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Congruence covers of triangular modular curves
and their Galois groups

by

Luiz Kazuo Takei (Sainte-Anne-de-Bellevue)

0. Introduction. The classical modular group SL2(Z) has been exten-
sively studied, especially because of its connection with elliptic curves and
Fermat’s Last Theorem (cf. [DS05] for a detailed account of that connec-
tion). In this article we study a family of Fuchsian groups of which SL2(Z)
is a particular member, namely the (hyperbolic) triangle groups (denoted
Γa,b,c). Our motivation is twofold:

• according to Bely̆ı’s Theorem (cf. [Bel79]), every algebraic curve de-
fined over a number field is uniformized, when viewed as a Riemann
surface, by a triangle group;

• more recently, Darmon (cf. [Dar04]) speculated that triangle groups
may provide a powerful approach to understand the generalized Fer-
mat equations.

To study the connection between SL2(Z) and elliptic curves, one can
start with the definition of congruence subgroups of SL2(Z) such as Γ (N)
and Γ0(N) and their corresponding modular curves X(N) = Γ (N)\H∗ and
X0(N) = Γ0(N)\H∗, where H∗ is the union of the Poincaré upper half-plane
and the cusps of SL2(Z) (cf. [DS05, Chapters 1 and 2]). One is then led to
consider maps such as

X(N)→ X(1) ∼= P1,

which is a Galois cover. Some natural questions then quickly arise:

(1) What is the Galois group of that cover?
(2) What is the genus of X(N)?
(3) What is the genus of X0(N)?
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Section 1 essentially shows that the notions and questions from the pre-
vious paragraph still make sense when SL2(Z) is replaced by a triangle group
Γa,∞,∞. In particular, it shows that Γa,∞,∞ ⊆ SL2(O), where O is the ring
of integers of the totally real field Q(ζ2a + ζ−12a ). It is then possible to define

congruence subgroups Γa,∞,∞(p) and Γ
(0)
a,∞,∞(p) for a prime ideal p of O and

their corresponding modular curves Xa,∞,∞(p) and X
(0)
a,∞,∞(p).

The questions above have all been answered in the case of the classi-
cal modular group SL2(Z) (cf. [DS05, Chapter 3]). When the more general
triangle groups are considered, those questions become more challenging
and have only been answered in some cases. For instance, Lang–Lim–Tan
[LLT00] answered questions (1) and (2) for triangle groups of type Γ2,b,∞.
The present article follows, for the most part, the approach of Lang–Lim–
Tan to answer the above questions for triangle groups of type Γa,∞,∞. More
precisely, questions (1)–(3) are answered respectively by the results below.

Theorem 2.11. Let a ≥ 3 be an odd integer and p be a prime ideal of O
lying above pZ where p ≥ 2. Moreover, let G denote the Galois group of

ϕ : Xa,∞,∞(p)→ Xa,∞,∞(1) ∼= P1.

(i) If p = 2, then G ∼= D2a.
(ii) If p = 3 and (2 + ζ2a + ζ−12a )2 − 2 ∈ p, then G ∼= PSL2(F5).
(iii) Otherwise, G ∼= PSL2(O/p).

Remark. Clark–Voight have done an extensive study of triangle groups.
In particular, they indepently proved a result which overlaps with the the-
orem above (cf. [CV, Theorem 9.1]).

Proposition 3.1. Suppose a is an odd number and p is a prime ideal of O
lying above pZ. Suppose also that p - a. Then the genus of Xa,∞,∞(p) is

1 +
|G|
2

(
1− 2

p
− 1

a

)
,

where G denotes the Galois group of ϕ.

Theorem 4.5. Let p 6= q be prime numbers strictly greater than 2 and let
p be a prime ideal of O above pZ. Assume that the Galois group of ϕ is
isomorphic to PSL2(O/p) (always true when p ≥ 5 by Theorem 2.11). Then

the genus of the curve X
(0)
q,∞,∞(p) is given by

g =
q − 1

2
· p

f − δ
q
− pf−1,

where

• f is the smallest positive integer such that pf ≡ ±1 (mod q), and
• δ ∈ {±1} is such that pf ≡ δ (mod q).
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Finally, we use the formulas above to compute the genera of X
(0)
q,∞,∞(p)

andXq,∞,∞(p) for the first few prime numbers p, q and summarize the results
in Section 5.

1. Basic definitions and notation. Let a ≤ b ≤ c be three elements
of Z≥2 ∪ {∞} such that 1/a + 1/b + 1/c < 1. This condition allows the
construction of a hyperbolic triangle with angles π/a, π/b and π/c.

Definition 1.1. A (hyperbolic) triangle group of type (a, b, c) (or an
(a, b, c)-triangle group) is a subgroup of SL2(R) whose image in PSL2(R) is
generated by r1r2, r2r3 and r3r1, where r1, r2, r3 are the reflections across the
sides of a hyperbolic triangle in the Poincaré upper half-plane with angles
π/a, π/b, π/c.

Theorem 10.6.4 in [Bea83] says that an (a, b, c)-triangle group is a Fuch-
sian group of the first kind (cf. [Shi94, Chapter 1] for the basic definitions and
results related to those Fuchsian groups). Moreover, for (a, b, c) fixed, [Tak77,
Proposition 1] says that an (a, b, c)-triangle group is essentially unique in the
sense that it is independent of the particular hyperbolic triangle used in its
construction.

In this article, we will restrict our attention to the (a,∞,∞)-triangle
groups. Furthermore, Γa,∞,∞ will denote a specific realization of an
(a,∞,∞)-triangle group: namely, it is the triangle group constructed from
the hyperbolic triangle having as sides an arc of the unit circle and the ver-
tical half-lines x = 0 and x = 1. By the definition of Γa,∞,∞, it follows that a
fundamental domain (for the natural action of Γa,∞,∞ on the Poincaré upper
half-plane H) is given by two copies of that triangle as shown in Figure 1:
the original one and its reflection about one of its sides (for instance, the
side x = 1).
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Fig. 1. A fundamental region for Γa,∞,∞
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The two propositions below are now an easy consequence of the previous
discussion.

Proposition 1.2. As a Riemann surface,

Γa,∞,∞ \H∗ ∼= P1,

where H∗ = H ∪ {cusps of Γa,∞,∞}.

Proposition 1.3. The group Γa,∞,∞ has (up to Γa,∞,∞-equivalence)

(i) one elliptic point: z0 = ei(π−π/a);
(ii) two cusps: 1 and ∞.

From the construction of Γa,∞,∞ explained above, it follows that Γa,∞,∞
is the subgroup of SL2(R) generated by

γ1 =

(
−2 cos(π/a) −1

1 0

)
, γ2 =

(
0 1

−1 2

)
, γ3 =

(
1 2 + 2 cos(π/a)

0 1

)
.

Note that Γa,∞,∞ is a subgroup of SL2(O), where O = Z[ζ2a+ζ−12a ] is the
ring of integers of the maximal real subfield of Q(ζ2a) and ζn = exp(2πi/n).

Definition 1.4. Given a prime ideal p of O, the congruence subgroups
of Γa,∞,∞ with level p are defined to be

Γa,∞,∞(p) =

{
M ∈ Γa,∞,∞

∣∣∣∣M ≡ (1 0

0 1

)
(mod p)

}
,

Γ (0)
a,∞,∞(p) =

{
M ∈ Γa,∞,∞

∣∣∣∣M ≡ (∗ ∗0 ∗

)
(mod p)

}
.

Remark 1. The classical modular group SL2(Z) is also a triangle group
(in fact, it is the triangle group Γ2,3,∞), and its congruence subgroups as
defined above are simply the well known congruence subgroups of SL2(Z).
For more details, see [Tak12, Section 2].

Remark 2. Unlike SL2(Z), the group Γa,∞,∞ is not necessarily arith-
metic. In fact, Γa,∞,∞ is arithmetic if and only if a ∈ {2, 3} (cf. [Tak77,
Theorem 3]).

In analogy with the classical case, the triangular modular curves associ-
ated to those groups are defined as follows:

(1)

Xa,∞,∞ := Γa,∞,∞\H∗,
Xa,∞,∞(p) := Γa,∞,∞(p)\H∗,
X(0)
a,∞,∞(p) := Γ (0)

a,∞,∞(p)\H∗.
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As mentioned in the introduction, one of the goals of this article is the
computation of the Galois group of the cover

ϕ : Xa,∞,∞(p)→ Xa,∞,∞.

Throughout this article, the following notation will be used:

λa = ζ2a + ζ−12a and µa = 2 + λa,

so that

γ1 =

(
−λa −1

1 0

)
, γ2 =

(
0 1

−1 2

)
, γ3 =

(
1 µa

0 1

)
.

Moreover,

(2) ρ : Γa,∞,∞ → SL2

(
Z[λa]

p

)
denotes the map which sends each matrix to the matrix with reduced entries.
Since Γa,∞,∞(p) = ker(ρ), it follows that the group Γa,∞,∞(p) is normal in
Γa,∞,∞. Finally, whenever Γ ⊆ SL2(R), the symbol Γ ⊆ PSL2(R) will denote
the image group of Γ in PSL2(R).

2. Galois group of ϕ

2.1. Special linear groups over finite fields. In this section we will
use the facts below.

Fact 2.1. A presentation for SL2(F5) is given by

SL2(F5) = 〈x, y | x5 = y3 = (xy)4 = 1, (xy)2x = x(xy)2, (xy)2y = y(xy)2〉
(cf. [Suz82, Chapter 2, Section 6, Example 4]).

Fact 2.2. The center Z(SL2(F )) of SL2(F ) (where F is any field) is
equal to {±I} (cf. [Suz82, Chapter 1, Corollary 2 of Result 9.8]).

We state a theorem due to Dickson [Suz82, Chapter 3, Theorem 6.17].

Theorem 2.3. Let F be an algebraically closed field of characteristic
p ≥ 2, and G be a finite subgroup of SL2(F ) such that |G| is divisible by p
and that G admits at least two Sylow p-subgroups of order pr. Then G is
isomorphic to one of the following groups:

(i) p = 2 and G is dihedral of order 2n where n is odd,
(ii) p = 3 and G ∼= SL2(F5),

(iii) SL2(K),
(iv) the subgroup generated by SL2(K) and dπ =

(
π 0
0 π−1

)
,

where K is a field of pr elements and π is an element such that K(π) is a
field of p2r elements and π2 is a generator of K×.
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This allows us to prove the following:

Corollary 2.4. Let p ≥ 3 be a prime number and E = Fp(z) be the field
with pm elements, where z 6= 0. Let G be the subgroup of SL2(E) generated
by (

0 1

−1 2

)
and

(
1 z

0 1

)
.

Then:

(i) G ∼= SL2(F5) if p = 3 and z2 = 2;
(ii) G ∼= SL2(E) otherwise.

Proof. Let

v =

(
0 1

−1 2

)
and uz =

(
1 z

0 1

)
.

It is clear that uz has order p. The same is true for v since its Jordan
canonical form is

(
1 1
0 1

)
. We shall prove that v and uz belong to two distinct

Sylow p-subgroups of G.

Claim. Let U = {ua | a ∈ Fq} ⊆ SL2(E) where q = pm and ua =
(
1 a
0 1

)
.

Then U ∩ G is a p-Sylow of G. More generally, U ∩ G is the only p-Sylow
of G that contains uz.

Let P be a p-Sylow of SL2(E) containing uz. We will prove P = U .
The claim would then follow by one of the Sylow theorems (namely the one
which says that any p-subgroup is contained in a p-Sylow). In fact, by one
of the Sylow theorems, P = αUα−1 for some α =

(
a b
c d

)
∈ SL2(Fq) (because

U is a p-Sylow of SL2(Fq)). So, there exists z′ ∈ Fq \ {0} such that

uz = αuz′α
−1 =

(
1− acz′ a2z

−c2z 1 + acz

)
.

Hence, c = 0. Thus, P = U .

Therefore, v and uz belong to two distinct p-Sylows of G. So, we can use
Theorem 2.3.

Since we are assuming p > 2, there are only three possibilities for G:
SL2(F5) (by Theorem 2.3, this can only happen when p = 3), SL2(Fpr) or
〈SL2(Fpr), dπ〉, where pr is the order of a p-Sylow of G.

Claim. G 6∼= 〈SL2(Fpr), dπ〉.
Let H = 〈SL2(Fpr), dπ〉. If G ∼= H, then their respective abelianizations

are also isomorphic: Gab ∼= Hab. As G = 〈v, uz〉 and ord(v) = ord(uz) = p,
every element of Gab has order dividing p. We claim that dπ (the image of
dπ in Hab) does not have order dividing p.
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In fact, ord(dπ) = ord(π). We know that ord(π2) = pr − 1. On the other
hand,

ord(π) =

{
ord(π2) if ord(π) is odd,

2 ord(π2) if ord(π) is even.

So, ord(π) = pr − 1 or 2(pr − 1).

Since ord(dπ) | ord(dπ) and p - 2(pr − 1), we have ord(dπ) - p.
It remains to show that if p = 3, then G ∼= SL2(F5) if and only if z2 = 2.

Claim. If p = 3 and G ∼= SL2(F5), then z2 = 2.

By Fact 2.2, we have Z(G) = {±I}, and thus |Z(G)| = 2. So, by [Suz82,
Chapter 1, Corollary of Theorem 9.9], G

Z(G) is a simple group of order 60.

Therefore, by [Suz82, Chapter 3, Section 3, Exercise 9], we have G
Z(G)

∼= A5.

Let v and u−1z be the images of v and u−1z respectively in A5. Since
v and u−1z are clearly not in Z(G) and their order is 3, we deduce that

ord(v) = ord(u−1z ) = 3. So, v = (abc) and u−1z = (def). Obviously we need
to have {a, b, c, d, e, f} = {1, 2, 3, 4, 5}. Without loss of generality, v = (123)

and u−1z = (145). Consequently, vu−1z = (12345). So, (vu−1z )5 = ±I. Thus,
ord(vu−1z ) = 5 or 10. Hence, looking at the Jordan canonical form of vu−1z ,
we get

z + 2 = tr(vu−1z ) = ±(x+ x−1)

for some primitive fifth root of unity x over F3.

Since x4 + x3 + x2 + x+ 1 = 0,

(z + 2)2 = ∓(z + 2) + 1, i.e., z2 = z + 1 or z2 = 2.

If z2 = z + 1, then G = 〈v, uz〉 has 720 elements. Hence, z2 = 2.

Claim. If p = 3 and z2 = 2, then G ∼= SL2(F5).

Let h = (vuz)
2 =

(
2 2+2z
z+1 2+2z

)
. Since v = h−1uzh, it follows that G =

〈h, uz〉. Moreover, h5 = u3z = (huz)
4 = 1 and (huz)

2 =
(−1 0

0 −1
)
. Therefore,

Fact 2.1 implies that G is a homomorphic image of SL2(F5). Using the
computer algebra system Sage [S+12], we have verified that |G| = 120, and
thus G ∼= SL2(F5).

2.2. A bit of algebraic number theory

Lemma 2.5. Let a > 2 be an integer and p a prime number such that
p - a. If p is a prime in Q(ζa + ζ−1a ) above p, then the inertia degree of p
over p (i.e., the degree of Fp over Fp) is the smallest positive integer f such
that pf ≡ ±1 (mod a).

Proof. Let σp ∈ Gal(Q(ζa)/Q) be the Frobenius automorphism of Q(ζa)
associated to a prime above p. Then σp(ζa) = ζpa (cf. [Was82, proof of
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Theorem 2.13]). Note that σp|Q(ζa+ζ
−1
a ) (also denoted σp) is the Frobe-

nius automorphism of Q(ζa + ζ−1a ) associated to p. Hence, the order of
σp ∈ Gal(Q(ζa + ζ−1a )/Q) is the inertia degree of p over p. Therefore, the
inertia degree of p over p is the smallest positive integer f such that

σfp (ζa + ζ−1a ) = ζa + ζ−1a ⇔ ζp
f

a + ζ−p
f

a = ζa + ζ−1a ⇔ pf ≡ ±1 (mod a),

where the last equivalence follows from the fact that {ζra + ζ−ra | 1 ≤ r ≤
(a− 1)/2, (r, a) = 1} is the set of all the ϕ(a)/2 roots of the minimal poly-
nomial of ζa + ζ−1a .

Proposition 2.6. Let a > 2 be an integer and p a prime number. If p
is a prime in Q(ζa + ζ−1a ) above p, then the inertia degree of p over p is the
smallest positive integer f such that pf ≡ ±1 (mod a′), where a′ = a/pν and
pν is the greatest power of p dividing a.

Proof. Let fm(x) ∈ Z[x] be the minimal polynomial of ζm + ζ−1m . By
[Neu99, Proposition 8.3], the inertia degree of p over p is given by the degree
of the irreducible factors of fa(x) (mod p). Note that

fa(x) =
∏
i,j

(
x− (ζia′ζ

j
pν + (ζia′ζ

j
pν )−1)

)
,

where j varies over {j | 0 ≤ j ≤ (pν − 1), (p, j) = 1} and i varies over
{i | 0 ≤ i ≤ a′/2, (a′, i) = 1}. Since xp

ν − 1 = (x − 1)p
ν

(mod p), it follows
that ζpν ≡ 1 (mod p̂), where p̂ is a prime in Q(ζa) above p. Therefore

fa(x) ≡
∏
i

(
x− (ζia′ + (ζia′)

−1)
)ϕ(pν) ≡ fa′(x)ϕ(p

ν) (mod p),

and thus

fa(x) ≡ fa′(x)ϕ(p
ν) (mod p).

The result is now a consequence of the previous lemma.

2.3. Computing [Γa,∞,∞ : Γa,∞,∞(p)]. Let ρ be the map defined in (2).
We define

ρ : Γa,∞,∞ → PSL2(E), g 7→ ρ(g),

where E = Z[λa]/p and ¯ denotes the image in PSL2. This map is well
defined because ρ(−g) = −ρ(g).

Therefore, we have a commutative diagram

Γa,∞,∞
ρ //

����

SL2(E)

����
Γa,∞,∞

ρ // PSL2(E)
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Lemma 2.7. ker(ρ) = Γa,∞,∞(p).

Proof. Since ker(ρ) = Γa,∞,∞(p), it is clear that Γa,∞,∞(p) ⊆ ker(ρ).

Now, take g ∈ ker(ρ), i.e., ρ(g) = ±I (I is the identity matrix). Since
ρ(−g) = −ρ(g), we get ±g ∈ ker(ρ) = Γa,∞,∞(p). So, g ∈ ±Γa,∞,∞(p).

Hence, g ∈ Γa,∞,∞(p).

This shows that Γa,∞,∞/Γa,∞,∞(p) ∼= img(ρ).

Lemma 2.8. If a ≥ 3 is an odd integer, then

(i) NQ(ζ2a)/Q(1 + ζ2a) divides a,

(ii) NQ(ζ2a)/Q(µa) divides a2, and

(iii) all prime factors of NQ(ζ2a)/Q(ζn2a − ζ
−n
2a ) are divisors of a, for any

n ∈ Z such that a - n.

Moreover, if a is an odd prime, then items (i) and (ii) are equalities.

Proof. Note that µa = (1 + ζ2a)(1 + ζ−12a ). Since a is odd, −ζ2a is a
primitive ath root of unity. So, the minimal polynomial of ζ2a is φa(−x),
where φa is the ath cyclotomic polynomial. So, the minimal polynomial of
1 + ζ2a is h(x) = φa(−(x − 1)) = φa(−x + 1). Since φa(x) | (xa−1 + xa−2 +
· · ·+ x+ 1) in Z[x],

h(x) |
(
(−x+ 1)a−1 + · · ·+ (−x+ 1) + 1 = xa−1 + · · ·+ a

)
,

and thus the constant term of h divides a in Z. So, NQ(ζ2a)/Q(1 + ζ2a)

divides a. Similarly, NQ(ζ2a)/Q(1 + ζ−12a ) divides a. Hence, NQ(ζ2a)/Q(µa) =

NQ(ζ2a)/Q(1 + ζ2a) ·NQ(ζ2a)/Q(1 + ζ−12a ) divides a2.

When a is prime,

h(x) = (−x+ 1)a−1 + · · ·+ (−x+ 1) + 1 = xa−1 + · · ·+ a

and the lemma follows.

For the last item, note that

ζn2a − ζ−n2a = ζ−n2a (ζ2n2a − 1) = ζ−n2a (ζna − 1).

Since ζn2a is a unit, its norm is ±1, and thus it suffices to check the prime
divisors of NQ(ζ2a)/Q(ζna − 1). Note that a - n implies that ζna − 1 6= 0. The
argument is now similar to the one used to prove the first item.

Lemma 2.9. If p is a prime ideal lying above 2Z and a is odd, then
img(ρ) ∼= D2a.

Proof. Note that img(ρ) = img(ρ).

We are going to use the fact that if G = 〈g, h〉 and both g and h have
order 2, then G ∼= D2s, where s is the order of gh.
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Since p = 2, ρ(γ2) has order 2. By the previous lemma, so does ρ(γ3).
Note also that the Jordan canonical form of γ2γ3 is(

−ζ2a 0

0 −ζ−12a

)
,

and therefore ρ(γ2 γ3) has order a.

Lemma 2.10. Suppose p is a prime ideal lying above pZ with p ≥ 3.
Then img(ρ) is isomorphic to

(i) PSL2(F5) if p = 3 and µ2a − 2 ∈ p,
(ii) PSL2(E) otherwise (where E = Z[λa]/p).

Proof. Again notice that img(ρ) = img(ρ).

If p = 3 and µ2a − 2 ∈ p, Corollary 2.4 says that img(ρ) ∼= SL2(F5). We
have to prove that img(ρ) ∼= PSL2(F5). Notice that

img(ρ) =
img(ρ)

{±I} ∩ img(ρ)
.

We can verify that −I ∈ img ρ. In fact, there are only two cases to
consider, and they were computed explicitly using Sage.

So, by Fact 2.2,

img(ρ) =
SL2(F5)

Z(SL2(F5))
= PSL2(F5).

Otherwise, Corollary 2.4 says that img(ρ) = SL2(E), i.e., ρ is surjective.
Hence, img(ρ) = PSL2(E).

Theorem 2.11. Let a ≥ 3 be an odd integer and p be a prime ideal of
Z[λa] lying above pZ where p ≥ 2. Moreover, let G denote the Galois group
of

ϕ : Xa,∞,∞(p)→ Xa,∞,∞.

(i) If p = 2, then G ∼= D2a, and hence [Γa,∞,∞ : Γa,∞,∞(p)] = 2a.
(ii) If p = 3 and µ2a − 2 ∈ p, then G ∼= PSL2(F5), and hence

[Γa,∞,∞ : Γa,∞,∞(p)] = 60.

(iii) Otherwise, G ∼= PSL2(Z[λa]/p), and hence

[Γa,∞,∞ : Γa,∞,∞(p)] = (pm + 1)pm(pm − 1)/2.

Moreover, Z[λa]/p ∼= Fpm where m is the smallest positive integer such that
pm ≡ ±1 (mod a/pν) and pν is the greatest power of p dividing a.

Proof. The theorem follows from Lemmas 2.9 and 2.10.

The fact that Z[λa]/p is a field with pm elements with m as in the
statement of the theorem follows from Proposition 2.6.
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Remark 3. Recall that, in the classical setting, the Galois group of

X(p)→ X(1)

is always PSL2(Z/p). The previous theorem shows that it is not always the
case for a general triangle group and, in fact, establishes exactly when that
happens for the triangle groups Γa,∞,∞.

3. Genus of Xa,∞,∞(p). The proposition below paired with Theo-
rem 2.11 computes the genera of Xa,∞,∞(p) for many ideals p.

Proposition 3.1. Suppose a is an odd number and p is a prime ideal of
Z[λa] lying above pZ. Suppose also that p - a. Then the genus of Xa,∞,∞(p)
is

1 +
µ

2

(
1− 2

p
− 1

a

)
,

where µ = [Γa,∞,∞ : Γa,∞,∞(p)].

Proof. To simplify notation, let us write Γ = Γa,∞,∞.
We know that the map

ϕ : Γ (p)\H∗ → Γ\H∗

is holomorphic and has degree µ (cf. [Shi94, Section 1.5]). So we can use the
Riemann–Hurwitz formula to compute the genus g of Γ (p)\H∗:

2g − 2 = µ(2 · 0− 2) +
∑

P∈Γ (J)\H∗
(eP − 1) = −2µ+

∑
P∈Γ (J)\H∗

(eP − 1)

where eP is the ramification index of ϕ at P .
By [Shi94, Proposition 1.37], the only points P which may have eP > 1

are those mapped to cusps or elliptic points. Therefore, by Proposition 1.3,
the only points P which may have eP > 1 are those mapped to 1, ∞ or
z0 = ei(π−π/a).

Moreover, it follows from [Bea83, proof of Theorem 10.6.4] that
Γ 1 = 〈γ2〉, Γ∞ = 〈γ3〉 and Γ z0 = 〈γ1〉. In particular, |Γz0 | = a.

Consider {w1, . . . , wk(1)} = ϕ−1(1) and let e
(1)
1 , . . . , e

(1)

k(1)
be their respec-

tive ramification indices. Since Γ (p)EΓ , [Shi94, Proposition 1.37] says that

e
(1)
1 = · · · = e

(1)
k = [Γ1 : Γ (p)1] and k(1)e

(1)
1 = µ.

Next, Γ 1 = 〈γ2〉 and Γ (p)1 = Γ 1 ∩ Γ (p). Since γn2 =
(−n+1 n
−n n+1

)
and

p ∩ Z = pZ, we have Γ (p)1 = 〈γp2〉. So,

(3) e
(1)
1 = · · · = e

(1)
k = p and k(1) = µ/p.

Let us now compute the ramification indices of ϕ−1(∞).
Since p - a, Lemma 2.8 implies that µa 6∈ p. Because γn3 =

(
1 nµq
0 1

)
and

Γ∞ = 〈γ3〉, we see that Γ (p)∞ = 〈γ3p〉, and hence [Γ∞ : Γ (p)∞] = p.
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Therefore, if {v1, . . . , vk(∞)} = ϕ−1(∞) and e
(∞)
1 , . . . , e

(∞)

k(∞) are their re-
spective ramification indices, by [Shi94, Proposition 1.37] we get

(4) e
(∞)
1 = · · · = e

(∞)

k(∞) = p and k(∞) = µ/p.

Now we shall compute the ramification indices of ϕ−1(z0). We need to
compute Γ (p)z0 . Since Γ (p)z0 = Γ z0∩Γ (p) and Γ z0 has only elliptic elements

(in addition to the identity), the next claim tells us that |Γ (p)z0 | = 1.

Therefore, [Γ z0 : Γ (p)z0 ] = a.

Claim. Γ (p) has no elliptic element.

Since z0 is the only inequivalent elliptic point and Γ z0 = 〈γ1〉, we see
that any elliptic element of Γ is conjugate to some (non-trivial) power of γ1.
Since Γ (p) E Γ , if Γ (p) contains an elliptic element, it would also contain
some (non-trivial) power of γ1. Now note that

γ1 = P

(
−ζ2a 0

0 −ζ−12a

)
P−1 where P =

(
−ζ2a −ζ−12a

1 1

)
.

Therefore,

γn1 =
1

−(ζ2a − ζ−12a )

(
∗ (−1)n+1(ζn2a − ζ

−n
2a )

∗ ∗

)
.

Since p - a, the last item of Lemma 2.8 shows that

(−1)n+1(ζn2a − ζ
−n
2a )

−(ζ2a − ζ−12a )
6≡ 0 (mod p).

Hence, if ϕ−1(z0) = {y1, . . . , yk(z0)} and e
(z0)
1 , . . . , e

(z0)

k(z0)
are their respec-

tive indices, [Shi94, Proposition 1.37] tells us that

(5) e
(z0)
0 = · · · = e

(z0)

k(z0)
= a and k(z0) = µ/a.

Using the Riemann–Hurwitz formula with the information given by (3)–(5),
we get

2g − 2 = −2µ+
µ

p
(p− 1) +

µ

p
(p− 1) +

µ

a
(a− 1)

= µ

(
−2 + 2− 2

p
+ 1− 1

a

)
= µ

(
1− 2

p
− 1

a

)
.

Hence,

g = 1 +
µ

2

(
1− 2

p
− 1

a

)
.

4. Genus of X
(0)
q,∞,∞(p). In order to further understand the triangu-

lar modular curves, this section will be devoted to the computation of the
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genus of X
(0)
q,∞,∞(p) for a prime number q. The motivation here is a well

known result in the SL2(Z) case stating that X0(p) admits an integral model
for which the reduction modulo p consists of two copies of X0(1)Fp = P1

Fp
crossing transversally at the supersingular points (cf. [DR73, Theorem 6.9,
p. 286]). In particular, in a study conducted in [Tak] to investigate whether a
similar structure might exist in the case of the groups Γq,∞,∞, the knowledge

of the genus of X
(0)
q,∞,∞(p) was crucial.

Recall that p denotes a prime above p. In this section, it will be assumed
that p 6= q are prime numbers strictly greater than 2, and moreover that
Γq,∞,∞/Γq,∞,∞(p) ∼= PSL2(Fp) (which is always true when p ≥ 5 according
to Theorem 2.11).

To compute the genus of X
(0)
q,∞,∞(p), we use the Riemann–Hurwitz for-

mula and the natural map

(6) ψ : X(0)
q,∞,∞(p)→ Xq,∞,∞(1) = Xq,∞,∞.

It then suffices to compute the ramification indices of ψ.
Recall that

(Γq,∞,∞)∞ =

〈
γ3 =

(
1 µq

0 1

)〉
,

(Γq,∞,∞)1 =

〈
γ2 =

(
0 1

−1 2

)〉
,

(Γq,∞,∞)z0 =

〈
γ1 =

(
−λq −1

1 0

)〉
.

It can be shown, with the help of [Shi94, Proposition 1.37], that the
monodromy of (6) over ∞ is given by the action of γ3 on the set of cosets

Γq,∞,∞/Γ
(0)
q,∞,∞(p). Similarly, the monodromy of (6) over 1 (resp. z0) is given

by the action of γ2 (resp. γ1) on Γq,∞,∞/Γ
(0)
q,∞,∞(p).

Lemma 4.1. Let γ ∈ Γq,∞,∞. The action of γ on Γq,∞,∞/Γ
(0)
q,∞,∞(p) is

equivalent to the action of (γ mod p) ∈ PSL2(Fp) on P1(Fp) via fractional
linear transformations, i.e., the cycle decomposition of γ (viewed as an ele-

ment of the group of permutations of Γq,∞,∞/Γ
(0)
q,∞,∞(p)) is the same as the

cycle structure of (γ mod p) (viewed as an element of the group of permu-
tations of P1(Fp)).

Proof. The action of Γq,∞,∞ on P1(Fp) via linear fractional transfor-

mations is transitive (since Γq,∞,∞/Γq,∞,∞(p) ∼= PSL2(Fp)). Moreover, the

stabilizer of ∞ ∈ P1(Fp) is Γ
(0)
q,∞,∞(p). Hence, by group theory, the action of

Γq,∞,∞ on P1(Fp) is equivalent to the action of Γq,∞,∞ on Γq,∞,∞/Γ
(0)
q,∞,∞(p).
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Lemma 4.2. The monodromy over ∞ is given by

(0)(1 · · · p)(p+ 1, . . . , 2p) · · · (pf−1 + 1, . . . , pf ),

where Fp = Fpf . So, ψ−1(∞) = {w0, w1, . . . , wpf−1} and

ew0 = 1 and ewi = p for 1 ≤ i ≤ pf−1.
Proof. Notice (γ3 mod p) =

(
1 β
0 1

)
, where β = (µq mod p) ∈ Fp \ {0}

(that β 6= 0 is part of the proof of Proposition 3.1).
Hence, ∞ ∈ P1(Fp) is fixed by (γ3 mod p). Furthermore, since

(γ3 mod p)n =

(
1 nβ

0 1

)
and char(Fp) = p, all other points of P1(Fp) generate an orbit of size p.

Lemma 4.3. The monodromy over 1 has the same cycle decomposition.
So, ψ−1(1) = {w0, w1, . . . , wpf−1} and

ew0 = 1 and ewi = p for 1 ≤ i ≤ pf−1,
where Fp = Fpf .

Proof. Notice that (γ2 mod p) =
(

0 1
−1 2

)
.

It is easily seen that the only point of P1(Fp) fixed by (γ2 mod p) is 1.
Now, consider the natural map

ϕ : Xq,∞,∞(p)→ Xq,∞,∞(1).

Since ev,ϕ = p for all v = ϕ−1(1) (part of the proof of Proposition 3.1) and
ϕ factors as

Xq,∞,∞(p)→ X(0)
q,∞,∞(p)

ψ−→ Xq,∞,∞(1),

we see that ew,ψ = 1 or p for all w ∈ ψ−1(1).
The previous calculation says that there is only one point above 1 having

ramification degree 1. Hence, the result follows.

Lemma 4.4. Let Fp = Fpf as before. The ramification behavior above z0
is as follows:

ψ−1(z0) = {w1, . . . , wn, w
′
1, . . . , w

′
m},

where

ewi = q, ew′i = 1, pf + 1 = qn+m, m =

{
0 if pf ≡ −1 (mod q),

2 if pf ≡ 1 (mod q).

Proof. Notice that (γ1 mod p) =
(
β −1
1 0

)
for some β ∈ Fp.

As in the proof of the previous lemma, ew = 1 or q for any w ∈ ψ−1(z0).
Let n denote the number of points whose ramification degree is q, and

let m denote the number of those whose ramification degree is 1. Then m is
also the number of points in P1(Fp) fixed by (γ1 mod p). Hence m ≤ 2.



Congruence covers of triangular modular curves 115

Since deg(ψ) = pf + 1, we have

pf + 1 = nq +m.

Since q and p are distinct primes, it follows that m 6= 1. Taking the
previous equality modulo q and using Proposition 2.6, we obtain the precise
value of m in terms of (pf mod q).

Theorem 4.5. Let p 6= q be prime numbers strictly greater than 2
and p let be a prime ideal of Z(ζ2q + ζ−12q ) above pZ. Assume also that

Γq,∞,∞/Γq,∞,∞(p) ∼= PSL2(Fp) (always true when p ≥ 5 by Theorem 2.11).

Then the genus of the curve X
(0)
q,∞,∞(p) is

g =
q − 1

2
· p

f − δ
q
− pf−1,

where

• f is the smallest positive integer such that pf ≡ ±1 (mod q), and
• δ ∈ {±1} is such that pf ≡ δ (mod q).

Proof. Follows from the Riemann–Hurwitz formula applied to ψ, the fact
that g(Xq,∞,∞(1)) = 0, the previous three lemmas, and Proposition 2.6.

5. Computation of the genera. In this section, we will use Theo-

rem 4.5 to compute the genus of X
(0)
a,∞,∞(p), and Theorem 2.11 and Propo-

sition 3.1 to compute the genus of Xa,∞,∞(p) for a few values of a and p.
The computations are summarized in Table 1.

Except for the first line, we will assume that p ≥ 5 and a are prime
numbers and p 6= a.

As for the first line, note that when p = 2 and a ≥ 3 is an odd integer,
Theorem 2.11 implies that µ = 2a, and hence by Proposition 3.1 it follows
that the genus of Xq,∞,∞(p) is 0 for any prime number q 6= 2. Then, by the

Riemann–Hurwitz formula, the genus of X
(0)
a,∞,∞(p) has to be 0 as well.

As a last remark, note that, by Theorem 4.5, the genus of X
(0)
a,∞,∞(p)

is always odd. In particular, the smallest possible values are 1 and 3. The
proposition below shows that all cases where the genus is 1 or 3 are contained
in Table 1.

Proposition 5.1. Let q ≥ 3 and p ≥ 5 be prime numbers such that

q 6= p, and g(0) be the genus of X
(0)
q,∞,∞(p). Assume that p and q satisfy one

of the following conditions:

(1) q = 3 and p ≥ 17, or
(2) q = 5 and p ≥ 13, or
(3) q ≥ 7.

Then g(0) > 3.
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Proof. By Theorem 4.5, since f ≥ 1, we obtain

g(0) ≥
(

1− 1

q

)
p− 1

2
− 1.

This is enough to prove (1) and (2).

As for (3), we use a similar argument and the fact that if p ≤ q, then
f ≥ 2.

Table 1

a p Genus of Genus of

X
(0)
a,∞,∞(p) Xa,∞,∞(p)

a ≥ 3 odd 2 0 0

3 5 1 9

3 7 1 33

3 11 3 161

3 13 3 281

3 17 5 673

3 19 5 961

3 23 7 1761

3 29 9 3641

3 31 9 4481

3 37 11 7753

3 41 13 10641

3 43 13 12321

3 47 15 16193

3 53 17 23401

3 59 19 32481

3 61 19 35961

3 67 21 47873

5 7 13 15121

5 11 3 205

5 13 55 779689

5 17 99 4117537

a p Genus of Genus of

X
(0)
a,∞,∞(p) Xa,∞,∞(p)

5 19 7 1189

5 23 189 26388913

5 29 11 4453

5 31 11 5473

5 37 511 478473049

5 41 15 12937

5 43 697 1190768041

5 47 837 2041170145

5 53 1071 4223773945

5 59 23 39325

7 5 29 223201

7 11 449 398094841

7 13 5 385

7 17 1817 21923808193

7 19 2579 60655581001

7 23 4685 346805789617

7 29 11 4801

7 31 11807 5239187795521

7 37 20339 26092704504673

7 41 17 13921

7 43 17 16105

7 47 42287 227908029455713
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