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Diametral dimensions of Fréchet spaces

by
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Dedicated to the memory of Tosun Terzioğlu

Abstract. The diametral dimension is an important topological invariant in the cat-
egory of Fréchet spaces which has been used, e.g., to distinguish types of Stein manifolds.
We introduce variants of the classical definition in order to solve an old conjecture of
Bessaga, Mityagin, Pe lczyński, and Rolewicz at least for nuclear Fréchet spaces. More-
over, we clarify the relation between an invariant recently introduced by Terzioğlu and
the by now classical condition (Ω) of Vogt and Wagner.

1. Kolmogorov widths and diametral dimensions. Kolmogorov
widths (or diameters) are a quantitative measure for compactness in normed
spaces: for absolutely convex sets V and U of a vector space X (typically U
is the unit ball of a given norm) and n ∈ N0 the nth width is

δn(V,U) = inf{δ > 0 : V ⊆ δU+L for a subspace L of X with dim(L) ≤ n}
(the dependence on X is notationally suppressed). If V is bounded with
respect to U (i.e., δ0(V,U) <∞) then V is precompact with respect to the
the Minkowski functional of U (which is a seminorm with unit ball U) if
and only if δn(V,U)→ 0. This elementary fact is Proposition 1.2 in Pinkus’
book [Pin85] where much more information about n-widths can be found.

For a locally convex space (l.c.s.) X with the system U0(X) of absolutely
convex 0-neighbourhoods the diametral dimension ofX is the sequence space

∆(X) = {ξ ∈ RN0 : ∀U ∈ U0(X) ∃V ∈ U0(X) : ξnδn(V,U)→ 0}.
This space is a topological invariant, i.e., if X and Y are isomorphic l.c.s.
then ∆(X) = ∆(Y ). Even more, if Y is a quotient of X then we have
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the inclusion ∆(X) ⊆ ∆(Y ). Moreover, X is a Schwartz space (i.e., every
0-neighbourhood U contains another one which is precompact with respect
to U) if and only if `∞ ⊆ ∆(X).

There are several versions of diametral dimensions of locally convex
spaces in the literature, all going back to an idea of Pe lczyński [Pe l57] from
1957. The formulation above can be found in [Mit61] where Mityagin refers
to a joint work with Bessaga, Pe lczyński, and Rolewicz which, to our best
knowledge, eventually did not appear in print.

Implicitly, Mityagin also considered the following variant:

∆b(X) = {ξ ∈ RN0 : ∀U ∈ U0(X) ∀B ∈ B(X) : ξnδn(B,U)→ 0}.

where B(X) is the system of all bounded subsets of X. The obvious property
δn(B,U) ≤ Sδn(V,U) for B ⊆ SV implies

∆(X) ⊆ ∆b(X)

for all l.c.s., and all bounded sets of X are precompact if and only if `∞ ⊆
∆b(X). Referring to the joint work mentioned above, [Mit61, Proposition 9]
claims ∆b(X) = ∆(X) for all Fréchet spaces X (actually, ξnδn(B,U) → 0
is only required for compact sets B but then the statement is clearly wrong
even for Banach spaces).

It was probably soon realized that ∆ = ∆b cannot be true in full gen-
erality, since the famous Grothendieck–Köthe example [MV97, 27.21] of a
Fréchet–Montel space X which is not Schwartz satisfies ∆(X) = c0 and
∆b(X) ⊇ `∞. Terzioğlu [Ter13] describes this explicitly but without a defi-
nite conclusion when the equality is in fact true. The most optimistic con-
jecture is that ∆(X) = ∆b(X) for all Fréchet–Schwartz spaces (for spaces
which are not Montel we trivially have ∆(X) = ∆b(X) = c0).

The main result of this part of the paper is a proof for hilbertizable
Fréchet–Schwartz spaces, i.e., the seminorms can be given by (semi-) scalar
products, in particular, this includes the important case of nuclear Fréchet
spaces.

The following variants of the diametral dimensions turn out to be useful
for this purpose:

∆∞(X) = {ξ ∈ RN0 : ∀U ∈ U0(X) ∃V ∈ U0(X) : ξnδn(V,U) bounded},
∆∞b (X) = {ξ ∈ RN0 : ∀U ∈ U0(X) ∀B ∈ B(X) : ξnδn(B,U) bounded}.

For every locally convex space X we have the obvious inclusions:

∆∞(X) ⊆ ∆∞b (X)

⊆ ⊆

∆(X) ⊆ ∆b(X)
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Although we are interested in whether equality holds in the bottom row, we
first consider the top row:

Proposition 1.1. The equality ∆∞(X) = ∆∞b (X) holds for every Fré-
chet–Schwartz space X.

Proof. Take ξ ∈ ∆∞b (X), a convex 0-neighbourhood U in X, and assume
that ξnδn(U`, U) is unbounded for all ` where U` is a decreasing basis of
U0(X). Then we find a strictly increasing sequence of integers n` such that
|ξn`
|δn`

(U`, U) > ` for all ` ∈ N.

Since X is Schwartz we may assume that all U` are precompact with
respect to U . Hence, there are finite sets F` ⊆ U` with

U` ⊆
1

|ξn`
|
U + F`.

Then B =
⋃
` F` is bounded in X because, for each p ∈ N, all but the finitely

many elements of F0 ∪ · · · ∪ Fp−1 belong to Up. Since ξ ∈ ∆∞b (X) there is a
constant C such that |ξn`

|δn`
(B,U) < C for all `.

For fixed ` > C + 1 there is, by definition of δn(B,U), an at most
n`-dimensional subspace L with B ⊆ C

|ξn`
|U + L, which implies

U` ⊆
1

|ξn`
|
U + F` ⊆

1

|ξn`
|
U +

C

|ξn`
|
U + L ⊆ C + 1

|ξn`
|
U + L.

Hence the contradiction δn`
(U`, U) ≤ (C + 1)/|ξn`

|.

The proposition is trivially true for Fréchet spaces which are not Montel
(because then ∆∞(X) = ∆∞b (X) = `∞). It thus holds for all quasinormable
Fréchet spaces. Up to changing c0 to `∞ in the definition of the diametral
dimension this saves [Ter13, Proposition 1].

In view of the proposition and the trivial inclusions mentioned above
it is enough to investigate whether ∆(X) = ∆∞(X) for Fréchet–Schwartz
spaces.

If V and U are the unit balls of seminorms p ≥ q, the Kolmogorov
widths describe approximation properties of the inclusion (X, p) ↪→ (X, q)
and it is easy to see (and well-known) that we may pass to the Hausdorff
completions of these spaces, that is, δn(V,U) = δn(T (Bp), Bq), where Bp is
the unit ball of the completion XV of (X, p)/Kern(p) and T is the canonical
map XV → XU induced by the inclusion. XV is called the local Banach
space corresponding to V . If p is induced by a (semi-) scalar product we call
it the local Hilbert space.

For an operator T : X → Y between Banach spaces with unit balls BX
and BY we abbreviate δn(T ) = δn(T (BX), BY ). The velocity of convergence
of this sequence is then a measure for the compactness of T .
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For a scalar sequence (δn)n∈N0 we write, as usual,

o(δn) = {ξ ∈ RN0 : ∀ε > 0 ∃N ∈ N ∀n ≥ N : |ξn| ≤ ε|δn|}.

We now consider the plausible statement that the product (composi-
tion) of two compact operators is “strictly more compact” than each factor.
Unfortunately, we can only prove this for Hilbert spaces.

Proposition 1.2. Let X,Y, Z be Hilbert spaces and T : X → Y and
S : Y → Z be compact operators. Then

δn(S ◦ T ) ∈ o(δn(S)) and δn(S ◦ T ) ∈ o(δn(T )).

Proof. The advantage of the Hilbert space setting is that the Kolmogorov
widths coincide with the singular numbers of the compact operator (see, e.g.,
[Pin85, Chapter IV] or [Vog00]). Let thus

S =

∞∑
k=0

sk〈·, ek〉fk

be a Schmidt representation of S with orthonormal systems (ek)k and (fk)k
in Y and Z, respectively, and the decreasing sequence of singular numbers
sk = δk(S). Taking the span of f0, . . . , fn−1 as a candidate for the infimum
in the definition of δn(S ◦ T ) we get

δn(S ◦ T )2 ≤ sup
{∥∥∥ ∞∑

k=n

sk〈T (x), ek〉fk
∥∥∥2
Z

: ‖x‖X ≤ 1
}

= sup
{ ∞∑
k=n

s2k|〈T (x), ek〉|2 : ‖x‖X ≤ 1
}

≤ s2n sup
{ ∞∑
k=n

|〈y, ek〉|2 : y ∈ K
}

where K = T (BX) is compact in Y . The sequence of functions

rn(y) =
( ∞∑
k=n

|〈y, ek〉|2
)1/2

= ‖πn(y)‖Y

with the orthogonal projection πn onto the closed span of {ek : k ≥ n}
is equicontinuous and converges pointwise to 0. It therefore converges uni-
formly to 0 on the compact set K. This proves δn(S ◦ T ) ∈ o(δn(S)).

The other assertion then follows by duality since

δn(S ◦ T ) = δn((S ◦ T )∗) = δn(T ∗ ◦ S∗) ∈ o(δn(T ∗)) = o(δn(T )).

Proposition 1.3. ∆(X) = ∆∞(X) for every hilbertizable Schwartz
space X.
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Proof. In the definitions of the diametral dimensions we may replace
U0(X) by the system of all 0-neighbourhoods which are unit balls of semi-
norms induced by scalar products. Given ξ ∈ ∆∞(X) and U ∈ U0(X) we
choose V ∈ U0(X) such that the canonical map T : XV → XU between the
local Hilbert spaces is compact and then we choose W ∈ U0(X) such that
ξnδn(W,V ) is bounded and S : XW → XV is compact. The previous propo-
sition then implies ξnδn(W,U) ∈ o(ξnδn(W,V )), hence ξnδn(W,U)→ 0.

We remark that either statement in Proposition 1.2 for Banach instead of
Hilbert spaces (i.e., the product of two compact operators between Banach
spaces is “strictly more compact” than at least one of the factors) would
give 1.3 for all Schwartz spaces.

Combining 1.1 and 1.3 we can now confirm the claim of Bessaga, Mitya-
gin, Pe lczyński, and Rolewicz at least for hilbertizable Fréchet–Schwartz
spaces:

Theorem 1.4. ∆(X) = ∆b(X) = ∆∞(X) = ∆∞b (X) for every hilbertiz-
able Fréchet–Schwartz space X and, in particular, for every nuclear Fréchet
space X.

We do not know if ∆b(X) = ∆∞b (X) for all Fréchet–Schwartz spaces X.
However, the same method as in 1.3 gives this for hilbertizable Fréchet–
Montel spaces (note that the Grothendieck–Köthe example can be chosen
hilbertizable so that the following statement is not contained in 1.4):

Proposition 1.5. ∆b(X) = ∆∞b (X) for every hilbertizable Fréchet–
Montel space X.

Proof. We use the fact that a hilbertizable Fréchet space has a funda-
mental system of bounded sets consisting of unit balls of Hilbert spaces
(see, e.g., [MV97, end of proof of 29.16]) and that Fréchet spaces satisfy
the strict Mackey condition introduced by Grothendieck: for every bounded
set B there is an absolutely convex bounded set D ⊇ B whose Minkowski
functional induces on B the topology of X [PCB87, Theorem 5.1.27]. In
our case we thus find, for each bounded Hilbert ball B, another bounded
Hilbert ball D such that span(B) ↪→ span(D) is a compact inclusion be-
tween Hilbert spaces. For U ∈ U0(X) and the associated local Hilbert space
XU we can thus apply Proposition 1.2 to span(B) ↪→ span(D) → XU and
obtain δn(B,U) ∈ o(δn(D,U)).

2. Prominent sets. In his last publication [Ter13] T. Terzioğlu called
a bounded subset B of a l.c.s. X prominent if

∆(X) = {ξ ∈ RN0 : ξnδn(B,U)→ 0 for all U ∈ U0(X)}.
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Having a prominent set is obviously a topological invariant, and since the
right hand side above contains ∆b(X), we have ∆(X) = ∆b(X) for all l.c.s.
with a prominent bounded set. By an elegant application of Grothendieck’s
factorization theorem Terzioğlu [Ter13, Proposition 3] proved that an ab-
solutely convex bounded set B of a Fréchet space X is prominent if and
only if, for every U ∈ U0(X), there are V ∈ U0(X) and C ≥ 0 such that
δn(V,U) ≤ Cδn(B, V ) for all n ∈ N0.

Moreover, he proved the existence of prominent bounded sets in so-called
G1 spaces, a class of Köthe sequence spaces containing power series spaces
of finite type, and he showed that power series spaces of infinite type do not
have prominent sets.

There are some more topological invariants distinguishing power series
spaces of finite and infinite type, in particular condition (Ω) of Vogt and
Wagner [MV97, Chapter 29]. We recall that a Fréchet space X with a fun-
damental sequence of seminorms ‖ · ‖k and corresponding dual norms ‖ · ‖∗k
satisfies (Ω) if

∀k ∈ N ∃` ≥ k ∀m ≥ ` ∃C > 0 ∀ϕ ∈ X ′ : (‖ϕ‖∗` )2 ≤ C‖ϕ‖∗k‖ϕ‖∗m.
Theorem 2.1. Every Fréchet space X with (Ω) has a prominent set.

Proof. A combination of Lemmas 29.13 and 29.16 in [MV97] shows that
there exists a bounded Banach disk B of X such that, for every U ∈ U0(X),
there exist V ∈ U0(X) and C > 0 with

V ⊆ rU +
C

r
B for all r > 0.

Fix U ∈ U0(X) and take V and C as above. Let n ∈ N0 and δ > δn(B, V ).
Then there exists an at most n-dimensional subspace L with B ⊆ δV + L.
For r = 2Cδ, we obtain

V ⊆ rU +
C

r
B ⊆ rU +

Cδ

r
V + L = 2CδU +

1

2
V + L.

Inserting this inclusion into its right hand side, we get

V ⊆ 2CδU +
1

2

(
2CδU +

1

2
V + L

)
+ L ⊆ 2Cδ

(
1 +

1

2

)
U +

1

4
V + L.

By iteration, for every j ∈ N, this implies

V ⊆ 2Cδ

(
1 +

1

2
+ · · ·+ 1

2j−1

)
U +

1

2j
V + L ⊆ 4CδU +

1

2j
V + L.

Choosing j such that 1
2j
V ⊆ CδU we get

V ⊆ 5CδU + L.

We have shown δn(V,U) ≤ 5Cδ and thus

δn(V,U) ≤ 5Cδn(B, V ).

Hence B is a prominent set of E.
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We will next show that the implication in this theorem is in fact a
characterization for regular Köthe spaces. We recall that for a matrix A =
(ak(n))(k,n)∈N2

0
of positive weights with ak(n) ≤ ak+1(n) the corresponding

Köthe space (of order 1—but everything below holds for all other orders) is

λ1(A) =
{

(xn)n∈N0 ∈ CN0 : ‖x‖k =

∞∑
n=0

ak(n)|xn| <∞ for all k ∈ N0

}
.

The space and the matrix are called regular if n 7→ ak(n)/ak+1(n) is decreas-
ing for every k ∈ N0. The advantage of regularity is that the Kolmogorov
widths are then very easy to calculate: for the unit balls Uk of the seminorms
‖ · ‖k and ` ≥ k we have, e.g., by [Ter08],

δn(U`, Uk) =
ak(n)

a`(n)
for all n ∈ N0.

More information about diametral dimensions of Köthe spaces can be found
in [Ter08, BD16].

A characterization of (Ω) for Köthe spaces is well-known (see, e.g.,
[Wag80, Satz 1.10]), and in fact easily obtained from ‖πn‖∗` = 1/a`(n) (where
πn(x) = xn) and the definition of (Ω):

λ1(A) has (Ω) if and only if, for every k ∈ N0, there exists ` ≥ k such
that for every m ≥ ` there is c > 0 with

a2` (n) ≥ cam(n)ak(n) for all n ∈ N0.

Proposition 2.2. A regular Köthe space λ1(A) has a prominent set if
and only if it satisfies (Ω).

Proof. We still have to show necessity of (Ω) given a prominent bounded
set B. As supersets of prominent sets are prominent we may assume that
B =

⋂
k∈N0

rkUk for a sequence of scalars rk > 0. For k ∈ N0, Terzioğlu’s
characterization mentioned above for U = Uk yields V = U` for some ` ≥ k
and C > 0 such that

δn(U`, Uk) ≤ Cδn(B,U`).

Given m ≥ `, the inclusion B ⊆ rmUm then yields

δn(U`, Uk) ≤ Cδn(B,U`) ≤ Crmδn(Um, U`).

The formula for δn(U`, Uk) above thus gives

ak(n)

a`(n)
≤ Crm

a`(n)

am(n)
for all n ∈ N0,

which implies (Ω).

We will finally show that products of two power series spaces of different
type like H(D)×H(C) may have prominent bounded sets. This shows that
having prominent bounded sets is not inherited by complemented subspaces.
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We recall that for an increasing sequence 0 < αn →∞ the power series
spaces of finite type Λ0(α) = λ1(A) and infinite type Λ∞(α) = λ1(B) are
regular Köthe spaces corresponding to the matrices

A = (exp(−αn/k))(k,n)∈N2
0

and B = (exp(kαn))(k,n)∈N2
0
.

The sequence α is called stable if α2n/αn is bounded (this is equivalent to
Λr(α) being isomorphic to its Cartesian square).

Proposition 2.3. For every stable sequence αn →∞ the space Λ0(α)×
Λ∞(α) has a prominent bounded set but does not satisfy (Ω).

Proof. As Λ0(α) satisfies (Ω) it has a prominent bounded set B, and we
will show that B × {0} is prominent in Λ0(α)× Λ∞(α).

We write U0
k and U∞k for the canonical 0-neighbourhoods in Λ0(α) and

Λ∞(α), respectively, as well as δ0n, δ∞n , and δ×n for the Kolmogorov diameters
in Λ0(α), Λ∞(α), and their product.

The proof is based on the simple observation that

δ×2n(V 0 × V∞, U0 × U∞) ≤ max{δ0n(V 0, U0), δ∞n (V∞, U∞)}.
Indeed, if V r ⊆ δU r + Lr for r ∈ {0,∞} with at most n-dimensional sub-
spaces Lr of Λr(α) then L0 × L∞ is an at most 2n-dimensional subspace of
Λ0(α)× Λ∞(α) with

V 0 × V∞ ⊆ δ(U0 × U∞) + L0 × L∞.
Since power series spaces are regular the Kolmogorov diameters δrn are easily
calculated, in particular δ∞n (V∞, U∞) is much smaller than δ0n(V 0, U0). We
will finally need stability to compare δ0n and δ02n. The details of the proof
need some care and we first give precise estimates for δ02n which are quite
easily obtained from δ0n(U0

k , U
0
m) = am(n)/ak(n) = exp((1/k − 1/m)αn).

For all m ∈ N0, there exists s ≥ m such that, for all k ≥ s, we have

δ0n(U0
k , U

0
m) ≤ δ02n(U0

k , U
0
s ) for every n ∈ N0.

Indeed, we take c > 0 such that α2n/αn ≤ c for all n ∈ N. If m ∈ N is
given, we choose s ≥ (c+ 1)m. Then, if k > s, we have

α2n

αn
≤ c ≤ s

m
− 1 ≤ 1/m− 1/k

1/s
≤ 1/m− 1/k

1/s− 1/k

for every n ∈ N0. Therefore, (1/s− 1/k)α2n ≤ (1/m− 1/k)αn for all k ≥ s,
which implies

δ0n(U0
k , U

0
m) = exp((1/k − 1/m)αn) ≤ exp((1/k − 1/s)α2n) = δ02n(U0

k , U
0
s ).

Let now U be a 0-neighbourhood in Λ0(α)×Λ∞(α) which we may assume
to be of the form U = U0

m × U∞m for some m ∈ N (because the sets m−1U rm
are bases of the 0-neighbourhood filters). We choose s as above and then,
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according to Terzioğlu’s characterization of prominence, k ≥ s and C ≥ 0
such that for all n ∈ N0,

δ0n(U0
k , U

0
s ) ≤ Cδ0n(B,U0

k ).

We then get, for all n ∈ N0,

δ0n(U0
k , U

0
m) ≤ δ02n(U0

k , U
0
s ) ≤ Cδ02n(B,U0

k ).

Moreover, since αn+1 ≤ α2n ≤ cαn we find ` ∈ N such that

δ∞n (U∞` , U
∞
m ) = exp((m− `)αn) ≤ exp((1/k − 1/m)αn+1)

= δ0n+1(U
0
k , U

0
m) ≤ δ0n(U0

k , U
0
m)

for all n ∈ N0. With these choices we get

δ×2n(U0
k × U∞` , U0

m × U∞m ) ≤ max{δ0n(U0
k , U

0
m), δ∞n (U∞` , U

∞
m )}

= δ0n(U0
k , U

0
m) ≤ Cδ02n(B,U0

k ) = Cδ×2n(B × {0}, U0
k × U∞` )

for every n ∈ N0 (the last equality is immediate from the definition of
Kolmogorov widths). Similarly, for odd dimensions 2n+ 1 we have

δ×2n+1(U
0
k × U∞` , U0

m × U∞m ) ≤ max{δ0n+1(U
0
k , U

0
m), δ∞n (U∞` , U

∞
m )}

= δ0n+1(U
0
k , U

0
m) ≤ Cδ02n+2(B,U

0
k ) ≤ Cδ02n+1(B,U

0
k )

= Cδ×2n+1(B × {0}, U
0
k × U∞` ).

We have thus shown that for all n ∈ N0,

δ×n (U0
k × U∞` , U0

m × U∞m ) ≤ Cδ×n (B × {0}, U0
k × U∞` ),

which implies that B×{0} is a prominent bounded set in Λ0(α)×Λ∞(α).

Combining this with Proposition 2.2 we get the following application of
Terzioğlu’s invariant of having a bounded prominent set:

Corollary 2.4. For every stable sequence αn →∞ the space Λ0(α)×
Λ∞(α) is not isomorphic to a regular Köthe space.

We thank D. Vogt for the remark that this corollary can also be deduced
from a result of Zahariuta [Zah73, Theorem 12].

Acknowledgements. The work of L. Demeulenaere was supported by
a grant from the “Fonds National de la Recherche Scientifique” (FRIA
grant).

References

[BD16] F. Bastin and L. Demeulenaere, On the equality between two diametral dimen-
sions, Funct. Approx. Comment. Math., to appear (2016).

[MV97] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Grad.
Texts Math. 2, Oxford Univ. Press, New York, 1997.



280 L. Demeulenaere et al.

[Mit61] B. S. Mityagin, Approximate dimension and bases in nuclear spaces, Uspekhi
Mat. Nauk 16 (1961), no. 4 (100), 63–132 (in Russian), English transl.: Russian
Math. Surveys 16 (1961), no. 4, 59–127.
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