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Inverses of disjointness preserving operators
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Abstract. A linear operator between (possibly vector-valued) function spaces is dis-
jointness preserving if it maps disjoint functions to disjoint functions. Here, two functions
are said to be disjoint if at each point at least one of them vanishes. In this paper, we study
linear disjointness preserving operators between various types of function spaces, includ-
ing spaces of (little) Lipschitz functions, uniformly continuous functions and differentiable
functions. It is shown that a disjointness preserving linear isomorphism whose domain is
one of these types of spaces (scalar-valued) has a disjointness preserving inverse, subject
to some topological conditions on the range space. A representation for a general linear
disjointness preserving operator on a space of vector-valued Cp functions is also given.

1. Introduction. Let X,Y be Hausdorff topological spaces and let E,F
be Banach spaces. Throughout, we consider real vector spaces, although
some of our results can readily be extended to the case of complex scalars.
Suppose that A(X,E) and A(Y, F ) are vector subspaces of the spaces of
continuous functions C(X,E) and C(Y, F ) respectively. Two functions f and
g in, say, A(X,E) are disjoint if for each x ∈ X, either f(x) = 0 or g(x) = 0.
An operator T : A(X,E) → A(Y, F ) is said to be disjointness preserving
if T maps disjoint functions to disjoint functions. In case E = F = R, we
simply write A(X,E) = A(X) and A(Y, F ) = A(Y ).

In the study of linear disjointness preserving operators, two questions
naturally arise: representation of such operators and whether the inverse of
a disjointness preserving linear isomorphism must also be disjointness pre-
serving. The two questions are related. In fact, a linear isomorphism T such
that T and T−1 are both disjointness preserving is said to be biseparating.
Biseparating operators have been well investigated; representation of bisep-
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arating operators (as weighted composition operators) and their automatic
continuity are known for many (vector-valued) function spaces (see, e.g.,
[A1, A2, DL, FH, HBN]). Thus, for a linear disjointness preserving isomor-
phism T , knowing that T−1 is also disjointness preserving leads immediately
to a concrete representation (and hence a thorough understanding) of T in
many instances.

In [J], Jarosz gave a complete analysis of linear disjointness preserving
operators T : C(X)→ C(Y ), where X and Y are compact Hausdorff spaces.
In particular, he proved that a disjointness preserving linear isomorphsim
T : C(X)→ C(Y ) must have a disjointness preserving inverse.

In the general context of vector lattices E and F , Abramovich asked
whether for every disjointness linear bijection T : E → F , T−1 must pre-
serve disjointness as well (see [HL]). Huijsmans and de Pagter [HD2] and
Koldunov [K] independently answered the question in the affirmative when
E is a uniformly complete vector lattice and F is a normed vector lattice. The
latter also gave examples to show that the result fails if E is not uniformly
complete or F is not a normed lattice. For a thorough treatment of disjoint-
ness preserving operators in the vector lattice setting, refer to [AK1, AK2].

In [JV], Jiménez-Vargas studied linear disjointness preserving opera-
tors T : lipα(X) → lipα(Y ), where X,Y are compact metric spaces and
α ∈ (0, 1). His methods and results were analogous to Jarosz’s. Similar re-
sults for linear disjointness preserving operators between regular Banach
function algebras which satisfy Ditkin’s condition and BSE Ditkin algebras
respectively were obtained by Font [F1, F2].

When both X and Y are completely regular Hausdorff spaces, Araujo,
Beckenstein and Narici [ABN] showed that a disjointness preserving linear
isomorphism T : C(X)→ C(Y ) is biseparating if Y is connected. As far as
we know, this is the only instance where the connectedness of the under-
lying space Y has been brought into play in connection with disjointness
preserving linear isomorphisms.

Our results are in a similar spirit in this respect. Specifically, some of
our main results show that if T : A(X)→ A(Y ) is a disjointness preserving
linear isomorphism, where A(X) may be certain spaces of (little) Lipschitz
functions or differentiable functions, then T−1 is disjointness preserving pro-
vided that Y has few connected components (see Theorems 4.7 and 6.6). In
the course of the investigation, we also obtain representations of linear dis-
jointness preserving operators defined on certain spaces of vector-valued Cp

functions (see Theorems 5.6 and 6.3). In §3, we give a slight generalization
of the result of Jarosz mentioned above to noncompact spaces X and Y .
Our results can be compared with those of [ABN, FH, J, JV].

We now set some notation and terminology. In particular, we recall the
notion and the construction of the support map of a linear disjointness
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preserving operator. Let X be a Hausdorff topological space and let A(X)
be a vector subspace of C(X) that separates points from closed sets. Denote

by R∞ the 1-point compactification of R. The map i : X → RA(X)
∞ defined by

i(x) = (f(x))f∈A(X) is a homeomorphic embedding. We denote the closure of

i(X) in RA(X)
∞ by AX. Identify X with its homeomorphic copy i(X). Then

AX is a compact Hausdorff space that contains X as a dense subspace.
Furthermore, every f ∈ A(X) has a unique continuous extension f̂ onto

AX given by f̂(x) = xf for every x = (xf )f∈A(X) ∈ AX.

We say that A(X) is closed under C∞∗ operations if for any n ∈ N,
any C∞ function ϕ : Rn → R such that supt∈Rn |∂ξϕ(t)| < ∞ for any
multiindex ξ, and any set of functions f1, . . . , fn ∈ A(X), the function

x 7→ ϕ(f1(x), . . . , fn(x)) belongs to A(X).

Note that if A(X) is closed under C∞∗ operations, then it contains all real-
valued constant functions on X. The usefulness of being closed under C∞∗
operations lies in the following results.

Proposition 1.1 ([LW, Proposition 3]). Let X be a Hausdorff topolog-
ical space and let A(X) be a subspace of C(X) that separates points from
closed sets and is closed under C∞∗ operations. If P and Q are subsets of X

such that P
AX ∩QAX = ∅, then there exists f ∈ A(X) with f(P ) ⊆ {0} and

f(Q) ⊆ {1}.

Here ·AX denotes the closure operation in AX. Assume that Y is a
Hausdorff topological space and let A(Y ) be a vector subspace of C(Y ).
Suppose that T : A(X)→ A(Y ) is a linear disjointness preserving mapping.

For f ∈ A(X), let C(f) = {x ∈ X : f(x) 6= 0} and C(f) = C(f)
AX

.

Proposition 1.2 ([LW, Proposition 4]). Let X and Y be Hausdorff
topological spaces and let A(X) and A(Y ) be vector subspaces of C(X) and
C(Y ) respectively. Assume that A(X) separates points from closed sets of
X and is closed under C∞∗ operations. Define

Ys = {y ∈ Y : there exists f ∈ A(X) such that Tf(y) 6= 0}.

Then there is a continuous function β : Ys → AX such that if f ∈ A(X)
and β(y) /∈ C(f), then Tf(y) = 0.

The map β is usually referred to as the “support map” of the disjointness
preserving operator T (see, e.g., [BNT]). It is of fundamental importance to
our subsequent considerations.

2. A sufficient condition for T−1 to be disjointness preserving.
From here on, assume that A(X) and A(Y ) are as in Proposition 1.2 unless
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otherwise stated. Also assume that A(Y ) contains all real-valued constant
functions on Y .

Proposition 2.1. Let T : A(X) → A(Y ) be a linear disjointness pre-
serving operator. If T is onto, then Ys = Y . If T is one-to-one, then β(Ys)
is dense in AX.

Proof. If T is onto, there is a function f ∈ A(X) such that Tf is the
constant function 1 on Y . Clearly, it follows that Ys = Y .

Suppose that β(Ys) is not dense in AX. There exists a nonempty open
set U in AX such that β(Ys) ∩ U = ∅. Choose a nonempty open set V in

AX such that V
AX ⊆ U . Since X is dense in AX, there exists x0 ∈ V ∩X.

Set P = X \ V AX and Q = {x0}. Then P
AX ⊆ AX \ V and Q

AX
= {x0}.

Hence P
AX ∩ QAX = ∅. By Proposition 1.1, there exists f ∈ A(X) such

that f(P ) ⊆ {0} and f(x0) = 1. Observe that AX \ V AX is an open set in

AX and hence P = X ∩ (AX \ V AX) is dense in AX \ V AX . By continuity,

f̂(AX \ V AX) ⊆ {0}.
Consider any y ∈ Y . If y /∈ Ys, then Tf(y) = 0. On the other hand,

if y ∈ Ys, then β(y) /∈ U and so β(y) ∈ AX \ V AX . Thus the latter set

in an open neighborhood of β(y) in AX on which f̂ vanishes. Therefore,
β(y) /∈ C(f). By Proposition 1.2, Tf(y) = 0. This shows that Tf is the
constant function 0. However, f 6= 0. Hence T is not one-to-one.

The difficulty in working with the support map is that it is neighborhood
determined: in order to conclude that Tf(y) = 0, one needs to know that f̂
vanishes on a neighborhood of β(y) inAX. The set of points where T is point
determined exhibits much simpler behavior. Let T : A(X) → A(Y ) be a
linear disjointness preserving operator with support map β : Ys → Y . Define
Yp to be the set of all points y ∈ Ys such that f̂(β(y)) = 0⇒ Tf(y) = 0 for
any f ∈ A(X).

Lemma 2.2. Suppose that y ∈ Yp. Then there exists h(y) ∈ R such that

Tf(y) = h(y)f̂(β(y)) for any f ∈ A(X) such that f̂(β(y)) ∈ R.

Proof. Define h(y) = T1(y) for all y ∈ Yp. Let f ∈ A(X) be such that

f̂(β(y)) ∈ R. Set g = f − f̂(β(y))1 ∈ A(X). Since ĝ(β(y)) = 0 and y ∈ Yp,
Tg(y) = 0. Thus Tf(y) = h(y)f̂(β(y)).

Proposition 2.3. Let T : A(X) → A(Y ) be a disjointness preserving
linear isomorphism. Suppose that β(Yp) is dense in AX. Let h : Yp → R
be the function given by Lemma 2.2. Then for any nonempty open set V
in AX, there exists y ∈ Yp such that β(y) ∈ V and h(y) 6= 0.

Proof. Otherwise, there exists a nonempty open set V in AX such
that h(y) = 0 for all y ∈ Yp with β(y) ∈ V . Let f ∈ A(X) be such
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that Tf = 1. Suppose that y ∈ Yp with β(y) ∈ V . If f̂(β(y)) ∈ R,

then Tf(y) = h(y)f̂(β(y)) = 0, which is absurd. Thus f̂(x) = ∞ for all

x ∈ β(Yp)∩ V . Since β(Yp)∩ V is dense in V , by continuity of f̂ , f̂(x) =∞
for all x ∈ V . But this is impossible since V ∩X 6= ∅.

The next result gives a sufficient condition for T−1 to be disjointness
preserving.

Proposition 2.4. Let T : A(X) → A(Y ) be a linear disjointness pre-
serving bijection. If β(Yp) is dense in AX, then T−1 is disjointness preserv-
ing.

Proof. Let f, g ∈ A(X) be such that Tf · Tg = 0. Assume, if possible,
that there exists x0 ∈ X with f(x0)g(x0) 6= 0. Set

V = {x ∈ AX : |f̂(x)− f(x0)| < |f(x0)|, |ĝ(x)− g(x0)| < |g(x0)|}.
Then V is an open neighborhood of x0 in AX. Let h : Yp → R be the
function given by Lemma 2.2. By Proposition 2.3, there exists y ∈ Yp such

that β(y) ∈ V and h(y) 6= 0. Since f̂(β(y)), ĝ(β(y)) ∈ R,

0 = Tf(y) · Tg(y) = h(y)2f̂(β(y))ĝ(β(y)).

Thus f̂(β(y)) · ĝ(β(y)) = 0. But this is impossible since β(y) ∈ V implies

that neither f̂(β(y)) nor ĝ(β(y)) is 0.

3. Uniformly closed subspaces of C(X). In this and the subsequent
sections, we apply Proposition 2.4 to prove that a linear disjointness preserv-
ing isomorphism has a disjointness preserving inverse in various situations.
A vector subspace A(X) of C(X) is said to be uniformly closed if for any
sequence (fn) in A(X) that converges uniformly on X to a function f , that
is, limn→∞ supx∈X |fn(x) − f(x)| = 0, we have f ∈ A(X). For a topologi-
cal space Y , denote by Cb(Y ) the space of bounded real-valued continuous
functions.

The next theorem is a generalization in one respect of a result of Jarosz [J].
The proof uses essentially the same ideas.

Theorem 3.1. Let X be a Hausdorff topological space and let A(X) be
a uniformly closed subspace of C(X) that separates points from closed sets
and is closed under C∞∗ operations. Assume that A(Y ) is a vector subspace
of Cb(Y ) that contains constants, where Y is a Hausdorff topological space.
Suppose that T : A(X)→ A(Y ) is a linear disjointness preserving bijection.
Then T−1 is disjointness preserving.

Proof. By Proposition 2.4, it suffices to show that β(Yp) is dense in AX.
By Proposition 2.1, Y = Ys. First we show that if y0 ∈ Y = Ys and x0 =
β(y0) is an isolated point in AX, then y0 ∈ Yp. Indeed, in this case, since X
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is dense in AX, x0 must be a point in X. Suppose that f ∈ A(X) and that
f(x0) = 0. Then f = 0 on the open neighborhood {x0} of β(y0) in AX. By
definition of β, Tf(y0) = 0. This proves that y0 ∈ Yp.

Next, we claim that β(Y ) \β(Yp) is a finite set. Suppose on the contrary
that there is an infinite sequence (xn) of distinct points in β(Y ) \β(Yp). Let
xn = β(yn) for some yn ∈ Y \ Yp. For each n, there exists fn ∈ A(X) such

that f̂n(xn) = 0 and Tfn(yn) > n. By using a subsequence if necessary, we
may assume that there are open sets Un and Vn in AX such that

xn ∈ Vn ⊆ Vn
AX ⊆ Un, Un

AX ∩ Um
AX

= ∅ if n 6= m

and that |f̂n| ≤ 1/n on Un. Let Pn = X \ Un
AX

and Qn = Vn ∩ X. Then

Pn
AX ∩ Qn

AX
= ∅. By Proposition 1.1, there exists ϕn ∈ A(X) such that

ϕn = 0 on Pn and ϕn = 1 on Qn. If necessary, replace ϕn by the composition
Φ ◦ ϕn for a suitable C∞ function Φ with bounded derivatives to guarantee
additionally that ‖ϕn‖∞ ≤ 1. Let Ψ : R2 → R be a C∞ function with
bounded derivatives such that

Ψ(s, t) = st if |s|, |t| ≤ 1 and Ψ(0, t) = 0 for all t ∈ R.

Set gn(x) = Ψ(ϕn(x), fn(x)) for all x ∈ X. Then gn ∈ A(X). If x ∈ Un ∩X,
then |ϕn(x)| ≤ 1 and |fn(x)| ≤ 1/n. Hence |gn(x)| = |ϕn(x)fn(x)| ≤ 1/n.

By continuity, |ĝn| ≤ 1/n on Un
AX

. On the other hand, if x ∈ X \ Un
AX

,

then ϕn(x) = 0 and hence gn(x) = 0. By continuity, ĝn = 0 on AX \Un
AX

.
Thus ‖gn‖∞ ≤ 1/n and (gn) is a pairwise disjoint sequence. Since A(X) is
a uniformly closed subspace of C(X), the sum g =

∑
gn belongs to A(X).

If x ∈ Vn ∩ X, then ϕn(x) = 1 and |fn(x)| ≤ 1. Hence g(x) = gn(x) =

ϕn(x)fn(x) = fn(x). By continuity, ĝ − fn = 0 on Vn. By definition of β,
T (g − fn)(yn) = 0; hence Tg(yn) = Tfn(yn) > n for all n. This contradicts
the fact that Tg is a bounded function. Thus the claimed is proved.

The two paragraphs above show that β(Y ) \ β(Yp) is a finite set of non-
isolated points in AX. By Proposition 2.1, β(Y ) = β(Yp) ∪ [β(Y ) \ β(Yp)]
is dense in AX. It follows that β(Yp) is dense in AX. By Proposition 2.4,
T−1 is disjointness preserving.

Corollary 3.2 (Jarosz [J]). Let X and Y be compact Hausdorff spaces.
If T : C(X)→ C(Y ) is a linear disjointness preserving bijection, then T−1

is disjointness preserving.

Corollary 3.3. Let X be a metric space and let U(X) be the space of
uniformly continuous real functions on X. Let Y be a Hausdorff topological
space and let A(Y ) be a vector subspace of Cb(Y ) that contains constants.
If T : U(X) → A(Y ) is a linear disjointness preserving bijection, then T−1

is disjointness preserving.



Inverses of disjointness preserving operators 223

4. Spaces of Lipschitz and uniformly continuous functions. Let
X be a complete metric space and let 0 < α < 1. The space Lip(X)
of Lipschitz functions consists of all real-valued functions f on X such
that

L1(f) = sup

{
|f(u)− f(v)|

d(u, v)
: u, v ∈ X, u 6= v

}
<∞.

The space lipα(X) of little Lipschitz functions of order α consists of all
real-valued functions f on X such that

Lα(f) = sup

{
|f(u)− f(v)|
d(u, v)α

: u, v ∈ X, u 6= v

}
<∞

and that

lim
r→0+

sup

{
|f(u)− f(v)|
d(u, v)α

: u, v ∈ X, 0 < d(u, v) < r

}
= 0.

Let A(X) be one of the spaces Lip(X), lipα(X), 0 < α < 1, or U(X).
Note that A(X) separates points from closed sets of X and is closed under
C∞∗ operations. In [AD, Theorem 3.5], Araujo and Dubarbie showed that a
disjointness preserving linear isomorphism T : Lip(X) → Lip(Y ) is bisep-
arating when Y is a compact metric space and X is a complete bounded
metric space.

In this section, we prove that under some topological assumptions on the
space Y , if T : A(X)→ A(Y ) is a disjointness preserving linear isomorphism,
then T−1 is disjointness preserving.

Proposition 4.1. Suppose that f ∈ A(X) and a, b are distinct points in

AX such that f̂(a), f̂(b) ∈ R. Then for any ε > 0, there are open neighbor-
hoods U and V of a and b respectively (in AX) such that d(U ∩X,V ∩X) =
s > 0 and

|f̂(x)− f̂(a)| < s ∧ ε if x ∈ U, |f̂(x)− f̂(b)| < s ∧ ε if x ∈ V .

Proof. There are open neighborhoods U ′ and V ′ of a and b respectively in

AX such that U ′
AX ∩V ′AX = ∅. By Proposition 1.2, there exists ϕ ∈ A(X)

such that ϕ = 0 on U ′ ∩ X and ϕ = 1 on V ′ ∩ X. Since ϕ is uniformly
continuous on X, r = d(U ′ ∩X,V ′ ∩X) > 0. By continuity of f̂ , there are
open neighborhoods U ⊆ U ′ and V ⊆ V ′ of a and b respectively (in AX)
such that

|f̂(x)− f̂(a)| < r ∧ ε if x ∈ U, |f̂(x)− f̂(b)| < r ∧ ε if x ∈ V .

Since U ∩X ⊆ U ′ ∩X and V ∩X ⊆ V ′ ∩X,

s = d(U ∩X,V ∩X) ≥ r.
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Proposition 4.2. Suppose that f ∈ A(X) and W is a subset of X. Let
t > 0 be given. Assume that

sup{|f(x)| : d(x,W ) < t} = M <∞.
Define ϕ : X → R by

ϕ(x) =

(
1− d(x,W )

t

)+

.

Then for any u, v ∈ X, we have

|(ϕf)(u)− (ϕf)(v)| ≤
(
d(u, v)

t
∧ 1

)
M + |f(u)− f(v)|.

Furthermore, ‖ϕf‖∞ ≤M .

Proof. Since ϕ(x) = 0 if d(x,W ) ≥ t and ‖ϕ‖∞ ≤ 1, it is clear that
‖ϕf‖∞ ≤M . If d(u,W ) < t, then for any v,

|(ϕf)(u)− (ϕf)(v)| ≤ |ϕ(u)− ϕ(v)| |f(u)|+ |ϕ(v)| |f(u)− f(v)|

≤
(
d(u, v)

t
∧ 1

)
M + |f(u)− f(v)|.

A similar estimate holds if d(v,W ) < t, by symmetry. If d(u,W ), d(v,W )
≥ t, then of course (ϕf)(u) = (ϕf)(v) = 0.

For the rest of this section, assume that Y is a first countable Hausdorff
topological space and let A(Y ) be a vector subspace of C(Y ) that contains
constants. Let T : A(X)→ A(Y ) be a disjointness preserving operator with
support map β : Ys → AX, where Ys and β are as in Proposition 1.2.

Proposition 4.3. Let (yn) be a sequence in Ys converging to y0 ∈ Ys.
Assume that (xn) is a distinct sequence and xn 6= x0 for all n ∈ N, where

xn = β(yn), n ≥ 0. Let f ∈ A(X) be a function such that f̂(x0) = 0. Then
Tf(y0) = 0.

Proof. We will show that there exists a function g ∈ A(X) such that

ĝ − f = 0 on an open neighborhood of x2n in AX and ĝ = 0 on an open
neighborhood of x2n+1 in AX, for all n ∈ N. Then Tg(y2n) = Tf(y2n) and
Tg(y2n+1) = 0 for all n. By continuity of Tf and Tg, we see that Tf(y0) = 0.

In the proof below, take A(X) = U(X) if α = 0, A(X) = lipα(X) if
0 < α < 1 and A(X) = Lip(X) if α = 1. For any r > 0, let

ωf (r) = sup{|f(u)− f(v)| : d(u, v) ≤ r}.
Since f is uniformly continuous, there exists r0 > 0 such that ωf (r0) ≤ 1.

Note that (xn) converges to x0 and (f̂(xn)) converges to 0. In particular,

we may assume that |f̂(xn)| ≤ 1 for all n. Use Proposition 4.1 to choose
open neighborhoods Un and Vn of x0 and xn respectively in AX such that
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sn = d(Un ∩X,Vn ∩X) > 0 and

|f̂(x)− f̂(x0)| < sn ∧ 1 if x ∈ Un, |f̂(x)− f̂(xn)| < sn ∧ 1 if x ∈ Vn.

We may also assume that Un+1, Vn+1 ⊆ Un for all n. By taking a subsequence
if necessary, we may reduce to considering one of the following cases:

Case 1: sn ↓ 0. In this case, set tn = sn/4 and assume additionally that
8tn ≤ r0.

Case 2: inf sn = γ > 0. In this case, set tn = (γ ∧ r0)/4.

Note that in both instances, (tn) is nonincreasing and sn ≥ 4tn for all n.
Define

Mn = sup{|f(x)| : x ∈ X, d(x, Vn ∩X) < tn}.

Suppose that x ∈ X with d(x, Vn ∩ X) < tn. Choose un ∈ Un ∩ X and
vn, wn ∈ Vn ∩X such that

d(un, vn) < 2sn and d(x,wn) < tn.

Since f̂(x0) = 0, in Case 1,

|f(x)| ≤ |f(x)− f(wn)|+ |f(wn)− f̂(xn)|+ |f̂(xn)− f(vn)|(4.1)

+ |f(vn)− f(un)|+ |f(un)− f̂(x0)|
≤ ωf (tn) + 3sn + ωf (2sn) ≤ 2ωf (8tn) + 12tn.

Thus Mn ≤ 2ωf (8tn) + 12tn. In Case 2,

|f(x)| ≤ |f(x)− f(wn)|+ |f(wn)− f̂(xn)|+ |f̂(xn)|(4.2)

≤ ωf (tn) + 2 ≤ ωf (γ ∧ r0) + 2 ≤ 3.

Thus, Mn ≤ 3. For each n, define ϕn : X → R by

ϕn(x) =

(
1− d(x, Vn ∩X)

tn

)+

.

Note that (ϕnf)(x) = 0 if d(x, Vn∩X) ≥ tn. If m < n, then Vn∩X ⊆ Um∩X
and thus

(4.3) d(Vn ∩X,Vm ∩X) ≥ d(Um ∩X,Vm ∩X) = sm ≥ 4tm > tm + tn.

In particular, the functions ϕnf are disjoint. Let g be the pointwise sum∑∞
n=1 ϕ2nf . We will prove that g ∈ A(X). Let u, v ∈ X be distinct points.

Consider first the case where there are m < n with d(u, V2m ∩X) < t2m
and d(v, V2n ∩X) < t2n. By (4.3),

d(u, v) ≥ d(V2m ∩X,V2n ∩X)− t2m − t2n ≥ 3t2m − t2n ≥ 2t2m.

By Proposition 4.2, ‖ϕnf‖∞ ≤Mn for all n. In Case 1, since also t2n ≤ r0/8,
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|g(u)− g(v)|
d(u, v)α

≤ ‖ϕ2mf‖∞ + ‖ϕ2nf‖∞
d(u, v)α

(4.4)

≤
2ωf (8t2m) + 12t2m + 2ωf (8t2n) + 12t2n

d(u, v)α

≤
4ωf (4d(u, v)) + 12d(u, v) ∧ 3r0

d(u, v)α
,

while in Case 2, since d(u, v) ≥ 2t2m = (γ ∧ r0)/2, we get

|g(u)− g(v)|
d(u, v)α

≤ ‖ϕ2mf‖∞ + ‖ϕ2nf‖∞
d(u, v)α

(4.5)

≤ 6

d(u, v)α
≤ 12

γ ∧ r0
d(u, v)1−α ∧ 6

(
2

γ ∧ r0

)α
.

In the remaining situation, there must be some n ∈ N such that g(u) =
(ϕ2nf)(u) and g(v) = (ϕ2nf)(v). In Case 1, by Proposition 4.2 and (4.1),

(4.6)
|g(u)− g(v)|
d(u, v)α

=
|(ϕ2nf)(u)− (ϕ2nf)(v)|

d(u, v)α

≤



2ωf (8t2n)

tα2n
·
(
d(u, v)

t2n

)1−α

+ 12d(u, v)1−α +
|f(u)− f(v)|
d(u, v)α

if d(u, v) ≤ t2n,

2ωf (8t2n)

tα2n
·
(

t2n
d(u, v)

)α
+ 12t1−α2n +

|f(u)− f(v)|
d(u, v)α

if t2n < d(u, v).

Similarly, in Case 2, by Proposition 4.2 and (4.2),

|g(u)− g(v)|
d(u, v)α

=
|(ϕ2nf)(u)− (ϕ2nf)(v)|

d(u, v)α
(4.7)

≤ 12

γ ∧ r0
· d(u, v)1−α ∧ 3

d(u, v)α
+
|f(u)− f(v)|
d(u, v)α

.

If 0 < α ≤ 1, there is a finite constant C such that ωf (r) ≤ Crα. Then it
follows from (4.4)–(4.7) that Lα(g) <∞.

It remains to show that if 0 ≤ α < 1, then

lim
r→0+

sup

{
|g(u)− g(v)|
d(u, v)α

: 0 < d(u, v) < r

}
= 0.

This is clear if u, v fall under one of (4.4), (4.5) or (4.7). Finally, suppose
u, v satisfy (4.6). Obviously,

lim
r→0+

sup

{
12d(u, v)1−α +

|f(u)− f(v)|
d(u, v)α

: 0 < d(u, v) < r

}
= 0.



Inverses of disjointness preserving operators 227

Given ε > 0, since tn → 0 in the situation under consideration, there exists
N such that ωf (8t2n) ≤ εtα2n for all n ≥ N . Thus, if n ≥ N , then the first
term of (4.6) is ≤ ε, for both the cases d(u, v) ≤ t2n and t2n < d(u, v). On
the other hand, suppose that n < N . As observed above, for 0 < α < 1,
there is a finite constant C such that ωf (r) ≤ Crα for all r. By choice of r0,
the inequality also holds for r ≤ r0 when α = 0. In particular, it holds for
r = tn for any n.

Now assume that d(u, v) < t2N . Since n < N , we must have d(u, v) ≤ t2n.
Then the first term of (4.6) is

2ωf (8t2n)

tα2n
·
(
d(u, v)

t2n

)1−α
≤ 2 · 8α · C

t1−α2N

d(u, v)1−α.

Since 0 ≤ α < 1,

lim
r→0+

sup

{
2 · 8α · C
t1−α2N

d(u, v)1−α : 0 < d(u, v) < r

}
= 0.

This completes the proof that g ∈ A(X).

By definition of g, and the fact that the functions (ϕnf) are disjoint,
g = f on V2n ∩ X and g = 0 on V2n−1 ∩ X for all n. Therefore, g has the
properties enunciated in the first paragraph of the proof.

Proposition 4.4. Suppose that y0 ∈ Ys. If β−1{β(y0)} ∩ Yp = ∅, then
β−1{β(y0)} is a clopen subset of Ys.

Proof. Clearly β−1{β(y0)} is a closed subset of Ys. Suppose that it is
not open in Ys. Since Y is first countable, there exists a sequence (yn) in
Ys \ β−1{β(y0)} converging to a point z0 ∈ β−1{β(y0)}. By the assumption,
z0 /∈ Yp. Note that (β(yn)) converges to β(z0) = β(y0), and β(yn) 6= β(y0)

for all n. By Proposition 4.3, if f̂(β(y0)) = 0, then Tf(y0) = 0. But this
means that y0 ∈ Yp. Since y0 ∈ β−1{β(y0)}, we have a contradiction to the
assumption.

Proposition 4.5. Let T : A(X) → A(Y ) be a disjointness preserving
linear isomorphism. Suppose that Y has finitely many connnected compo-

nents. Then AX \ β(Yp)
AX

is a finite set of points in X, each of which is
isolated in AX.

Proof. By Proposition 2.1, Ys = Y and β(Y ) is dense in AX. Suppose
that x ∈ β(Y ) \ β(Yp). Let y ∈ Y be such that β(y) = x. Then β−1{β(y)} ∩
Yp = ∅. By Proposition 4.4, β−1{x} = β−1{β(y)} is a clopen subset of Y . It
follows from the assumption that β(Y ) \ β(Yp) is finite.

Next, we claim that

AX \ β(Yp)
AX

= β(Y ) \ β(Yp).



228 D. H. Leung et al.

Indeed, suppose that x0 ∈ AX \ β(Yp)
AX

. Let U be an open neighborhood

of x0 in AX. Then U \ β(Yp)
AX

is an open neighborhood of x0 and hence
meets β(Y ). This proves that U ∩(β(Y )\β(Yp)) 6= ∅. Since U is an arbitrary

open neighborhood of x0, we see that x0 ∈ β(Y ) \ β(Yp)
AX

. As β(Y )\β(Yp)
is a finite set, x0 ∈ β(Y ) \ β(Yp). This completes the proof of the claim.

It follows that AX \β(Yp)
AX

= β(Y )\β(Yp) is an open set that contains

only finitely many points. Therefore, each point in AX \ β(Yp)
AX

is an

isolated point in AX. In particular, each point in AX\β(Yp)
AX

must belong
to X.

Corollary 4.6. Let T : A(X)→ A(Y ) be a disjointness preserving lin-
ear isomorphism. Suppose that Y has finitely many connnected components.
Then β(Yp) is dense in AX.

Proof. Let x0 ∈ AX \ β(Yp)
AX

. By Proposition 4.5, x0 ∈ X and is
an isolated point in AX. Thus χ{x0} ∈ A(X). Let g = Tχ{x0}. There
exists y0 ∈ Y such that g(y0) 6= 0. Since χ̂{x0} = 0 on the open set

AX \ {x0}, we have g = 0 on β−1(AX \ {x0}). Thus β(y0) = x0. Let
f ∈ A(X) with f(x0) = 0. Then f and χ{x0} are disjoint. Hence so are
Tf and g. Thus Tf(y0) = 0. This shows that y0 ∈ Yp, which implies

x0 = β(y0) ∈ β(Yp), contrary to the choice of x0. Therefore, AX \ β(Yp)
AX

must be empty.

The main result of this section follows immediately from Proposition 2.4
and Corollary 4.6.

Theorem 4.7. Let X be a complete metric space and let Y be a first
countable Hausdorff topological space that has only finitely many connected
components. Suppose A(X) is one of the spaces Lip(X), lipα(X), 0 < α < 1,
or U(X), and A(Y ) is a vector subspace of C(Y ) that contains all constant
functions. Let T : A(X)→ A(Y ) be a disjointness preserving linear isomor-
phism. Then T−1 is disjointness preserving.

5. Spaces of differentiable functions: Representation of disjoint-
ness preserving operators. In the final two sections, we focus on the case
of differentiable functions. See [KN] for some previous results in this direc-
tion. Let p ∈ N and let G be a separable Banach space that supports a
Cp(G) bump function with bounded derivatives. That is, there is a nonzero
function ϕ ∈ Cp(G) with bounded support such that supx∈G ‖Dkϕ(x)‖ <∞
for 0 ≤ k ≤ p. It is easy to see that in this case, for any r > 0, there exist
0 < s < r and a function f ∈ Cp(G) with bounded derivatives such that
f = 1 on B(0, s) and f = 0 outside B(0, r).
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Let X be an open subset of G and let E be a Banach space. Let Y be
a first countable Hausdorff topological space, F be a Banach space and let
A(Y, F ) be a vector subspace of C(Y, F ).

The main result in this section is a representation theorem for a disjoint-
ness preserving linear map T : Cp(X,E)→ A(Y, F ).

Since G supports a Cp(G) bump function, Cp(X) separates points from
closed sets. It is clear that Cp(X) is closed under C∞∗ operations.

For the rest of the section, let T : Cp(X,E) → A(Y, F ) be a linear
disjointness preserving operator.

We will also assume that T is nowhere trivial : for any y ∈ Y , there exists
f ∈ Cp(X,E) such that Tf(y) 6= 0. (This is always achievable by cutting
down on the space Y .)

As in Section 1, let AX be the compactification of X constructed using
A(X) = Cp(X). By [LW, Proposition 4], as in Proposition 1.2, there is a
continuous function β : Y → AX such that if f ∈ Cp(X,E) and

β(y) /∈ C(f) = {x ∈ X : f(x) 6= 0}AX ,

then Tf(y) = 0. If S is a linear operator from Cp(X,E) into a vector space,
we say that S is diffuse if S is nonzero and there exists γ > 0 with Tf = 0
for any f such that

{f 6= 0} = {x ∈ X : f(x) 6= 0}

has diameter ≤ γ. This terminology is borrowed from the vector lattice
setting (see, e.g., [HD1]). An operator that is not diffuse is said to be focused.

Proposition 5.1. Suppose that y0 ∈ Y and x0 = β(y0) /∈ X. Then
there exists a sequence (Wn) of open neighborhoods of x0 in AX such that
(
⋂
Wn) ∩X = ∅.

Proof. First consider the case where δy0 ◦T is diffuse. There exists γ > 0
such that if g ∈ Cp(X,E) and diam{g 6= 0} ≤ γ, then Tg(y0) = 0. Let
(un) be a countable dense sequence in X. There exists 0 < r1 < γ/2 such
that for each n, there is a ψn ∈ Cp(X) satisfying ψn = 0 on B(un, r1) and
ψn = 1 outside B(un, γ/2). Choose f ∈ Cp(X,E) such that Tf(y0) 6= 0.
Since (1 − ψn)f ∈ Cp(X,E) and diam{(1 − ψn)f 6= 0} ≤ γ, we have
T ((1 − ψn)f)(y0) = 0. Thus T (ψnf)(y0) 6= 0. By definition of β, x0 ∈
C(ψnf) ⊆ B(un, r1)c

AX
. Let 0 < r2 < r1 be such that for each n, there

exists ϕn ∈ Cp(X) with ϕn = 0 on B(un, r2) and ϕn = 1 outside B(un, r1).
By continuity of ϕ̂n, ϕ̂n(x0) = 1. Let Wn = {ϕ̂n > 1/2}. Then Wn is an open
neighborhood of x0 in AX. Suppose that x ∈ (

⋂
Wn)∩X. Then ϕn(x) > 1/2

for all n. Thus x /∈ B(un, r2) for all n. This is impossible since (un) is dense
in X. Therefore, (

⋂
Wn) ∩X = ∅.



230 D. H. Leung et al.

Now, consider the case where δy0 ◦ T is focused. For each n, there exists
fn ∈ Cp(X,E) such that diam{fn 6= 0} → 0 and Tfn(y0) 6= 0. Choose
xn ∈ X such that fn(xn) 6= 0. If (xn) has no Cauchy subsequence, then,
by using a subsequence if necessary, we may assume that there exists r > 0
such that ‖xn − xm‖ > r if n 6= m. For sufficiently large n and m, fn and
fm are disjoint. However, Tfm(y0) and Tfn(y0) are both nonzero, contrary
to the fact that T is disjointness preserving. This proves that, by using a
subsequence if necessary, we may assume that (xn) is a Cauchy sequence.
Then (xn) converges to a point z0 ∈ G.

Claim. For any r > 0, x0 ∈ BG(z0, r) ∩X
AX

. Here, the ball BG(z0, r)
is taken in G.

Let r > 0. Since (xn) converges to z0, fn(xn) 6= 0 and diam{fn 6= 0} → 0,
there exists n such that {fn 6= 0} ⊆ BG(z0, r/2)∩X. By choice, Tfn(y0) 6= 0.

By definition of β, x0 ∈ C(fn) ⊆ BG(z0, r) ∩X
AX

. This completes the proof
of the Claim.

Suppose, if possible, that z0 ∈ X. Choose r0 > 0 such that BG(z0, r0)
⊆ X. Let g be a function in Cp(X). For any ε > 0, there exists 0 <
r < r0 such that |g(x) − g(z0)| < ε for all x ∈ BG(z0, r). By the Claim,

x0 ∈ BG(z0, r)
AX

. By continuity of ĝ, |ĝ(x0) − g(z0)| ≤ ε. This shows that
ĝ(x0) = g(z0). Since this holds for all g ∈ Cp(X), we get x0 = z0 ∈ X,
contrary to the assumption. Therefore, z0 /∈ X.

For any n ∈ N, choose 0 < rn < 1/n and ϕn ∈ Cp(G) to be such that
ϕn = 1 on BG(z0, rn) and ϕn = 0 outside BG(z0, 1/n). We will also regard
ϕn as a function in Cp(X) by restricting its domain to X. Since ϕn = 1 on
BG(z0, rn) ∩ X, ϕ̂n(x0) = 1 by the Claim. Let Wn = {ϕ̂n > 0}. Then Wn

is an open neighborhood of x0 in AX. Moreover, Wn ∩ X ⊆ BG(z0, 1/n).
Thus (

⋂
Wn) ∩X = ∅.

Proposition 5.2. Suppose that y0 ∈ Y and x0 = β(y0) /∈ X. Then
β−1{x0} is a clopen subset of Y .

Proof. Clearly β−1{x0} is a closed subset of Y . If it is not open, there
exists a sequence (yn) in Y converging to some y∗ ∈ β−1{x0} such that
yn /∈ β−1{x0} for all n. Let xn = β(yn), n ∈ N. We may assume that
(xn) is a sequence of distinct points, all of which are different from x0. By
Proposition 5.1, there is a sequence (Wn) of open neighborhoods of x0 in

AX such that (
⋂
Wn)∩X = ∅. We may further assume that Wn+1

AX ⊆Wn

for all n. Since (xn) converges to x0, by replacing it with a subsequence if
necessary, we may choose open neighborhoods Un and Vn of xn in AX such
that

xn ∈ Vn ⊆ Vn
AX ⊆ Un ⊆Wn, Um

AX ∩ Un
AX

= ∅ if m 6= n,
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and x0 /∈ Un
AX

. By Proposition 1.1, there exists ϕn ∈ Cp(X) such that
ϕn = 1 on Vn ∩ X and ϕn = 0 on X \ Un. The functions ϕn, n ∈ N, are
pairwise disjoint.

Let f ∈ Cp(X,E) be such that Tf(y0) 6= 0 and let g be the pointwise
sum

∑
ϕ2nf . For any x ∈ X, there exists n0 such that x /∈W2n0+1. Thus x /∈⋃∞

n=2n0+2(Un ∩X) (closure in X). Hence g =
∑n0

n=1 ϕ2nf on a neighborhood
of x in X. This proves that g ∈ Cp(X,E).

For any n we have g = f on V2n ∩X and thus ĝ − f = 0 on V2n. Hence
T (g − f)(y2n) = 0, i.e., Tg(y2n) = Tf(y2n). Suppose that x ∈ V2n−1 ∩ X.
By the above, there exists n0 such that g =

∑n0
n=1 ϕ2nf on a neighborhood

of x. But x ∈ U2n−1 ∩ X and U2n−1 ∩ U2k = ∅ for all k. Hence g(x) = 0.
This proves that g = 0 on V2n−1 ∩X. Therefore, ĝ = 0 on V2n−1, and hence
Tg(y2n−1) = 0. Taking limits as n→∞, we see that

Tf(y0) = limTf(y2n) = limTg(y2n) = Tg(y0) = limTg(y2n−1) = 0,

contrary to the choice of f . This proves that β−1{x0} is open in Y .

Let Yr be the set of all y ∈ β−1(X) such that if f ∈ Cp(X,E) and
Dkf(β(y)) = 0 for 0 ≤ k ≤ p, then Tf(y) = 0. There is an obvious resem-
blance between Yr and the set Yp from Section 2. For 1 ≤ k ≤ p, let Sk(G,E)
be the Banach space of all bounded symmetric k-linear operators from G to
E, with the operator norm. Also let S0(G,E) = E. If f ∈ Cp(X,E), then
Dkf(x) ∈ Sk(G,E) for all x ∈ X.

Proposition 5.3. Let y0∈Yr. Then there are linear operators Φk(y0, ·) :
Sk(G,E)→ F , 0 ≤ k ≤ p, such that

Tf(y0) =

p∑
k=0

Φk
(
y0, D

kf(β(y0))
)

for all f ∈ Cp(X,E).

Proof. Let x0 = β(y0) ∈ X. For any S ∈ Sk(G,E), the function fS :
X → E given by fS(x) = S(x− x0, . . . , x− x0) (k components) belongs to
Cp(X,E). Define Φk(y0, S) = TfS(y0)/k!. Then Φk(y0, ·) : Sk(G,E) → F
is a linear operator. Using the fact that y0 ∈ Yr, one may verify by direct
computation that Tf(y0) =

∑p
k=0 Φk(y0, D

kf(β(y0))) for all f ∈ Cp(X,E).
Refer to the proof of [LW, Theorem 10] for details.

Recall that we assume the existence of a function ϕ ∈ Cp(G) with ϕ = 1
on a neighborhood of 0, ϕ(x) = 0 if ‖x‖ ≥ 1, and supx∈X ‖Dkϕ(x)‖ < ∞
for 0 ≤ k ≤ p.

Lemma 5.4. Suppose that y0 ∈ Y and x0 = β(y0) ∈ X. If f ∈ Cp(X,E)
and f = 0 on a neighborhood U of x0 in X, then Tf(y0) = 0.
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Proof. Choose ψ ∈ Cp(X) such that ψ(x0) = 1 and ψ = 0 outside U .

The set V = {ψ̂ > 1/2} is an open neighborhood of x0 in AX. Since f = 0

on U ⊇ V ∩X and V ∩X is dense in V , f̂ = 0 on V . Therefore, Tf(y0) = 0
by definition of β.

Proposition 5.5. Let (yn) be a sequence in β−1(X) that converges to
a point y0 ∈ β−1(X) \ Yr. Then β(yn) = β(y0) for all sufficiently large n.

Proof. If the proposition fails, we can choose a sequence (xn) = (β(yn))
in X converging to x0 = β(y0) ∈ X, with xn 6= x0 for all n, and a function
f ∈ Cp(X,E) such that Dkf(x0) = 0, 0 ≤ k ≤ p, but Tf(y0) 6= 0. We
may assume that rn = ‖xn − x0‖ satisfies 0 < 3rn+1 < rn for all n. Set
ϕn(x) = ϕ

(
2
rn

(x − xn)
)
. The functions ϕn, n ∈ N, are pairwise disjoint.

Since Dkf(x0) = 0 for 0 ≤ k ≤ p, by Taylor’s Theorem,

lim
r→0+

sup
x∈B(x0,r)

‖Dkf(x)‖
rp−k

= 0 for 0 ≤ k ≤ p.

It follows from [LW, Lemma 11] that the pointwise sum g =
∑
ϕ2nf belongs

to Cp(X,E). Consider m ∈ N. There is an open neighborhood Um of xm
in X such that ϕm = 1 on Um. Then g = f on Um if m is even, and g = 0
on Um if m is odd. By Lemma 5.4, Tg(ym) = Tf(ym) if m is even and
Tg(ym) = 0 if m is odd. Therefore,

Tf(y0) = limTf(y2n) = limTg(y2n) = Tg(y0) = limTg(y2n−1) = 0,

contrary to the choice of f .

Theorem 5.6. Let G be a separable Banach space that supports a Cp(G)
bump function with bounded derivatives for some 1 ≤ p < ∞, and let X be
an open subset of G. Suppose that E and F are Banach spaces and Y is a
Hausdorff first countable topological space. Let A(Y, F ) be a vector subspace
of C(Y, F ). Assume that T : Cp(X,E) → A(Y, F ) is a nowhere trivial dis-
jointness preserving linear operator. Denote by β : Y → AX the support
map of T . Then there is a partition

Y =
(⋃
α∈I

Yα

)
∪ Yr ∪

(⋃
α∈J

Yα

)
such that:

(1) For each α ∈ I, Yα is a clopen subset of Y ; there exists xα ∈ AX \X
such that Yα = β−1{xα}.

(2) β−1(X) = Yr ∪
⋃
α∈J Yα, and Yr are closed subsets of Y .

(3) y∈Yr if and only if there are linear operators Φk(y, ·) : Sk(G,E)→F ,
0 ≤ k ≤ p, with
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Tf(y) =

p∑
k=0

Φk
(
y,Dkf(β(y))

)
for all f ∈ Cp(X,E).

(4) For each α ∈ J , Yα is a clopen subset of β−1(X)\Yr and there exists
xα ∈ X such that Yα = β−1{xα} \ Yr.

Proof. Let I = β(Y ) \ X. For each x ∈ I, let Yx = β−1{x}. Define Yr
as in the paragraph preceding Proposition 5.3 and let J = β(β−1(X) \ Yr).
For each x ∈ J , let Yx = β−1{x} \ Yr. Clearly,

⋃
x∈I Yx = β−1(AX \ X)

and
⋃
x∈J Yx = β−1(X) \ Yr. It follows easily that (

⋃
x∈I Yx) ∪ Yr ∪

⋃
x∈J Yx

is a partition of Y and that β−1(X) = Yr ∪
⋃
x∈J Yx. By Proposition 5.2,

Yx is a clopen subset of Y for all x ∈ I. Thus, condition (1) holds. As a
result, β−1(X) = Y \

⋃
x∈I Yx is closed in Y . Condition (3) follows from

Proposition 5.3.

Let us show that Yr is closed in Y . It suffices to prove that it is closed in
β−1(X). Otherwise, there is a sequence (yn) in Yr that converges to a point
y0 ∈ β−1(X)\Yr. By Proposition 5.5, there exists N such that β(yn) = β(y0)
for all n ≥ N . Let f ∈ Cp(X,E) be such that Dkf(β(y0)) = 0, 0 ≤ k ≤ p.
Then Dkf(β(yn)) = 0, 0 ≤ k ≤ p, for all n ≥ N . Since yn ∈ Yr, Tf(yn) = 0
for all n ≥ N . Thus Tf(y0) = 0. This proves that y0 ∈ Yr, contrary to the
assumption. Thus Yr is closed in Y .

Finally, for each x ∈ J , Yx is clearly a closed subset of β−1(X) \ Yr.
Let (yn) be a sequence in β−1(X) \ Yr that converges to some y0 ∈ Yx. By
Proposition 5.5, β(yn) = β(y0) for all sufficiently large n. Thus yn ∈ Yx for
all sufficiently large n. This proves that Yx is open in β−1(X) \ Yr.

We conclude this section by observing an additional property of the set
Yr which will be used in the next section.

Lemma 5.7. Suppose that y0 ∈ β−1(X) \ Yr and x0 = β(y0). For any
ε > 0 and M > 0, there exist r > 0 and f ∈ Cp(X,E) such that f(x) = 0 if
x /∈ B(x0, r) and

max
0≤k≤p

sup
x∈X
‖(Dkf)(x)‖ < ε and ‖Tf(y0)‖ > M.

Proof. Since y0 /∈ Yr, there exists f0 ∈ Cp(X,E) such that Dkf0(x0) = 0,
0 ≤ k ≤ p, and ‖Tf0(y0)‖ > M . By Taylor’s Theorem,

(5.1) lim
r→0+

sup
x∈B(x0,r)

‖Dkf0(x)‖
rp−k

= 0 for 0 ≤ k ≤ p.

For any r>0, define the function fr by fr(x)=ϕ
(
x−x0
r

)
f0(x). Then fr(x)=0

if x /∈ B(x0, r). Moreover, since C = sup0≤k≤p supx∈X ‖Dkϕ(x)‖ < ∞, for
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0 ≤ k ≤ p we have

sup
x∈X
‖Dkfr(x)‖ ≤ sup

x∈B(x0,r)

k∑
j=0

(
k

j

)
‖Djf0(x)‖ ·

∥∥Dk−jϕ
(
x−x0
r

)∥∥
rk−j

≤ 2kC max
0≤j≤k

sup
x∈B(x0,r)

‖Djf0(x)‖
rk−j

.

In view of (5.1), there exists r > 0 such that fr(x) = 0 if x /∈ B(x0, r) and
that max0≤k≤p supx∈X ‖(Dkfr)(x)‖ < ε. There is an open neighborhood U
of x0 inX with fr = f0 on U . By Lemma 5.4, ‖Tfr(y0)‖ = ‖Tf0(y0)‖ > M .

Proposition 5.8. Let (yn) be a sequence in β−1(X) \ Yr that converges
to a point y0 ∈ Y . Then β(yn) = β(y0) for all sufficiently large n. Conse-
quently, for any y0 ∈ Y , there exists ε > 0 such that β(y) = β(y0) for all
y ∈ ∂Yr ∩B(y0, ε), where ∂Yr is the boundary of Yr in β−1(X).

Proof. The second statement follows easily from the first. If the first
statement fails, we can choose a sequence (yn) in β−1(X) \ Yr converging
to some y0 ∈ Y such that (xn) = (β(yn)) is a sequence of distinct points
in X. Let Un be pairwise disjoint open sets in X with xn ∈ Un for all n.
By Lemma 5.7, for each n, there exist rn > 0 and fn ∈ Cp(X,E) such that
fn(x) = 0 for all x /∈ B(xn, rn) ∩ Un, max0≤k≤p supx∈X ‖Dkfn(x)‖ ≤ 1/2n

and ‖Tfn(yn)‖ > n. Clearly, f =
∑
fn exists pointwise and f ∈ Cp(X,E).

For each n, f = fn on the neighborhood B(xn, rn)∩Un of xn. By Lemma 5.4,
‖Tf(yn)‖ = ‖Tfn(yn)‖ ≥ n for all n. This is impossible since (yn) converges
to y0 and thus (Tf(yn)) converges in F .

6. Spaces of differentiable functions: Finite-dimensional case.
In this section, let 1 ≤ p, q <∞, X be an open set in Rm, Y be an open set
in Rn, and E,F be finite-dimensional Banach spaces. We consider a linear
disjointness preserving operator T : Cp(X,E) → Cq(Y, F ) that is strongly
nontrivial : for any finite subset A of Y and any y ∈ Y \ A, there exists
f ∈ Cp(X,E) such that Tf = 0 on A and Tf(y) 6= 0. Clearly, under this
assumption, T is nowhere trivial in the sense of Section 5. In this case,
of course, all results in Section 5 apply. As a special case, T is strongly
nontrivial if it maps onto Cq(Y, F ).

We will refine the representation theorem (Theorem 5.6) and prove that
if p = q and T as above is a bijection, then T−1 is disjointness preserving.
We retain the notation from Theorem 5.6.

Proposition 6.1. Let U be an infinite subset of Yr. Then β cannot be
constant on U .

Proof. If the proposition fails, there is an infinite sequence (yi) of distinct
points in Yr and an x0 ∈ X such that β(yi) = x0 for all i. Consider k with
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0 ≤ k ≤ p. Since E is finite-dimensional, so is Sk(Rm, E). Let (Sj) (a finite
sequence) be a basis for Sk(Rm, E). Define gj(yi) = Φk(yi, Sj) for any i and j.
For any f ∈ Cp(X,E), the function yi 7→ Φk(yi, D

kf(x0)) (defined on (yi))
lies in the span of (gj), a finite sequence. It follows from Theorem 5.6(3) that
the space {Tf|(yi) : f ∈ Cp(X,E)} is finite-dimensional. However, since T
is strongly nontrivial, there are functions fi in Cp(X,E) with Tfi(yl) = 0 if
l < i and Tfi(yi) 6= 0. Obviously, the functions Tfi are linearly independent
on (yi), contrary to what was established above.

Since X is locally compact by assumption, it is an open subset in any
compactification [DJ, Theorem XI.8.3]. In particular, X is open in AX and
thus β−1(X) is open in Y . Since β−1(X) is also closed in Y by Theorem 5.6,
it is a clopen subset of Y . In particular, the boundary of Yr in β−1(X) agrees
with its boundary in Y ; we denote both by ∂Yr. The interior of a set A in
a topological space is denoted by intA.

Proposition 6.2. Assume that n > 1. Then intYr is a clopen subset
of Y .

Proof. It suffices to show that intYr is closed in Y . Otherwise, there ex-
ists y0 ∈ intYr such that y0 /∈ intYr. Since Yr is closed in Y , y0 ∈ Yr. Then
y0 ∈ ∂Yr and β−1(X) is an open set containing y0. By Proposition 5.8, there
exists ε > 0 such that β(y) = β(y0) for all y ∈ ∂Yr ∩ B(y0, ε). By Proposi-
tion 6.1, ∂Yr ∩B(y0, ε) is a finite set. Since Y is an open set in Rn, we may
assume that B(y0, ε) is a ball in Rn. Therefore, B(y0, ε) \ (∂Yr ∩ B(y0, ε))
is a connected set, since n > 1 and the set being subtracted is finite.
But

B(y0, ε) \ ∂Yr = (B(y0, ε) ∩ intYr) ∪ (B(y0, ε) ∩ Y c
r )

is a partition into two open sets. The sets are nonempty, since y0 ∈ intYr
and y0 ∈ ∂Yr. This contradicts the connectedness of B(y0, ε) \ ∂Yr.

Theorem 6.3. Let 1 ≤ p, q <∞, X and Y be open sets in Rm and Rn
respectively, and E and F be finite-dimensional Banach spaces. Suppose that
n > 1 and that T : Cp(X,E)→ Cq(Y, F ) is a strongly nontrivial disjointness
preserving linear operator. Denote by β : Y → AX the support map of T .
Then there is a partition of Y into clopen sets

Y =
(⋃
α∈I

Yα

)
∪ intYr ∪

⋃
α∈J

Zα

such that:

(1) For each α ∈ I, there exists xα ∈ AX \X such that Yα = β−1{xα}.
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(2) If y∈ intYr, then there are linear operators Φk(y, ·) : Sk(Rm, E)→F ,
0 ≤ k ≤ p, such that

Tf(y) =

p∑
k=0

Φk(y,D
kf(β(y))) for all f ∈ Cp(X,E).

(3) For each α ∈ J , there exists xα ∈ X such that Zα = β−1{xα}\intYr.

Proof. Define I and Yα, α ∈ I, as in Theorem 5.6. By the same theorem
and the observation in the paragraph preceding Proposition 6.2, (

⋃
α∈I Yα)∪

β−1(X) is a clopen partition of Y . Let J = {x ∈ X : β−1{x} 6⊆ intYr}. For
each x ∈ J , set Zx = β−1{x} \ intYr. It follows readily from the definitions
that intYr ∪

⋃
α∈J Zα is a partition of β−1(X). Since intYr is clopen in Y

by Proposition 6.2, to complete the proof it remains to show that Zx is a
clopen set for each x ∈ J .

Obviously, each Zx is closed. If it is not open, there exists a sequence
(yk) in Zcx convergent to some y0 ∈ Zx. By Proposition 5.8 and the fact
that β−1(X) is open, there exists ε > 0 such that β(y) = β(y0) for all
y ∈ ∂Yr ∩B(y0, ε). As intYr is clopen and y0 /∈ intYr, we may assume that
yk /∈ intYr for all k. Then yk /∈ β−1{x} for all k. Without loss of generality,
we may assume that (β(yk)) is a sequence of distinct points convergent to
β(y0). By Proposition 5.8, we may assume that yk ∈ Yr for all k. Since yk
and y0 are not in intYr, we see that yk, y0 ∈ ∂Yr. But then for sufficiently
large k, yk ∈ ∂Yr ∩ B(y0, ε) and yet β(yk) 6= β(y0), contradicting what was
established above.

Corollary 6.4. Let 1 ≤ p, q < ∞, X and Y be open sets in Rm and
Rn respectively, and E and F be finite-dimensional Banach spaces. Suppose
that n > 1 and T : Cp(X,E) → Cq(Y, F ) is a strongly nontrivial disjoint-
ness preserving linear operator. Denote by β : Y → AX the support map
of T . If Y is connected and β(Y ) contains at least two points, then for each
y ∈ Y , there are linear operators Φk(y, ·) : Sk(Rm, E)→ F , 0 ≤ k ≤ p, such
that

Tf(y) =

p∑
k=0

Φk(y,D
kf(β(y))) for all f ∈ Cp(X,E).

Remark. In Corollary 6.4, Cp(X,E) and Cq(Y, F ) are Fréchet spaces
under their respective topologies of uniform convergence of derivatives of
all orders (≤ p and ≤ q respectively) on compact sets. In the given rep-
resentation of T , the operators Φk(y, ·), 0 ≤ k ≤ p, y ∈ Y , are bounded.
A standard application of the Closed Graph Theorem shows that T is a
continuous operator.

Our final result is to show that if T : Cp(X,Rl) → Cp(Y,Rl) is a dis-
jointness preserving linear bijection, where X and Y are open sets in Rm
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and Rn respectively, and m,n, l ∈ N, then T−1 is disjointness preserving.
First we will prove an analog of Proposition 2.4.

Proposition 6.5. Suppose that T : Cp(X,Rl)→ Cp(Y,Rl) is a disjoint-
ness preserving linear bijection, where X and Y are open sets in Rm and Rn
respectively. If β(intYr) is dense in X, then T−1 is disjointness preserving.

Proof. Consider the operator T̃ : Cp(X,Rl) → Cp(intYr,Rl) given by

T̃ f = Tf|intYr . By Proposition 5.3, for each y ∈ intYr, there are linear

operators Φk(y, ·) : Sk(Rm,Rl)→ Rl, 0 ≤ k ≤ p, such that

T̃ f(y) =

p∑
k=0

Φk(y,D
kf(β(y))) for all f ∈ Cp(X,E) and all y ∈ intYr.

As in the Remark after Corollary 6.4, it follows that T̃ is a continuous linear
operator. By [LW, Theorem 10], Φk(y, S) is a continuous function of y for
any fixed k and S.

Suppose that there exists y0 ∈ intYr and k > 0 such that Φk(y0, ·) 6= 0.
There is a neighborhood U of y0 contained in intYr with Φk(y, ·) 6= 0 for
all y ∈ U . By [LW, Theorem 12], for all z ∈ U , there exist ε > 0 and
C <∞ such that ‖β(y)− β(z)‖p−k ≤ C‖y− z‖p for all y ∈ B(z, ε). Then β
is differentiable at z and Dβ(z) = 0. Since this holds for all z in the open
set U , β is constant on U . This contradicts Proposition 6.1.

Therefore, T̃ f(y) = Φ0(y, f(β(y))) for all f ∈ Cp(X,Rl) and all y ∈
intYr. For all v ∈ Rl, there exists f ∈ Cp(X,Rl) such that Tf(y) = v for all
y ∈ Y . In particular, Φ0(y, f(β(y))) = v for all y ∈ intYr. This shows that
Φ0(y, ·) : Rl → Rl is onto for all y ∈ intYr. Hence it is also one-to-one.

Now suppose that f, g ∈ Cp(X,Rl) are not disjoint. Since β(intYr) is
dense in X, there exists x0 ∈ β(intYr) such that f(x0), g(x0) 6= 0. Choose
y0 ∈ intYr with β(y0) = x0. Since Φ0(y0, ·) is one-to-one, Φ0(y0, f(x0)) and

Φ0(y0, g(x0)) are not zero. Therefore, Tf(y0) = T̃ f(y0) 6= 0 and Tg(y0) =

T̃ g(y0) 6= 0. This proves that T−1 is disjointness preserving.

Theorem 6.6. Suppose that T : Cp(X,Rl)→ Cp(Y,Rl) is a disjointness
preserving linear bijection, where X and Y are open sets in Rm and Rn
respectively. If Y has only finitely many connected components, then T−1 is
disjointness preserving.

Proof. Using the same proof as for Proposition 2.1, one can show that
β(Y ) is dense in AX. Since X is open in AX, β(Y ) ∩X is dense in X.

First consider the case where n > 1. By Theorem 6.3 and the assumption
that Y has finitely many connected components, β(Y )∩X = β(intYr)∪A,
where A is a finite subset of X. Taking closures in X, we have

X = β(intYr) ∪A.
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Since X is an open set in Rm, it follows that X = β(intYr). By Proposi-
tion 6.5, T−1 is disjointness preserving.

Now, consider the case where n = 1. We will show that

(β(Y ) ∩X) \ β(intYr)

is a finite set, where the closure is taken in X. Since it was observed above
that β(Y ) ∩X is dense in X, and since X has no isolated points, this will
show that β(intYr) is dense in X. As Y is an open set in R that has finitely

many connected components, we may write Y as a finite union
⋃j
i=1Hi of

pairwise disjoint open intervals.

Claim. Suppose that x0 ∈ (β(Y ) ∩ X) \ β(intYr). Let y0 ∈ Y be such
that β(y0) = x0 and let y0 ∈ Hi for some 1 ≤ i ≤ j. Then β(Hi) = {x0}.

We will show that K = Hi ∩ β−1{x0} is a clopen subset of Hi. Since Hi

is connected and K ⊇ {y0} is nonempty, it will follow that K = Hi. Thus
β(Hi) = {x0}, as desired. Clearly K is closed in Hi. Hence it suffices to
show that it is open in Hi.

Assume otherwise. There is a sequence (yk) in Hi \ K that converges
to a point z ∈ K. By taking a subsequence if necessary, we may assume
that (yk) is strictly monotone and that (β(yk)) is a sequence of distinct
points. By Proposition 5.8, all but finitely many yk belong to Yr. Without
loss of generality, we may assume that all yk are in Yr. For each k, the open
interval Uk with end points yk and yk+1 is contained in Hi. If Uk ⊆ Yr,
then clearly yk ∈ intYr, and hence β(yk) ∈ β(intYr). If this occurs for in-
finitely many k, then x0 = β(z) = limβ(yk) ∈ β(intYr), contrary to the
choice of x0. Therefore, we may assume that Uk 6⊆ Yr for all k. Choose
zk ∈ Uk \ Yr for each k. Since β−1(X) is clopen in Y and y0 ∈ β−1(X)∩Hi,
we get Hi ⊆ β−1(X). Thus (zk) ⊆ β−1(X) \ Yr =

⋃
α∈J Yα, in the no-

tation of Theorem 5.6. Furthermore, as (zk) converges to z, by Proposi-
tion 5.8, we may assume that β(zk) = β(z) = x0 for all k. For each k,
choose αk ∈ J such that zk ∈ Yαk

. Since Yαk
is an open set in β−1(X), it

is open in R. Let Wk be the maximal open interval in Yαk
containing zk

and let wk be the right end point of Wk. Clearly, wk lies between yk and
yk+1; hence wk ∈ Hi and (wk) converges to z. By the maximality of the
interval Wk, we must have wk ∈ Yr. For each k, by the continuity of β,
β(wk) = β(zk) = x0. Since (wk) is a sequence of distinct points in Yr, we
have a contradiction with Proposition 6.1. This completes the proof of the
Claim.

As there are only finitely many intervals Hi, it follows immediately from
the Claim that (β(Y )∩X)\β(intYr) is a finite set. This completes the proof
of the theorem.
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