47,

glx —1), x€2+4Zs.
Notice that f and g are equal on 4Zy and ¢ = f3 on 1+ 47Z,. Then f and g
are related as in Proposition 2:3] which implies that they are either simulta-
neously ergodic or non-ergodic. Conditions (1), (2) and (4) of Theorem
are obviously satisfied for f.

Now we analyse under what conditions f satisfies condition (3) of Theo-

rem 2.4 Since
fQ) -fO)+fB3) - f1) _g(1)—g(0) -1
2 2 ’

flz) =
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f satisfies condition (3) of Theorem [2.4]if and only if

g(1) —g0) 1 _,

5 (mod 4).

Similarly,

2n—1

> (f(m) = f(m—2"""))

m=2n—1

(X s X s X Y )Um-sm-2h)

m=0(mod4) m=1(mod4) m=2(mod4) m=3(mod4)

= > (9m)—g(m—2"""))

m=0 (mod 4)
+ Y - —gm-rto)+ Y 2
m=2 (mod 4) m=1,3 (mod 4)
= > (9lm)—g(m—2""")) 42122
m=0,1 (mod 4)

Therefore, f satisfies condition (5) of Theorem if and only if

Y (g(m)—g(m—2""")) =2% (mod 2%), n=3,
m=0,1 (mod 4)

Z (g(m) — g(m — 2n71)) =0 (mod 2n+1)’ n >4,
m=0,1 (mod 4)

where the sums are taken over m € {271 ... 2" —1}. =

THEOREM 2.6. Let X7 = [/, By(x}), j € {1,...,m}, be compact sub-
sets of Qp, where | is an arbitrary integer. For every j € {1,...,m} let
fi+ X9 — XI be invertible and locally isometric such that | fj(z) — f;(y)| =
|z — y| whenever x,y € X7 with |z —y| < p'. Let ki, 7 €{1,...,m}, be any
positive integers. Then f{“ Xoooo X fRmos XT oo X X oo x XM
is ergodic if and only if

(1) fj, 3 €{1,...,m}, are ergodic,
(2) pn/ and k; are relatively prime for every j € {1,...,m},
(3) n' and n? are relatively prime for all i # j from {1,...,m}.

Proof. We first handle the special case when k; = 1 forall j € {1,...,m}.
We will prove that f; x --- x f,, is ergodic if and only if conditions (1) and
(3) are satisfied.

It is easily seen that if some f; is not ergodic then fi x --- X f,,, cannot
be ergodic. Now assume that all f; are ergodic.

Without loss of generality we may assume that n' and n? are not rela-
tively prime. Let M be the smallest common multiple of n!, ... n™.
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There exist integers s and ¢ such that M = sn! = tn?. We will show that
for each n € N,

(fi X+ X fan) " (Bya(wd) x -+ x Byal))
differs from

Bi(x1) x Bu(fi+1(22)) x By(ts) x -+~ X By(tm),

for every t; € X7, j > 3.
Indeed, suppose that for some positive integer n we have
Bpl<x%) = f{l(Bpl(x%))
and ,
" T (By(al)) = f3(By(a})).

If f1 and f, are ergodic then n must be a multiple of n! and f§"2 (sz (22))
= B,i(z7). Hence, fg_l(sz (23)) = Byi(x]) and n — 1 is a multiple of n*. It
follows that n = rn' = t/n? + 1, but this is impossible if n' and n? are not
relatively prime.

Now, suppose that (1) and (3) are satisfied. For every j € {1,...,m}, let
i; € {1,...,n?} be arbitrary. We will show that

sz(:rzll) X oo X Bpi(aih) = (fi x -+ % fm)”(sz(w%) X - X Bui(z"))
for some integer n.

Indeed, for each j € {1,...,m} there exists an integer rj such that

Mt 4ip =ran® +ig = = rpn™ + i
The result follows immediately by setting n = rin' + i;.

Now, let k;, 7 € {1,...,m}, be any positive integers and assume that
conditions (1)—(3) are satisfied. By Theorem , condition (2) implies that
each ffj, j € {1,...,m}, is ergodic. Then the first part of the proof shows
that f{“ X --- x fFm is ergodic.

Conversely, if ffl x - -+ x fFm is ergodic then by the first part of the proof

we see that condition (3) is satisfied and each ffj, j €{1,...,m}, is ergodic.
Similarly, Theorem [2.2] implies that conditions (1) and (2) are satisfied.

REMARK 2.7. In [2, Theorem 4.51] it was proved that there is no ergodic
uniformly differentiable function with integer-valued partial derivatives mod-
ulo p on Z* for m > 2. From condition (3) we can see that Theorem is
stated in a different context. Namely, the product is taken between mutually
different sets X, j € {1,...,m}. Hence, Theorem cannot be applied
on Zy".
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