
ACTA ARITHMETICA

175.2 (2016)

Further irreducibility criteria for polynomials with
non-negative coefficients

by

Morgan Cole (Santa Clarita, CA), Scott Dunn (Columbia, SC) and
Michael Filaseta (Columbia, SC)

1. Introduction. If dndn−1 . . . d1d0 is the decimal representation of a
prime, then a result of A. Cohn [11] asserts that

f(x) = dnx
n + dn−1x

n−1 + · · ·+ d1x+ d0

is irreducible over the integers. This paper is inspired by the following two
natural questions. If one views f(x) as being a general polynomial with
non-negative integer coefficients with f(10) prime, does the irreducibility of
f(x) in Z[x] really depend on its coefficients being less than 10? Is there a
particular reason that base 10 is special or do analogous results hold when
10 is replaced by some other integer?

Some answers to these questions have already been given in the litera-
ture. The result of Cohn has been extended to all bases b ≥ 2 by J. Brillhart,
A. Odlyzko and the third author [3], to base b representations of kp where k is
a positive integer < b and p is a prime by the third author [5] (see also [8]),
and to an analog in function fields over finite fields by M. R. Murty [9].
Furthermore, [3] allows the coefficients dj in Cohn’s theorem to satisfy
0 ≤ dj ≤ 167 rather than 0 ≤ dj ≤ 9; and later the third author [6]
showed that the dj need only satisfy 0 ≤ dj ≤ 1030dn, and further that
simply dj ≥ 0 suffices if n ≤ 31. Some further work on upper bounds for dj
can be found in [1] and [2].

Recent work by S. Gross and the third author [7] extended this last line
of investigation even further. They showed that if f(x) is a polynomial with
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non-negative coefficients bounded above by

49598666989151226098104244512918

and f(10) is prime, then f(x) is irreducible over Z. They also showed that
if instead the coefficients were bounded above by

8592444743529135815769545955936773,

then f(x) is either irreducible over Z or divisible by x2−20x+101. Further-
more, and perhaps most surprising, they established that these two upper
bounds are sharp.

The main goal of this paper is to extend the results in [7] to different
bases. We focus on bases b ∈ [2, 20]. As we will see, the smaller the base, the
more difficult the analysis becomes. We use Φn(x) to denote the nth cyclo-
tomic polynomial, and irreducibility throughout will refer to irreducibility
in Z[x]. Our main goal is to establish the following.

Theorem 1.1. Fix an integer b ∈ [2, 20], and let M1(b) and M2(b) be
as given in Tables 1 and 2, respectively. Let f(x) =

∑n
j=0 ajx

j ∈ Z[x] with
aj ≥ 0 for each j and f(b) prime. If each aj ≤ M1(b), then f(x) is irre-
ducible. Also, for 3 ≤ b ≤ 5, if each aj ≤ M2(b) and f(x) is reducible, then
f(x) is divisible by Φ3(x− b). Similarly, for 6 ≤ b ≤ 20, if each aj ≤M2(b)
and f(x) is reducible, then f(x) is divisible by Φ4(x− b).

We will show that, for 3 ≤ b ≤ 20, the bound M1(b) is sharp. For
4 ≤ b ≤ 20, we will likewise show that the bound M2(b) is sharp.

We suspect the bound M1(2) = 7 as given in Table 1 is not sharp. Of
some related interest is the example

f(x) = x15 +9x10 +9x9 +9x8 +9x7 +9x6 +8x5 +10x4 +7x3 +10x2 +9x+3.

Here f(2) = 51157 is prime, the largest coefficient of f(x) is 10, and f(x)
is divisible by x2 − 3x+ 3. This example shows that the largest permissible
value of M1(2) is ≤ 9. Therefore, this largest permissible value is 7, 8 or 9.

Computations in this paper were done using Maple 2015. The “isprime”
routine was used to detect likely primes in our computations, and these were
verified by using primality tests in Sage v. 4.6.

2. Preliminary results. We begin with an instructive lemma adapted
from [3].

Lemma 2.1. Fix an integer b ≥ 2. Let f(x) =
∑n

j=0 ajx
j ∈ Z[x] be such

that each aj ≥ 0 and f(b) is prime. If f(x) is reducible, then f(x) has a
non-real root in the disc Db = {z ∈ C : |b− z| ≤ 1}.

Proof. Assume that f(x) is reducible. Then we may write f(x) =
g(x)h(x) where g(x) and h(x) have integer coefficients, g(x) 6≡ ±1, and
h(x) 6≡ ±1. Since f(b) is prime, one of g(b) or h(b) is ±1. Without loss of
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generality, we may assume that g(b) = ±1. Since g(x) 6≡ ±1, we know that
g(x) has positive degree.

Let c be the leading coefficient of g(x), and let β1, . . . , βr be the roots of
g(x) including multiplicities. Thus, the degree of g(x) is r, and we have

1 = |g(b)| = |c|
r∏
j=1

|b− βj | ≥
r∏
j=1

|b− βj |.

Therefore, at least one root of g(x), and hence of f(x), is in Db.
We complete the lemma by noting that since f(x) has non-negative co-

efficients, f(x) has no positive real roots.

As a quick example of the usefulness of such a lemma and to help moti-
vate the ideas that follow, we establish the following result based on ideas
from [6].

Theorem 2.2. Fix an integer b such that b ≥ 2, and let D = D(b) be
as given in Table 3. Let f(x) =

∑n
j=0 ajx

j be a non-constant polynomial in
Z[x] with each aj ≥ 0 and with f(b) prime. If the degree of f(x) is ≤ D,
then f(x) is irreducible.

Table 3. Maximum degree D = D(b)

b 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D 5 9 12 15 18 21 25 28 31 34 37 40 43 47 50 53 56 59 62

Proof. Assume f(x) is reducible. Then it has a non-real root α ∈ Db =
{z ∈ C : |b − z| ≤ 1} by Lemma 2.1. Since the complex conjugate of α is
also a root of f(x), we may assume that α has a positive imaginary part.

Note that the line passing through the origin and tangent to Db from
above has slope sin−1(1/b). We write α = reiθ, where r ≥ b − 1 and 0 <
θ ≤ sin−1(1/b). A direct computation shows that for each k ∈ {1, . . . , D}
we have 0 < kθ ≤ D sin−1(1/b) < π. This gives

Im(αk) = rk sin(kθ) > 0 for 1 ≤ k ≤ D.
As f(x) has non-negative coefficients and deg f = n with 1 ≤ n ≤ D, we
have

Im(f(α)) ≥ Im(αn) > 0,

contradicting the fact that α is a root of f(x).

The bounds D(b) given in Table 3 are not all sharp, but are so for many b.
Take for example b = 4. We see that

f(x) = x13 + x3 + 235835x+ 16576651

is of degree 13, f(4) = 84628919 is prime, each coefficient is ≤ 16576651, and
f(x) is divisible by Φ3(x−4) = x2−7x+13. Thus, D(4) in Table 3 is sharp.
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In Section 4, we will give sharp bounds D(b) for all b ∈ [2, 20]. Additionally,
although this is not the focus of this paper, we will give sharp bounds on
the size of the coefficients when f(x) is reducible and of degree D(b) + 1.

A motivating idea for the next two sections is to replace the disk Db
in Lemma 2.1 with a set of points such that if α = reiθ is in the new set
of points, then |θ| is bounded above by a number smaller than sin−1(1/b).
This will then allow us to determine sharp bounds for D(b) in place of those
given in Table 3 for Theorem 2.2.

3. A root bounding function. For a given b ∈ {2, . . . , 20}, our main
goal is to establish the upper bounds M1(b) and M2(b) given in Theorem 1.1,
and further to show that they are sharp as described after the statement
of the theorem. We will utilize three main methods as in [7]. First, we will
introduce certain rational functions that will give us information on the lo-
cation of possible roots of f(x). These rational functions will vary depending
on b. Even in the case b = 10, we will be able to obtain slightly better in-
formation than in [7] by using a modification of the rational function given
there. Second, we obtain an initial value for M1(b) and M2(b) using a result
first introduced in [1] and [2] but based on the main ideas in the earlier
work [6]. Third, we use information gained from recursive relations on the
possible factors of f(x), as outlined in [7], to establish sharp values of M1(b)
for b ≥ 3 and sharp values of M2(b) for b ≥ 4. In this section, we focus on
the first of these ideas.

We recall that Φn(x) denotes the nth cyclotomic polynomial, and we use
ζn = e2πi/n. Fix an integer b with 2 ≤ b ≤ 20. Let f(x) =

∑n
j=0 ajx

j ∈ Z[x]
be such that aj ≥ 0 and f(b) is prime.

As in the proof of Lemma 2.1, we consider the case that f(x) is reducible,
so that f(x) = g(x)h(x), where g(x) and h(x) are polynomials with integer
coefficients and are not identically ±1. We may and do suppose that they
have positive leading coefficients. Given that f(p) is prime, we take, without
loss of generality, g(b) = ±1. Lemma 2.1 implies that g(x) has a non-real
root in Db. Using the ideas of [7], we wish to show that either g(x) has a
root in common with one of

Φ3(x− b) = x2 − (2b− 1)x+ b2 − b+ 1,

Φ4(x− b) = x2 − 2bx+ b2 + 1,

Φ6(x− b) = x2 − (2b+ 1)x+ b2 + b+ 1,

or g(x) has roots in a certain region Rb to be defined shortly.

We define

(3.1) Fb(z) =
Nb(z)

Db(z)
,
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where
Nb(z) = |b− 1− z|2e2(|b+ ζ3 − z| |b+ ζ3 − z|)2e3

· (|b+ i− z| |b− i− z|)2e4(|b+ ζ6 − z| |b+ ζ6 − z|)2e6 ,
Db(z) = |b− z|4(e3+e4+e6)+2(e2+d+1),

and e2 = e2(b), e3 = e3(b), e4 = e4(b), e6 = e6(b) and d = d(b) are all
non-negative integers. For Theorem 1.1, the numbers e2, e3, e4, e6 and d for
a given b are given in Table 4.

Table 4. Numbers used in Fb(z) for b

b 2 3 4 5 6 ≤ b ≤ 20

e2(b) 20 0 0 0 0

e3(b) 4 15 9 6 4

e4(b) 0 2 2 2 2

e6(b) 0 0 3 3 3

d(b) 0 3 3 3 3

We note that these are not the only choices for e2(b), e3(b), e4(b), e6(b),
and d(b) that can serve our purposes. For example, e2(10) = 0, e3(10) = 3,
e4(10) = 2, e6(10) = 3, and d(10) = 3 are the numbers for b = 10 that were
used in [7]. Our choices for the numbers in Table 4 are based on trial and
error to see what would give us the best results. In the case of b = 10, there
is a slight advantage that will arise from the use of the ej ’s given in Table 4.

Setting z = x+ iy, it is not difficult to see or to use direct computations
to verify that each of the expressions

|b− 1− z|2, (|b+ ζ3 − z| |b+ ζ3 − z|)2, (|b+ i− z| |b− i− z|)2

(|b+ ζ6 − z| |b+ ζ6 − z|)2 and |b− z|2

is a polynomial in Z[b, x, y]. Therefore, Nb(z) and Db(z) are polynomials in
Z[b, x, y], so Fb(z) is a rational function in b, x and y.

We write g(x) in the form

g(x) = c
r∏
j=1

(x− βj),

where c is the leading coefficient of g(x) and β1, . . . , βr are the roots of g(x),
and therefore also roots of f(x). For ease of notation, we define

g̃b(n) = g(b+ ζn)g(b+ ζn).

One then checks that the two expressions

|g(b− 1)|2e2 |g̃b(3)|2e3 |g̃b(4)|2e4 |g̃b(6)|2e6
|g(b)|4(e3+e4+e6)+2(e2+d+1)

and
1

c2(d+1)

r∏
j=1

Fb(βj)

are equal. We denote this common value by V = Vb(g).
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Now, each of g̃b(3), g̃b(4), g̃b(6) is a symmetric polynomial, with integer
coefficients, in the roots of an irreducible monic quadratic in Z[x]. Hence,
each of these expressions is an integer. Also, g(b−1) is an integer. Thus, the
numerator of the first expression for V above is an integer. Since g(b) = ±1
and V ≥ 0, we know that either V = 0 or V ∈ Z+.

We recall that f(x) is a polynomial with non-negative integer coefficients.
Thus, f(x) cannot have a positive real root, and neither can g(x) which is
a factor of f(x). Therefore, g(b− 1) 6= 0. Either definition of V now implies
that V = 0 if and only if at least one of Φ3(x− b), Φ4(x− b), Φ6(x− b) is a
factor of g(x). If none of these quadratics is a factor of g(x), we necessarily
have V ∈ Z+. In this case, the product in the second expression for V above
must be a positive integer. Since Fb(z) is a non-negative real number for all
z ∈ C, we deduce that Fb(βj) ≥ 1 for at least one value of j ∈ {1, . . . , r}. In
other words, there is a root β of g(x), and consequently of f(x), satisfying
Fb(β) ≥ 1.

Summarizing the above ideas, given only that g(x) ∈ Z[x], g(b− 1) 6= 0,
g(x) 6≡ ±1 and g(b) = ±1, we have shown that either g(x) has at least one
of the factors Φ3(x − b), Φ4(x − b), Φ6(x − b), or g(x) has a root β in the
region

(3.2) Rb = {z ∈ C : Fb(z) ≥ 1}.
In the latter case, we will use an analysis of the region Rb in the complex
plane to obtain important information about the location of β.

It is of some interest to note that the conditions above that g(x) ∈ Z[x],
g(x) 6≡ ±1 and g(b) = ±1 are sufficient to show that g(x) has a root in Db.
Figures 1, 2 and 3 depict regions Rb for b ∈ {2, 3, 4} where e2(b), e3(b),
e4(b), e6(b) and d(b) are as given in Table 4. The circle is the unit circle
centered at b, the boundary of Db. These graphs are, of course, obtained
from plotting only a finite set of points and are not used in our proofs but
are intended to help visualize Rb.

Figure 4 shows R10 for our choice of e2(10) = 0, e3(10) = 4, e4(10) = 2,
e6(10) = 3 and d(10) = 3 while Figure 5 shows R10 for the choice of
e2(10) = 0, e3(10) = 3, e4(10) = 2, e6(10) = 3 and d(10) = 3 used in [7].
Although the difference is subtle, Figure 5 is symmetric about the vertical
line x = 10, while Figure 4 is slightly narrower at the front of the region.

In what follows, we will sometimes refer to points (x, y) in Rb, and
this is to be interpreted as the point z = x + iy in the complex plane
in Rb. For example, taking b = 6, we will see later that all the points
(x, y) ∈ R6 lie below the line y = tan(π/21)x. This then means that any
point z = x+ iy ∈ R6 satisfies y ≤ tan(π/21)x.

To further help us analyze the region Rb, we define

(3.3) Pb(x, y) = Db(x+ iy)−Nb(x+ iy).
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Fig. 1. Image of R2

Fig. 2. Image of R3 Fig. 3. Image of R4

Fig. 4. Our choice for R10 Fig. 5. R10 used in [7]

Direct computations for each b ∈ {2, . . . , 20} show that we can write

(3.4) Pb(x, y) =
r∑
j=0

aj(b, x)y2j ,

where r = 2(e3+e4+e6)+e2+d+1 and each aj(b, x) is an integer polynomial
in b and x. Furthermore, the definition of Db(z) implies that Db(z) > 0 for
all z ∈ C with z 6= b. Thus,

Fb(x+ iy) ≥ 1 and Pb(x, y) ≤ 0
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are equivalent for z 6= b. Also, the equations Fb(x+ iy) = 1 and Pb(x, y) = 0
are equivalent for z 6= b. Note that Pb(b, 0) = Db(b) −Nb(b) = 0 − 1 = −1.
Therefore, the z = x+ iy ∈ C such that Fb(z) = 1 correspond exactly to the
points (x, y) where Pb(x, y) = 0.

We introduce the following technical lemma that corresponds to [7,
Lemma 2].

Lemma 3.1. Fix an integer 2 ≤ b ≤ 20. Then there exist real numbers
a0 = a0(b), a1 = a1(b), and a non-negative real-valued function ρb(x) defined
on the interval Ib = [b− a0, b+ a1] such that:

(i) Pb(x, y) 6= 0 for all x 6∈ Ib and y ∈ R.
(ii) Pb(x, ρb(x)) = 0 for all x ∈ Ib.
(iii) ρb(b− a0) = 0 and ρb(b+ a1) = 0.
(iv) The function ρb(x) is continuously differentiable on the interior

of Ib and is continuous on Ib.
(v) If x and y are real numbers for which Pb(x, y) ≤ 0, then x ∈ Ib and
|y| ≤ ρb(x).

In view of the above lemma, complex numbers of the form x+ iρb(x) are
boundary points of Rb which are on or above the real axis. Since Pb(x, y) is a
polynomial in y2 with coefficients in Z[b, x], our regionRb is symmetric about
the real axis. Thus, the points x− iρb(x) are boundary points of Rb which
are on or below the real axis. The points b− a0 and b+ a1 are boundary
points on the real axis.

To prove Lemma 3.1, we use the Implicit Function Theorem (cf. [12]),
which we state next.

Lemma 3.2. Let D be an open set in R2 and let W : D → R. Suppose
W has continuous partial derivatives Wx and Wy on D. Let (x0, y0) ∈ D be
such that

W (x0, y0) = 0 and Wy(x0, y0) 6= 0.

Then there is an open interval I ∈ R and a real-valued, continuously differ-
entiable function φ defined on I such that x0 ∈ I, φ(x0) = y0, (x, φ(x)) ∈ D
for all x ∈ I, and W (x, φ(x)) = 0 for all x ∈ I.

Our proof of Lemma 3.1 is a variation of [7, proof of Lemma 2]. A number
of changes and some simplifications are introduced. In particular, the proof
in [7] used more than once the fact that a certain discriminant is non-zero,
which no longer applies in our case, so some changes in the arguments here
become necessary.

We give a proof based on the values of (e2, e3, e4, e6, d) given in Table 4
for each b. Before delving into the proof, we note that we will want analogous
results for other choices of (e2, e3, e4, e6, d) in the next section and that the
same lemma holds following the same line of argument. Specifically, we will
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additionally use Lemma 3.1 for (e2, e3, e4, e6, d) = (0, 2, 1, 0, 1) and b = 2, for
(e2, e3, e4, e6, d) = (0, 2, 3, 0, 8) and b = 3, for (e2, e3, e4, e6, d) = (0, 2, 4, 0, 8)
and b = 4 or 5, for (e2, e3, e4, e6, d) = (0, 2, 5, 0, 12) and b = 6 or 7, for
(e2, e3, e4, e6, d) = (0, 1, 8, 0, 14) and 8 ≤ b ≤ 14, and for (e2, e3, e4, e6, d) =
(0, 1, 10, 0, 24) and 15 ≤ b ≤ 20.

Proof of Lemma 3.1. We fix an integer b ∈ [2, 20], and let e2 = e2(b),
e3 = e3(b), e4 = e4(b), e6 = e6(b) and d = d(b) be as in Table 4. We set
r = 2(e3 +e4 +e6)+e2 +d+1, and let Pb(x, y) be as in (3.4). For 0 ≤ j ≤ r,
define pj(b, x) = aj(b, x+ b), and set

←−
Pb(x, y) =

r∑
j=0

pj(b, x)yj =
r∑
j=0

aj(b, x+ b)yj .

Thus,

(3.5)
←−
Pb(x, y

2) = Pb(x+ b, y).

Observe that the points (x, y) corresponding to
←−
Pb(x, y

2) ≤ 0 are the points

(x−b, y) where (x, y) ∈ Rb; in other words, the (x, y) satisfying
←−
Pb(x, y

2) ≤ 0
correspond to the (x, y) ∈ Rb translated to the left by b.

For fixed b ∈ [2, 20], the expression pj is a polynomial with integer co-
efficients in the variable x. The dependence on b only arises in our choice
of e2(b), e3(b), e4(b), e6(b) and d(b). Since the same choice is used for each
b ∈ [6, 20], we have only five sets of pj(b, x) to consider. We computed these
explicitly to help with the analysis that follows.

To simplify our notation and avoid confusion, we use
←−
Pb(y) for

←−
Pb(x, y)

when we are viewing
←−
Pb(x, y) as a polynomial in y whose coefficients are

polynomials in x. Table 5 lists r, the degree of
←−
Pb(y), for each b.

Table 5. Degree r of
←−
Pb(y) for b ∈ [2, 20]

b r

2 29

3 38

4 32

5 26

6 ≤ b ≤ 20 22

Using a Sturm sequence, we verify that p0(b, x) has exactly two distinct
real roots. One checks that p0(b, x) = 0 has a negative root, which we denote
by −a0, and a positive root, which we call a1. Computations give us the
values of a0 and a1 for b ∈ [2, 20], accurate to the digits shown in Table 6.
We show that a0 and a1 have the properties stated in Lemma 3.1.
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Table 6. Values of a0 and a1 for b ∈ [2, 20]

b a0 a1 â0 â1

2 0.5523770847 . . . 10.0651310946 . . . 0.5523 10.06

3 1.0721963435 . . . 3.4397713145 . . . 1.07 3.43

4 1.3782037799 . . . 2.4446162254 . . . 1.37 2.44

5 1.4754544841 . . . 2.0416766993 . . . 1.47 2.04

6 ≤ b ≤ 20 1.5638035689 . . . 1.7605007116 . . . 1.56 1.76

Let Jb denote the interval [−a0, a1]. Using a Sturm sequence, one can
verify that for each j ∈ {1, . . . , r}, the polynomial pj(b, x) has all of its real
roots in the interval [−â0, â1] ⊂ Jb, where â0 and â1 are given in Table 6.

Recalling (3.5), we see that to prove part (i), we need only show that for

each x0 /∈ Jb the real roots of
←−
Pb(x0, y) are all negative. A simple calculation

shows that pj(b,±11) > 0 for all j ∈ {0, 1, . . . , r} (and each b). Since each
pj(b, x) has its real roots inside Jb, we deduce that pj(b, x0) > 0 for each j.

From Descartes’ rule of signs, we find that
←−
Pb(x0, y) has no positive real

roots. Part (i) now follows. We note for further use that also

(3.6) Pb(x, y) > 0 for all x /∈ Ib and all y ∈ R.

We turn to the remaining parts of Lemma 3.1. For a given x ∈ Ib, we
want to define ρb(x) as the largest non-negative real root of Pb(x, y). First,
however, we need to show that such a non-negative real root exists. From

(3.5), we see that for x ∈ Jb we want (ρb(x + b))2 to be a root of
←−
Pb(y).

Further, showing Pb(x, y) has a non-negative real root for each x ∈ Ib is

equivalent to showing
←−
Pb(y) has a non-negative real root for each x ∈ Jb.

A direct computation gives p0(b, 0) = −1 and pr(b, x) ≡ 1. Since p0(b, x)
has only the two real roots −a0 and a1, it follows that p0(b, x0) < 0 for all

x0 ∈ (−a0, a1). Since
←−
Pb(y) is monic and of degree r > 0, we deduce that

←−
Pb(x0, y) = 0 has a positive real root in y for all x0 ∈ (−a0, a1).

We now consider the case that x0 = −a0 or x0 = a1. As noted earlier,
for each j ∈ {1, . . . , r}, the polynomial pj(b, x) has its roots in the interval
[−â0, â1] and pj(b,±11) > 0. Since each of −a0, a1 and ±11 is not in [−â0, â1]
while x0 = −a0 or x0 = a1, it follows that pj(b, x0) > 0 for each such j.

From Descartes’ rule of signs, we deduce that
←−
Pb(x0, y) has no positive real

roots. Thus,
←−
Pb(x0, y) has 0 as its largest real root.

For a given x ∈ Ib, we now define ρb(x) as the largest non-negative real
root of Pb(x, y). The above arguments show that ρb(x) is well-defined.

For each x ∈ Jb, define

ψb(x) = max{y ∈ R :
←−
Pb(y) = 0}.
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Since
←−
Pb(y) has real roots for any given x ∈ Jb, we see that ψb(x) is well-

defined. Moreover, we have seen that ψb(x) > 0 for all x ∈ (−a0, a1), and
ψb(−a0) = ψb(a1) = 0. Parts (ii) and (iii) now follow by observing that
ρb(x) =

√
ψb(x− b) for each x ∈ Ib.

Next, we turn to (iv) and (v). The arguments for these parts are similar to
those for [7, Lemma 2(d), (e)]. To prove ρb(x) is a continuously differentiable
function on (b − a0, b + a1), it is sufficient to show that, given any x0 ∈
(−a0, a1), there exists an open interval J ′ ⊆ (−a0, a1) containing x0 such
that ψb(x) is a continuously differentiable function on J ′. To prove that
ρb(x) is a continuous function on [b− a0, b+ a1], we will also want to show
that

lim
x→−a+0

ψb(x) = 0 and lim
x→a−1

ψb(x) = 0.

Fix x0 ∈ (−a0, a1), and let y0 = ψb(x0). We make use of Lemma 3.2 with

W (x, y) =
←−
Pb(x, y). Since W (x, y) is then a polynomial, both Wx and Wy

are continuous on all of R2. The definition of y0 implies W (x0, y0) = 0.

For Lemma 3.2, we also want to show that Wy(x0, y0) 6= 0. In the case

b 6= 2, we calculate the discriminant ∆b(x) of
←−
Pb(y). A Sturm sequence

computation shows that ∆b(x) 6= 0 for all x ∈ R. To clarify, the computation
of the Sturm sequence was shortened by first factoring the discriminant and
then showing ∆b(x) 6= 0 for all x ∈ R by establishing that each factor of
∆b(x) is non-zero for all x ∈ R using a separate Sturm sequence for each

factor. Therefore, in the case b 6= 2, we see that
←−
Pb(x0, y) has no repeated

roots, so Wy(x0, y0) 6= 0.

In the case b = 2, a Sturm sequence computation shows that ∆2(x)

is non-zero on J2 when x 6= −1/2. Thus,
←−
P2(x, y) has a repeated root for

x ∈ J2 only when x = −1/2. By factoring
←−
P2(−1/2, y), one sees that the

only repeated root of
←−
P2(−1/2, y) is y = −1/4. Therefore, in our case where

y0 ≥ 0, Wy(x0, y0) 6= 0.

Now define D = {(x, y) ∈ R2 : −a0 < x < a1 and y > 0}. By Lemma 3.2,
there exist an open interval J ′′ ⊆ (−a0, a1) containing x0 and a continuously
differentiable function φ(x) defined on J ′′ such that both φ(x0) = y0 and
←−
Pb(x, φ(x)) = 0 for all x ∈ J ′′. By the definition of ψb(x), we know that
φ(x) ≤ ψb(x) for all x ∈ J ′′. We will show that there exists an open interval
J ′ ⊆ J ′′ containing x0 such that ψb(x) = φ(x) for all x ∈ J ′.

By way of contradiction, assume that no such interval J ′ exists. Then
there exists a sequence {xn}∞n=1 satisfying limn→∞ xn = x0 and having the
property that, for all n ≥ 1, ψb(xn) > φ(xn). Since x0 ∈ J ′′, we suppose
further as we may that each xn is in J ′′. Define yn = ψb(xn). In particular,
←−
Pb(xn, yn) = 0.
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We justify that {yn}∞n=1 is a bounded sequence. In fact, we show that
there is an absolute constant M such that for x′ ∈ Jb and z ∈ C satisfying←−
Pb(x

′, z) = 0, we have |z| ≤M . Since each pj(b, x) is continuous on Jb and Jb
is compact, there exists an absolute constant A ≥ 0 such that |pj(b, x)| ≤ A
for all j ∈ {0, . . . , r} and x ∈ Jb. Recall pr(b, x) ≡ 1. Since x′ ∈ Jb and
←−
Pb(x

′, z) = 0, we deduce

0 =
∣∣∣ r∑
j=0

pj(b, x
′)zj
∣∣∣ ≥ |z|r − r−1∑

j=0

|pj(b, x′)| |z|j ≥ |z|r −A
r−1∑
j=0

|z|j .

Thus, |z| is less than or equal to the positive real root M of the polynomial

xr −Axr−1 −Axr−2 − · · · −Ax−A.
We deduce that {yn}∞n=1 is a sequence with |yn| ≤M for all n.

It follows now that {yn}∞n=1 has a convergent subsequence {ynj}∞j=1. Let

L = limj→∞ ynj . The continuity of
←−
Pb(x, y) implies

←−
Pb(x0, L) = lim

j→∞

←−
Pb(xnj , ynj ) = 0.

Since

y0 = ψb(x0) = max{y ∈ R :
←−
Pb(x0, y) = 0},

we deduce that L ≤ y0. Since φ(x) is continuous on J ′′ and φ(xnj ) ≤
ψb(xnj ) = ynj for all j ≥ 1, we also have

L = lim
j→∞

ynj = lim
j→∞

ψb(xnj ) ≥ lim
j→∞

φ(xnj ) = φ
(

lim
j→∞

xnj

)
= φ(x0) = y0.

Thus, L = y0. In particular,

(3.7) lim
j→∞

ψb(xnj ) = y0 = lim
j→∞

φ(xnj ).

We show that this implies a contradiction.

Consider ∣∣W (xnj , ψb(xnj ))−W (xnj , φ(xnj ))
∣∣ = 0.

By the Mean Value Theorem, we have

(3.8) |ψb(xnj )− φ(xnj )| |Wy(xnj , ξj)| = 0

for some ξj ∈ [φ(xnj ), ψb(xnj )]. Since ψb(xnj ) > φ(xnj ), we deduce from
(3.8) that

Wy(xnj , ξj) = 0.

Taking the limit as j → ∞, we find by (3.7) that limj→∞ ξj = y0 so that
Wy(x0, y0) = 0. But this contradicts the fact that Wy(x0, y0) 6= 0. Therefore,
there exists an open interval J ′ ⊆ J ′′ containing x0 such that ψb(x) = φ(x)
for all x ∈ J ′.
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To finish the proof of (iv), we need only show that ψb(x) is continuous
at the endpoints of Jb. Let {xn}∞n=1 ⊂ Jb be a sequence that converges to
one of the endpoints of Jb, say a′. Take yn = ψb(xn). With M as before, we
have |yn| ≤M . To show that

lim
n→∞

ψb(xn) = 0 = ψb(a
′),

it suffices to prove that every convergent subsequence of yn converges to 0.
Suppose that {ynj} is such that limj→∞ ynj = L for some L ∈ R. Since

we know that ynj = ψb(xnj ) ≥ 0, we deduce 0 ≤ L ≤M . Now,

←−
Pb(a

′, L) = lim
j→∞

←−
Pb(xnj , ynj ) = lim

j→∞

←−
Pb(xnj , ψb(xnj )) = 0.

Therefore, L ≤ ψb(a′) = 0. Hence, L = 0, completing the proof of (iv).
To establish (v), we first observe that the definition of ρb(x) implies if

x ∈ Ib and y ∈ R are such that Pb(x, y) = 0, then |y| ≤ ρb(x). Part (i) also
implies that if Pb(x, y) = 0 for some real numbers x and y, then x ∈ Ib. Now,
consider real numbers x0 and y0 for which Pb(x0, y0) < 0. Note that (3.6)
implies x0 ∈ Ib and Pb(0, 0) > 0. Since Pb(x, y) is a continuous function from
R2 to R, we deduce that along any path from (0, 0) to (x0, y0) in R2, there
must be a point (x, y) satisfying Pb(x, y) = 0. We use again the fact that for
any x ∈ Jb, the number M is a bound on the absolute value of the roots of←−
Pb(y). We deduce from (3.5) that ρb(x) ≤

√
M for all x ∈ Ib. If x0 ∈ Ib and

y0 > ρb(x0), then one can consider the path consisting of line segments from
(0, 0) to (0, 1+

√
M), from (0, 1+

√
M) to (x0, 1+

√
M) and from (x0, 1+

√
M)

to (x0, y0) to obtain a contradiction. If x0 ∈ Ib and y0 < −ρb(x0), one can
consider a similar path but from (0, 0) to (0,−1−

√
M) to (x0,−1−

√
M)

to (x0, y0) to obtain a contradiction. Therefore, x0 ∈ Ib and |y0| ≤ ρb(x0).
This establishes part (v), completing the proof of Lemma 3.1.

In the following sections we will use Lemma 3.1 to prove irreducibility
criteria based on the degree of f(x) and on the size of the coefficients of f(x).

4. Irreducibility criteria based on degree. Fix an integer b ∈ [2, 20].
Let f(x) ∈ Z[x] have non-negative coefficients, with f(b) prime. Theorem 2.2
led us to deduce the irreducibility of f(x) given bounds D(b) on the degree
of f(x). As noted there, those bounds were not necessarily sharp. In this
section, we use the region Rb to establish sharp bounds corresponding to
Theorem 2.2.

Take for example b = 6. Theorem 2.2 and Table 3 tell us that if f(6) is
prime and the degree of f(x) is ≤ 18, then f(x) is irreducible. We now prove
that if f(6) is prime and the degree of f(x) is ≤ 19, then f(x) is irreducible.
Furthermore, we give an example to show that this bound is sharp.

Our next lemma follows from the proof of Theorem 2.2 given in Section 2.
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Lemma 4.1. Let n be a positive integer. A complex number α = reiθ with
0 < θ < π/n cannot be a root of a non-zero polynomial with non-negative
integer coefficients and degree ≤ n.

Now, we can establish the following improvement on Theorem 2.2.

Theorem 4.2. Fix an integer b ∈ [2, 20], and let D = D(b), D1 = D1(b),
and D2 = D2(b) be as in Table 7. Let f(x) =

∑n
j=0 ajx

j ∈ Z[x] with aj ≥ 0
for each j and with f(b) prime. If the degree of f(x) is ≤ D, then f(x)
is irreducible. Additionally, if deg f(x) ≤ D1 and f(x) is reducible, then
f(x) is divisible by Φ4(x− b) and not divisible by Φ3(x− b). Furthermore, if
deg f(x) ≤ D2 and f(x) is reducible, then f(x) is divisible by either Φ4(x−b)
or Φ3(x− b).

Table 7. D(b), D1(b), D2(b), ϑ(b), and m(b) for b ∈ [2, 20]

b D(b) D1(b) D2(b) ϑ(b) m(b)

2 6 − 7 π/7 13/27

3 9 − 11 π/11 32/109

4 12 − 15 π/15 17/80

5 15 16 18 π/18 70/397

6 19 20 22 π/22 67/466

7 22 23 25 π/25 1/8

8 25 27 29 π/29 5/46

9 28 30 33 π/33 2/21

10 31 34 37 π/37 4/47

11 34 38 40 π/40 7/89

b D(b) D1(b) D2(b) ϑ(b) m(b)

12 37 41 44 π/44 1/14

13 40 45 47 π/47 1/15

14 44 49 51 π/51 4/65

15 47 52 55 π/55 125/2186

16 50 56 58 π/58 2/37

17 53 59 62 π/62 4/79

18 56 63 65 π/65 43/889

19 59 67 69 π/69 1/22

20 62 70 72 π/72 1/23

We note that for b ∈ {2, 3, 4}, there is no value for D1 due to the equality⌊
π

arg(b+ ζ4)

⌋
=

⌊
π

arg(b+ ζ3)

⌋
for b ∈ {2, 3, 4}.

By way of examples, we will demonstrate later that the values of D(b) and
D1(b) given in Table 7 are sharp. We do not know whether this is the case
for the values of D2(b). It is also worth noting that D2(10) above is an
improvement over the value 36 established in [7].

Proof of Theorem 4.2. Following the remarks before the proof of Lem-
ma 3.1, we set

(e2, e3, e4, e6, d) =



(0, 2, 1, 0, 1) for b = 2,

(0, 2, 3, 0, 8) for b = 3,

(0, 2, 4, 0, 8) for b = 4 or 5,

(0, 2, 5, 0, 12) for b = 6 or 7,

(0, 1, 8, 0, 14) for 8 ≤ b ≤ 14,

(0, 1, 10, 0, 24) for 15 ≤ b ≤ 20.
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We define Fb(z) as in (3.1), Pb(x, y) as in (3.3), andRb as in (3.2). In addition
to D = D(b), D1 = D1(b) and D2 = D2(b), we set ϑ = ϑ(b) and m = m(b)
as in Table 7. We note that m is a rational number.

We consider the line y = tan(ϑ)x or equivalently the points x+ i tan(ϑ)x
in the complex plane. A simple computation gives tan(ϑ) > m. So the line
y = mx lies strictly below y = tan(ϑ)x for x > 0. Applying Lemma 3.1,
we find that ρb(b − a0) = 0 and ρb(x) is continuous. We use a Sturm se-
quence to verify that Pb(x,mx) has no real roots. Since the coefficients
of Pb(x,mx) are rational, this computation involves only exact arithmetic.
Using Lemma 3.1(ii), we can deduce that Rb does not intersect the line
y = mx. Therefore, the entire region Rb lies below that line.

We recall the set-up from Section 3. We suppose f(x) is reducible and
write f(x) = g(x)h(x), where both g(x) and h(x) are in Z[x], g(x) 6≡ ±1,
h(x) 6≡ ±1, and both g(x) and h(x) have positive leading coefficients. Fur-
thermore, without loss of generality, we suppose that g(b) = ±1. In Sec-
tion 3, we showed that either g(x) has a root in common with at least one
of Φ3(x − b), Φ4(x − b), Φ6(x − b), or g(x) has a root β ∈ Rb. Since f(x)
has non-negative coefficients and the real numbers in Rb are positive, we see
that β 6∈ R.

With our choices above, b + ζ6 lies below the line y = mx for each
b ∈ [2, 20]. This is illustrated in Figure 6 for b = 5, where the straight line
passes through the origin and its slope is 70/397.

Fig. 6. y = 70x/397 above R5 and 5 + ζ6

We conclude that either g(x) has a root in common with Φ3(x−b) or with
Φ4(x−b), or g(x) has a root β = σ+it such that 0 < t < mσ < tan(ϑ)σ. Note
that the latter implies that if β = reiϑ

′
, then ϑ′ < ϑ. With an eye toward

applying Lemma 4.1, we deduce from Table 7 that ϑ′ < ϑ = π/D2 < π/D
for b ∈ {2, 3, 4} and ϑ′ < ϑ = π/D2 < π/D1 < π/D for b ∈ [5, 20].

For b ≥ 3, a computation gives arg(b+ζ3) < π/D and arg(b+ζ4) < π/D.
Thus, by Lemma 4.1, we find that f(x) is irreducible if deg f ≤ D.



154 M. Cole et al.

In the case of b = 2, we have arg(2 + ζ4) < π/D but arg(2 + ζ3) = π/D.
We show that in this case, if deg f(x) = D = 6 and f(x) is divisible by
Φ3(x − 2), then f(2) is necessarily composite, contradicting our original
assumption.

Since we want Φ3(x − 2) = x2 − 3x + 3 to be a factor of f(x), and
deg f(x) = 6, the other factor of f(x) is u1x

4 + u2x
3 + u3x

2 + u4x + u5,
where u1, u2, u3, u4, u5 ∈ Z and u1 ≥ 1. This yields

f(x) = (x2 − 3x+ 3)(u1x
4 + u2x

3 + u3x
2 + u4x+ u5)

= u1x
6 + (u2 − 3u1)x

5 + (3u1 − 3u2 + u3)x
4 + (3u2 − 3u3 + u4)x

3

+ (3u3 − 3u4 + u5)x
2 + (3u4 − 3u5)x+ 3u5.

Observe that 2 + ζ3 is a root of f(x) and each coefficient of f(x) is
non-negative. Also, the imaginary part of (2 + ζ3)

j is > 0 for j ∈ {1, . . . , 5},
and (2 + ζ3)

6 = −27. If one of the coefficients of x, x2, x3, x4 or x5 in f(x)
is > 0, then Im(f(2 + ζ3)) > 0, contradicting the fact that 2 + ζ3 is a
root of f(x). Thus, u2 − 3u1 = 0, 3u1 − 3u2 + u3 = 0, 3u2 − 3u3 + u4 = 0,
3u3−3u4+u5 = 0 and 3u4−3u5 = 0. Solving for u2, u3, u4 and u5, we obtain
u2 = 3u1, u3 = 6u1, u4 = 9u1 and u5 = 9u1. This gives f(x) = u1x

6 + 27u1.
Hence, f(2) = 91u1 = 7 · 13 · u1, so f(2) is composite. Thus, the case b = 2
also leads to the statement involving the bound D in Theorem 4.2.

We now turn to establishing the statements concerning D1 and D2.

For b ≥ 5, we have arg(b+ζ3) < π/D1, arg(b+ζ4) > π/D1, and D1 > D.
Thus, by Lemma 4.1, if f(x) is reducible and deg f(x) ≤ D1, then f(x)
is divisible by Φ4(x − b). For 2 ≤ b ≤ 20, we have arg(b + ζ3) > π/D2,
arg(b+ ζ4) > π/D2, and D2 > D. Thus, by Lemma 4.1, if f(x) is reducible
and deg f(x) ≤ D2, then f(x) is divisible by Φ3(x − b) or Φ4(x − b). Note
that what is significant, in this part of the argument, is that tan(π/D2) ≥ m
and y = mx lies above the region Rb.

This completes the proof of Theorem 4.2.

Examples given later in Tables 19 and 20 will show that the bounds D(b)
and D1(b) are sharp. For example, take b = 6, where we see that D(6) has
increased from 18 in Theorem 2.2 to 19 in Theorem 4.2. The polynomial

f(x) = x20 + 2x3 + 13519269991320x2 + 610418402115746x

+ 610418402115527

is of degree 20, f(6) = 8415780974560931 is prime, each coefficient of
f(x) is at most 610418402115746, and f(x) is divisible by Φ4(x − 6) =
x2 − 12x + 37. Although not our ultimate goal, we will prove later in Sec-
tion 8 that this polynomial is also optimal in terms of the size of its coef-
ficients. We will show that if f(x) ∈ Z[x] is a polynomial of degree 20 with
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non-negative integer coefficients which are ≤ 610418402115745 and f(6) is
prime, then f(x) is irreducible. More generally, we will establish the follow-
ing result.

Theorem 4.3. Fix an integer b ∈ [2, 20], let D = D(b) and D1 = D1(b)
(for b ≥ 5) be as in Table 7, let N1 = N1(b) be as in Table 8, and let
N2 = N2(b) (for b ≥ 5) be as in Table 9. Let f(x) =

∑n
j=0 ajx

j ∈ Z[x] be
such that aj ≥ 0 for each j and f(b) is prime. If deg f(x) = D+ 1 and each
aj ≤ N1, then f(x) is irreducible. In the case 5 ≤ b ≤ 20, if deg f(x) = D1+1
and each aj ≤ N2, then f(x) is either irreducible, or divisible by Φ3(x − b)
if b = 5, or divisible by Φ4(x− b) if b ∈ [6, 20].

As indicated before, the bounds N1(b) and N2(b) given in Tables 8 and 9
will all be shown to be sharp and will involve coming up with explicit ex-
amples. These details appear in Section 8.

5. A first bound on the coefficients. Throughout this section, Rb
is as defined in (3.2), with Fb(z) given by (3.1) and Pb(x, y) given by (3.3).
The numbers e2(b), e3(b), e4(b), e6(b) and d(b) are as given in Table 4.

We summarize the previous sections and set the goal for this section.
We have fixed an integer b ∈ [2, 20], and taken a polynomial f(x) with each
coefficient non-negative and f(b) prime. We considered f(x) = g(x)h(x),
with g(x) 6≡ ±1, h(x) 6≡ ±1, and both g(x) and h(x) having positive leading
coefficients. Using the fact that f(b) is prime, we reduced our considerations
to g(b) = ±1. We then showed that either g(x), and thus f(x), is divisi-
ble by at least one of Φ3(x − b), Φ4(x − b), Φ6(x − b), or g(x) has a root
β ∈ Rb.

Now we consider the latter case, that g(x), and thus f(x), has a root
β ∈ Rb, and obtain a lower bound on the coefficients of f(x) in this case.
We will rely heavily on the following lemma.

Lemma 5.1. Let f(x) =
∑n

j=0 ajx
j ∈ Z[x], where aj ≥ 0 for j ∈

{0, 1, . . . , n}. Suppose α = reiθ is a root of f(x) with 0 < θ < π/2 and
r > 1. Let

B = max
π/(2θ)<k<π/θ

{
rk(r − 1)

1 + cot(π − kθ)

}
,

where the maximum is over k ∈ Z. Then there is some j ∈ {0, 1, . . . , n− 1}
such that aj > Ban.

The proof of Lemma 5.1 is similar to that of [6, Theorem 5] and is
established in the above form in [7] (cf. [1] and [2]).

We use Lemma 5.1 to prove the following corollary.
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Corollary 5.2. Fix an integer b with b ≥ 2. Let f(x) =
∑n

j=0 ajx
j ∈

Z[x] be such that aj ≥ 0 for each j and f(b) is prime. If

0 ≤ aj ≤ Bban for 0 ≤ j ≤ n− 1 with Bb as in Table 10,

then either f(x) is irreducible, or f(x) is divisible by at least one of Φ3(x−b),
Φ4(x− b), Φ6(x− b).

Table 10. Values of Bb

b 2 3 4 5 6

Bb 7 4712 5.8802× 107 4.149× 1011 6.616× 1014

b 7 8 9 10 11

Bb 8.762× 1019 1.401× 1025 1.412× 1030 2.749× 1035 5.203× 1040

b 12 13 14 15 16

Bb 1.159× 1046 6.969× 1051 2.689× 1057 1.598× 1063 1.869× 1069

b 17 18 19 20

Bb 1.269× 1075 2.075× 1081 1.245× 1087 3.942× 1093

Before proceeding to the argument for Corollary 5.2, we note that the
value for B10 given in Table 10 is an improvement over the analogous result
given in [7]. This is due to our choice of e2(10), e3(10), e4(10), e6(10) and
d(10) in Table 4, which differs from that used in [7]. On the other hand, the
methods used in both cases are similar.

Proof of Corollary 5.2. For a fixed integer b ∈ [2, 20], let θ and θ′ be real
numbers such that 0 ≤ θ < θ′ ≤ tan−1(Rb), where Rb is given in Table 11.
We are interested in the set of points Rb(θ, θ′) that are in Rb between the
line passing through the origin making an angle θ with the positive x-axis
and the line passing through the origin making an angle θ′ with the positive
x-axis. Explicitly, we define

Rb(θ, θ′) = {(x, y) ∈ Rb : tan(θ) ≤ y/x < tan(θ′)}.

We are still considering the case that g(x) has a root β ∈ Rb. We write
β = x0 + iy0 for some (x0, y0) ∈ Rb, where we may take y0 > 0.

Along the lines of the proof of Theorem 4.2, we use a Sturm sequence to
show that the line y = Rbx does not intersect the region Rb, where the value
of Rb is given in Table 11. In other words, we take the rational equivalent
of the decimal expression in Table 11 and show that the region Rb lies
completely under the line y = Rbx by verifying with a Sturm sequence that
the polynomial Pb(x,Rbx) ∈ Q[x] has no real roots.

To utilize Lemma 5.1, we specify a set Θb = {θ0, θ1, . . . , θm−1, θm} where

0 = θ0 < θ1 < · · · < θm−1 < θm < π/2,
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Table 11. Values of Rb

b 2 3 4 5 6 7 8

Rb 1.6 0.5 0.26 0.18 0.15 0.124 0.108115

b 9 10 11 12 13 14

Rb 0.096 0.08622 0.0783 0.072 0.0664 0.0617

b 15 16 17 18 19 20

Rb 0.0577 0.054053 0.05091 0.0481 0.0456 0.043327

and where tan(θl) = rl ∈ Q for 0 ≤ l ≤ m, tan(θ1) = 1/1000 and
tan(θm) = Rb. Thus,

(x0, y0) ∈
m−1⋃
l=0

Rb(θl, θl+1).

Next, for each l ∈ {0, 1, . . . ,m− 1}, we use Lemma 5.1 to find a bound
B′b(θl, θl+1) so that for all (x0, y0) ∈ Rb(θl, θl+1), there is a j ∈ {0, 1, . . . ,
n− 1} for which aj > B′b(θl, θl+1)an. We can then deduce that some coeffi-
cient of f(x) must exceed

(5.1) min
0≤l≤m−1

{B′b(θl, θl+1)} · an.

We judiciously choose each θl ∈ Θb so that always B′b(θl, θl+1) > Bb, where
Bb is listed in Table 10. Corollary 5.2 will then follow.

We begin by considering the first sectorRb(θ0, θ1), where we have already
stated that θ0 = 0 and θ1 = tan−1(1/1000), independent of the value of
b ∈ [2, 20]. Take

k = k(θ) =

⌊
25π

26θ

⌋
where 0 < θ ≤ tan−1

(
1

1000

)
.

We note that

k ∈
(
π

2θ
,
π

θ

)
since

kθ ≤ 25π

26
< π

and

kθ >

(
25π

26θ
− 1

)
θ =

25π

26
− θ ≥ 25π

26
− tan−1

(
1

1000

)
>
π

2
.

Later we will use the fact that
π

2
> π − kθ ≥ π − 25π

26
=

π

26
,

which gives cot(π − kθ) ≤ cot(π/26).
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From our definition of k and the range of θ above, we have

k =

⌊
25π

26θ

⌋
≥
⌊

25π/26

tan−1(1/1000)

⌋
= 3020.

We recall that for each z ∈ Rb, regardless of the b we are using, we have
Re(z) ≥ 1.447, as implied by Table 6. Thus, for each z = reiθ ∈ Rb, we have
r = |z| ≥ 1.447. For each such z, we see that

rk(r − 1)

1 + cot(π − kθ)
≥ 1.4473020(1.447− 1)

1 + cot(π/26)
> 1.99× 10483.

From Lemma 5.1, with θ0 = 0 and θ1 = tan−1(1/1000), we see that we may
take

(5.2) B′b(θ0, θ1) = B′b

(
0, tan−1

(
1

1000

))
= 1.99× 10483.

Observe that 1.99× 10483 > Bb for each b ∈ [2, 20].
There is quite a bit of freedom in choosing the remaining values of θl

for each b. We want some idea of where the line y = tan(θl)x intersects Rb.
Since the boundary of Rb consists of the points (x, y) such that Pb(x, y) = 0,
we want an estimate of the real numbers x for which P (x, tan(θl)x) = 0.
However, we want to avoid computations that approximate the real roots of
a polynomial based on coefficients that are themselves just approximations
of the actual real coefficients. To this end, we recall rl = tan(θl), where rl is a
rational number. We then find a close rational lower bound approximation x′l
to the minimum real root of Pb(x, rlx) = 0. Since Pb(x, rlx) ∈ Q[x] and
x′l ∈ Q, we can use a Sturm sequence to verify, with exact arithmetic, that
Pb(x, rlx) has no roots in the interval [0, x′l]. Thus, x′l provides us with a
lower bound on the x-coordinate of the intersection of y = tan(θl)x with Rb.
Observe that by construction r1 = 1/1000.

The values of rl = tan(θl) we used for each b ∈ [2, 20] can be found in [4].
As the exact values are not so significant, we do not duplicate them all here
but rely instead on tabulating the choices we used for b = 2 and b = 10 as
examples. For b = 2, the rl are given in Table 12; for b = 10, the rl are given
in Table 13.

We explain the notation in Table 13 for the values of θ0, θ1, . . . , θm. The
value ra corresponds to the first value of tan(θl) being considered in that
row, and the value rb corresponds to the last value of tan(θl+1). We used the
rational equivalents of the decimals given for ra and rb in our computations
to ensure exact arithmetic when computing x′l as described earlier. If d is
the number of divisions indicated in the third column of the same row, then
the corresponding intervals (θl, θl+1) for that row are given by

θl = tan−1
(
ra +

(rb − ra)j
d

)
, θl+1 = tan−1

(
ra +

(rb − ra)(j + 1)

d

)
,
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Table 12. Values of B′2(θl, θl+1)

l rl = tan(θl) B′2(θl, θl+1)

0 0 = 0 1.99× 10483

1 1
1000

= 0.001 1.67316× 10333

2 3
2000

= 0.0015 1.88152× 10249

3 1
500

= 0.002 1.78851× 10165

4 3
1000

= 0.003 2.25395× 10123

5 1
250

= 0.004 1.59285× 1098

6 1
200

= 0.005 3.13071× 1081

7 3
500

= 0.006 3.66576× 1069

8 7
1000

= 0.007 3.99316× 1060

9 1
125

= 0.008 3.51475× 1053

10 9
1000

= 0.009 1.01194× 1048

11 1
100

= 0.01 2.52294× 1031

12 3
200

= 0.015 1.13455× 1023

13 1
50

= 0.02 8.071030× 1014

14 3
100

= 0.03 6.506270× 1010

15 1
25

= 0.04 2.576910× 108

16 1
20

= 0.05 5.92576× 106

17 3
50

= 0.06 479437

18 7
100

= 0.07 62346.5

19 2
25

= 0.08 12234.5

20 9
100

= 0.09 4547.64

21 1
10

= 0.1 118.104

22 3
20

= 0.15 28.2727

23 1
5

= 0.2 11.9817

24 1
4

= 0.25 7.41419

l rl = tan(θl) B′2(θl, θl+1)

25 3
10

= 0.3 8.48120

26 31
100

= 0.31 7.68540

27 8
25

= 0.32 7.86165

28 33
100

= 0.33 7.61940

29 17
50

= 0.34 7.31188

30 7
20

= 0.35 7.41486

31 71
200

= 0.355 7.20197

32 9
25

= 0.36 7.22629

33 37
100

= 0.37 7.28552

34 19
50

= 0.38 7.34184

35 39
100

= 0.39 7.38453

36 2
5

= 0.4 7.39514

37 41
100

= 0.41 7.74498

38 21
50

= 0.42 7.72610

39 11
25

= 0.44 7.95266

40 47
100

= 0.47 8.65642

41 1
2

= 0.5 8.64546

42 11
20

= 0.55 8.47305

43 3
5

= 0.6 7.34988

44 7
10

= 0.7 8.44235

45 3
4

= 0.75 8.10185

46 4
5

= 0.8 7.69225

47 9
10

= 0.9 7.46715

48 11
10

= 1.1 7.72974

49 16
10

= 1.6 −

for 0 ≤ j ≤ d − 1, where l as indicated depends on j. The fourth column
indicates the minimum value of B′10(θl, θl+1) for (θl, θl+1) considered in that
row, and therefore serves as a value of B′10(θa, θb). We explain momentar-
ily how the bounds B′b(θl, θl+1) were obtained. The number m of intervals
(θl, θl+1) for b = 10 is 1134, given by the total number of divisions from
the third column of Table 13. This is slightly misleading as the last divi-
sion of (ra, rb) = (0.0861, 0.08622) into 1000 intervals of equal length leads
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Table 13. Values of B′10(θl, θl+1)

ra = tan(θa) rb = tan(θb) # of Divisions B′10(θa, θb)

0 0.001 1 1.88× 10483

0.001 0.002 2 1.35945× 101452

0.002 0.01 8 9.47832× 10288

0.01 0.02 2 5.96751× 10143

0.02 0.08 6 1.33634× 1036

0.08 0.085 5 3.38637× 1035

0.085 0.086 100 2.83670× 1035

0.086 0.0861 10 2.75920× 1035

0.0861 0.08622 1000 2.74964× 1035

to a number of cases where R10(θl, θl+1) is the empty set. In other words,
y = tan(θl)x will lie above R10 for θl ≈ 0.08622. These values of l are to be
ignored. What is significant here in fact is that for the last θl+1 considered,
y = tan(θl+1)x is above R10. This is the case due to the value of R10 in
Table 11.

As suggested by Table 13, for b ≥ 3, we want the gaps between consecu-
tive rl considered to become smaller when B′b(θl, θl+1) is near the minimum
value obtained (in the last column). A priori, we did not know where the
minimum occurs, so we revised the number of divisions (ending with the
indicated values in the third column) to be larger until the minimum value
of B′b(θl, θl+1) was accurate to the first few digits shown.

For a fixed l ∈ {1, . . . ,m − 1}, we now show how to obtain a value for
B′b(θl, θl+1). We have already shown how to find a verifiable lower bound
x′l for the leftmost point (x, y) on the intersection of the line y = tan(θl)x
and Rb. This was done using a Sturm sequence for a polynomial in Q[x].

Let

(5.3) α = x0 + iy0 = reiθ where (x0, y0) ∈ Rb(θl, θl+1).

We will show that both x0 ≥ x′l and y0 ≥ tan(θl)x
′
l. We begin with the

former. By way of contradiction, assume that x0 < x′l. Let (x1, y1) be the
point where y = tan(θ)x intersects Rb with x1 being minimal. Therefore,
(x1, y1) lies on the boundary of Rb, and, by Lemma 3.1, we have y1 = ρb(x1).
Also, x1 ≤ x0 < x′l and, by Lemma 3.1(i), b − a0 ≤ x1 ≤ b + a1 where a0
and a1 are given in Table 6. By Lemma 3.1(iii)–(iv), the function ρ0(x) =
ρb(x)−rlx is continuous on Ib = [b−a0, b+a1] and such that ρ0(b−a0) < 0.
However, since (x1, y1) ∈ Rb(θl, θl+1), it lies above the line y = tan(θl)x.
This gives

ρb(x1) = y1 = tan(θ)x1 ≥ tan(θl)x1 = rlx1,

so ρ0(x1)≥0. By the Intermediate Value Theorem, there exists a u∈ [b−a0, x1]
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such that ρ0(u) = 0. Thus, ρb(u) = rlu, which yields Pb(u, rlu) = 0. Since

u ≤ x1 ≤ x0 < x′l,

we obtain a contradiction to the definition of x′l. Therefore, x0 ≥ x′l. To
show that y0 ≥ tan(θl)x

′
l, we now simply observe that

y0 = tan(θ)x0 ≥ tan(θl)x0 ≥ tan(θl)x
′
l.

To get a value for B′b(θl, θl+1), we used 100-digit approximations in
Maple 17 to perform the calculations indicated below. Further details can
be found in [4]. We let Ll be a lower bound approximation of sec(θl)x

′
l so

that, for any α = reiθ as in (5.3), we have

r =
√
x20 + y20 ≥

√
1 + tan2(θl)x

′
l ≥ Ll.

Now, for every l ∈ {1, . . . ,m − 1}, we let k1 = k1(l) be the largest integer
≤ π/θl+1. We define

k2 = k2(l) =

{
k1 − 1 if k1 − 1 ≥ π/(2θl) + 10−10,

k1 otherwise.

Notably, these values depend on the values for rl and θl chosen earlier. In
every case, for our choices of rl and θl, the inequalities

π

2θl
+ 10−10 ≤ k2 ≤ k1 ≤

π

θl+1
− 10−10

held. The specific choice of 10−10 is not significant here or later below, but
it provides us with some measure of how much accuracy was needed for our
computations. For each θ ∈ [θl, θl+1], we are able to conclude that

π

2θ
≤ π

2θl
< k2 ≤ k1 <

π

θl+1
≤ π

θ
.

Hence, in each case, k1 and k2 are in the interval (π/(2θ), π/θ).

For each b and l, we compute c(k1) and c(k2) such that

(5.4) cot(π − kjθ) ≤ cot(π − kjθl+1) ≤ c(kj)− 10−10 for j ∈ {1, 2}.

From the above, Lemma 5.1 now allows us to take

B′b(θl, θl+1) = max

{
Lk1l (Ll − 1)

1 + c(k1)
,
Lk2l (Ll − 1)

1 + c(k2)

}
.

These bounds, combined with (5.1) and (5.2), give the lower bound of Bban
for at least one of the coefficients of f(x), where Bb is as listed in Table 10.
Corollary 5.2 now follows.

Before leaving this section, we note that a certain precaution had to be
made in (5.4) that is connected to an irrationality result. What happens if
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our choices for θl+1 and kj cause the expression cot(π− k1θl+1) to be unde-
fined? This in fact can happen. Observe that k1 = bπ/θl+1c. The expression
cot(π − k1θl+1) is undefined precisely when π/θl+1 ∈ Z. If this happens,
then θl+1 is a rational multiple of π. Recall that rl+1 = tan(θl+1) is also
rational. The only rational values of the form tan(uπ) with u ∈ Q are 0 and
±1 (cf. [10, Corollary 3.12]). Thus, for our set-up where 0 < θl+1 < π/2, we
need only avoid rl+1 = 1. Since Rb is an upper bound on rl+1 = tan(θl+1),
we deduce from Table 11 that the possibility of rl+1 = 1 only occurs for
b = 2. This explains the choice of r47 and r48 in Table 12, where we avoided
using the rational number 1 for a value of rl.

6. Bounds based on recursive relations. We will now examine an-
other method to bound the coefficients of f(x) that is motivated by Corollary
5.2. In the case that f(x) is divisible by one of the quadratics Φ3(x − b),
Φ4(x − b) and Φ6(x − b), we find sharp lower bounds for the maximum co-
efficient of f(x). The bound that we find will depend on our choice of b and
the quadratic.

As much of this section is based on the work in [7] for b = 10, we give
enough background from there to describe our work for b ∈ [2, 20] but refer
to [7] for the details of the arguments.

Fix positive integers A and B. Let bj be integers such that

(6.1) (b0x
s + b1x

s−1 + · · ·+ bs−1x+ bs)(x
2 −Ax+B)

is a polynomial of degree s+ 2 with non-negative coefficients. We will want
A and B to be chosen so that the quadratic on the right is one of Φ3(x− b),
Φ4(x − b), Φ6(x − b). With f(x) = g(x)h(x) as before and g(x) being the
quadratic, we view h(x) as the polynomial factor on the left in (6.1) and
further n = deg f(x) = s + 2. The choice of bj as the coefficient of xs−j

will help us view the bj as forming a sequence and be more appropriate for
the arguments that follow. If (6.1) is expanded, we obtain f(x) so that the
resulting coefficients are all non-negative.

We define bj = 0 for all j < 0 and all j > s. Since the coefficients of f(x)
are all non-negative, we deduce that

(6.2) b0 ≥ 1 and bj ≥ Abj−1 −Bbj−2 for all j ∈ Z.

Define

(6.3) βj =


0 if j < 0,

1 if j = 0,

Aβj−1 −Bβj−2 if j ≥ 1,

so the βj satisfy a recursive relation for j ≥ 0. In particular, β1 = A and
β2 = A2 −B. For each A and B corresponding to a quadratic x2 −Ax+B
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equal to one of Φ3(x− b), Φ4(x− b), Φ6(x− b) for some b ∈ [2, 20], the values
of βj vary in sign as j increases. Let J be a positive integer for which

(6.4) βj > 0 for 0 ≤ j ≤ J.
As shown in [7], we have

(6.5) bj ≥ βjb0 for all integers j ≤ J + 1.

Although it is natural to consider J maximal satisfying (6.4) as in [7],
what we want for our purposes is the least J for which βJ+1 < βJ . In [7],
these notions are equivalent; but in general, they are not. Tables 14 and 15
show the A, B, J and βJ for b ∈ [2, 20]. Note that

βJ = max
0≤j≤J

{βj}.

Let

U = max
j≥0
{bj} and L = min

j≥0
{bj}.

Since bj = 0 for j > s, we have the trivial bound L ≤ 0. From (6.5), we
obtain U ≥ βJb0.

We are interested in A and B such that f(x) is divisible by x2−Ax+B.
We view A and B as fixed. We want f(x) to have non-negative integer
coefficients but with the largest coefficient as small as possible. Let M =
M(A,B) be the maximum coefficient for such an f(x). For this definition,
we do not require that f(b) is prime. Thus, if f0(x) ∈ Z[x] has non-negative
integer coefficients and is divisible by x2−Ax+B, then f0(x) has a coefficient
that is ≥M .

We now describe important inequalities obtained in [7]. Let ` ∈ Z+.
Define µ0, µ1, . . . , µ`−1 to be the solution to the matrix equation

1 1 1 · · · 1 1 1
−A B 0 · · · 0 0 0
1 −A B · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · B 0 0
0 0 0 · · · −A B 0
0 0 0 · · · 1 −A B





µ0
µ1
µ2
...

µ`−3
µ`−2
µ`−1


=



1
0
0
...
0
0
0


.

The above corresponds to a system of ` equations in the ` unknowns µj
where 0 ≤ j ≤ ` − 1. The system depends only on A, B and `. Ideally, we
want to know that a unique solution to this system exists and each µj is in
[0, 1]. For each choice of A, B and ` we use, this can be verified with a direct
computation. We therefore suppose this is the case.

We set

(6.6) u = µ0B, v = µ`−2 − µ`−1A and w = µ`−1.
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Table 14. Values of βJ for bases 2 ≤ b ≤ 12

b A B J βJ

2 3 3 4 9

2 4 5 5 44

2 5 7 7 1265

3 5 7 7 1265

3 6 10 8 7696

3 7 13 11 1275120

4 7 13 11 1275120

4 8 17 11 4839120

4 9 21 15 4342010751

5 9 21 15 4342010751

5 10 26 14 7358602624

5 11 31 18 29466877337101

6 11 31 18 29466877337101

6 12 37 17 21848430755052

6 13 43 22 668421206663764973

7 13 43 22 668421206663764973

7 14 50 20 111210534995557376

7 15 57 26 21999708522958326888168

8 15 57 26 21999708522958326888168

8 16 65 24 1500111128083892163841

8 17 73 29 981412950725117689674949200

9 17 73 29 981412950725117689674949200

9 18 82 27 26831610348844479287132160

9 19 91 33 117704722514097750900952684327901

10 19 91 33 117704722514097750900952684327901

10 20 101 30 604861792550624708513466396499

10 21 111 37 12146960414965144431227887762494414381

11 21 111 37 12146960414965144431227887762494414381

11 22 122 33 17372654348915578396565748340621312

11 23 133 40 2388719391431067586473475435479832953496811

12 23 133 40 2388719391431067586473475435479832953496811

12 24 145 36 631477325821592776208040048198094984801

12 25 157 44 852463967980020982575658211110018018726645270524

13 25 157 44 852463967980020982575658211110018018726645270524

13 26 170 39 28717077224929268201659599157515978503356416

13 27 183 47 15292524334493253461581890961× 1025

+ 8898892202903263801780160
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Then [7] establishes that

(6.7) M ≥
⌈
u2 − (v + w)2

u
· U
⌉
≥ u2 − (v + w)2

u
· U

≥ u2 − (v + w)2

u
· βJb0 ≥

(u2 − (v + w)2)βJ
u

and

(6.8) 0 ≤ −L ≤ v + w

u2 − (v + w)2
·M.

The inequalities (6.7) and (6.8) can be used to estimate L and U , respec-
tively. We also use (6.7) to find a lower bound for M(A,B) that is exactly,
or is close to, best possible. With some additional work, as we shall see, we
can determine the exact value of M(A,B). Note that the variables in (6.7)
and (6.8) all depend on b, A and B, and in addition u, v and w (as given
in (6.6)) depend on `. For `, we will choose ` = J + 1 where J is given in
Tables 14 and 15.

As an example of the use of (6.7), we can obtain an immediate im-
provement on Corollary 5.2. Take b = 4, A = 9 and B = 21. Computing
µ0, µ1, . . . , µ` with ` = 16, we check that the µj are in [0, 1], and compute
u, v and w using (6.6). Denoting by an the leading coefficient of f(x) as in
Corollary 5.2, we have b0 = an. Table 14 gives a lower bound b0β15 = anβ15
for U = U(9, 21). From (6.7), we see that

M = M(9, 21) ≥ u2 − (v + w)2

u
· U ≥ 5.6446× 1010an.

This implies that any polynomial f(x) with non-negative coefficients and
leading coefficient an that is divisible by x2 − 9x + 21 must have a co-
efficient as large as 5.6446 · 1010an. From Corollary 5.2, we see that if
f(x) =

∑n
j=0 ajx

j ∈ Z is such that f(4) is prime and

0 ≤ aj ≤ 5.8802 · 107an for 0 ≤ j ≤ n,
then either f(x) is irreducible or f(x) is divisible by Φ3(x−4) = x2−7x+13
or Φ4(x− 4) = x2− 8x+ 17. Repeating the analogous calculations for bases
2 ≤ b ≤ 20, with the aid of Corollary 5.2, we can deduce the following.

Corollary 6.1 (Improvement of Corollary 5.2). Fix an integer b with
b ≥ 2. Let f(x) =

∑n
j=0 ajx

j ∈ Z[x] be such that aj ≥ 0 for each j and f(b)
is prime. If

0 ≤ aj ≤ Bban for 0 ≤ j ≤ n− 1 with Bb as in Table 10,

then either f(x) is irreducible, or f(x) is divisible by Φ3(x− b) or Φ4(x− b).
Similarly, for each b ∈ [2, 20], we can apply (6.7) to find a lower bound for

M(A,B) in case g(x) = x2−Ax+B is Φ3(x−b) or Φ4(x−b). Tables 16 and 17
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Table 16. Lower bound on M(A,B) for 3 ≤ b ≤ 9

b A B Lower bound on M(A,B) from (6.7)

2 3 3 9

2 4 5 88

3 5 7 3795

3 6 10 38480

4 7 13 8925840

4 8 17 48391200

5 9 21 56446139763

5 10 26 125096244608

6 11 31 618804424079121

6 12 37 568059199631352

7 13 43 20721057406576714162

7 14 50 4114789794835622912

8 15 57 945987466487208056191223

8 16 65 75005556404194608192049

9 17 73 55940538191331708311472104399

9 18 82 1744054672674891153663590399

list b, A,B, and a lower bound for M(A,B) obtained from our computations.
To clarify, these lower bounds are simply (u2 − (v + w)2)βJ/u as given in
(6.7), where again we take ` = J + 1 and we use (6.6) to compute u, v
and w.

Before proceeding, we note that we have finished establishing the case
b = 2 of Theorem 1.1. In other words, we can now deduce that if f(x) =∑n

j=0 ajx
j ∈ Z[x] with 0 ≤ aj ≤ 7 for each j and f(2) prime, then f(x) is

irreducible. For b ∈ {3, 4, 5, 6, 7, 14}, the bounds M(A,B) come particularly
close to what we want. These bounds establish that M1(b) can be taken
to be 1 less than what appears in Table 1. In other words, for these b, we
can now deduce that if f(x) =

∑n
j=0 ajx

j ∈ Z[x] with 0 ≤ aj ≤ M1(b) − 1
for each j and f(b) prime, then f(x) is irreducible. As we shall see, it is
possible for f(x) to have all its coefficients in [0,M1(b)] with f(x) divisible
by x2 − Ax + B. Even though this quadratic has the value 1 at x = b, we
will see that for such an f(x), f(b) cannot be prime.

7. A sharp bound for M(A,B). We are now ready to complete the
proof of Theorem 1.1. At the end of the previous section, we noted that the
case b = 2 is complete. For a fixed b ∈ [3, 20], we are interested in the case
that f(x) = g(x)h(x), where g(x) = x2 −Ax+B is Φ3(x− b) or Φ4(x− b),
h(x) has a positive leading coefficient that we have denoted by b0, and f(x)
has maximal coefficient M(A,B).
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We view A and B as fixed. It is worth recalling that M = M(A,B) is as
small as possible. Recall also that we did not require that f(b) is prime in
the definition of M .

To finish the proof of Theorem 1.1, one checks that it suffices to show
both of the following:

(A) The value of M(A,B) is (1−A+B) ·βJ for each appropriate choice
of (A,B) as shown in Tables 14 and 15.

(B) If the maximal coefficient of f(x) equals M , then f(b) is composite.

Note that in (B), we are supposing as indicated above that f(x) is divisible
by x2 −Ax+B. For example, take b = 8. Then (A) implies

M(16, 65) = 75005556404194608192050,

M(15, 57) = 945987466487208056191224.

These are respectively the values of M1(8) and M2(8) given in Tables 1
and 2. Corollary 5.2 implies that if f(x) =

∑n
j=0 ajx

j ∈ Z[x] with 0 ≤ aj ≤
M(15, 57) for each j and f(x) is reducible, then f(x) is divisible by either
Φ3(x− 8) or Φ4(x− 8). It follows that if 0 ≤ aj ≤M(16, 65) = M1(8), then
f(x) is either irreducible or divisible by Φ4(x− 8). From (B), if also f(8) is
prime, then f(x) cannot be divisible by Φ4(x−8) = x2−16x+65. Therefore,
the conditions of f(8) being prime and 0 ≤ aj ≤ M1(8) in Theorem 1.1
imply f(x) is irreducible. Similarly, f(8) being prime and 0 ≤ aj ≤ M2(8)
in Theorem 1.1 imply that either f(x) is irreducible, or f(x) is divisible by
Φ4(x− 8). A similar argument holds for each b ∈ [3, 20].

We begin by establishing (A). We suppose first that

(7.1) M(A,B) ≤ (1−A+B) · βJ .
Observe that we will want eventually to obtain a contradiction if strict
inequality holds in (7.1), but there will be a significance to seeing what the
inequality as written in (7.1) gives us. We are interested in the case that
x2 −Ax+B is Φ3(x− b) or Φ4(x− b).

From (6.7) and (7.1), we have

(7.2) b0βJ ≤ U(A,B) ≤ uM(A,B)

u2 − (v + w)2
≤ u(1−A+B) · βJ

u2 − (v + w)2
.

We compute the leftmost and right-most sides of (7.2), based on u, v and w
from (6.6) with ` = J + 1 as before, on b ∈ [3, 20] and on x2−Ax+B being
Φ3(x− b) or Φ4(x− b). In all cases, (7.2) gives a contradiction if b0 ≥ 2, so
that we only consider now the possibility that h(x) is monic. Setting b0 = 1
in (7.2), by the same computations above we obtain U = βJ . In other words,

βJ =

⌊
u(1−A+B) · βJ
u2 − (v + w)2

⌋
for all b ∈ [3, 20] and x2 −Ax+B equal to Φ3(x− b) or Φ4(x− b).
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Using (7.1) with u, v and w as before leads to

v + w

u2 − (v + w)2
·M ∈ (0, 1)

for each b ∈ [3, 20] and pair (A,B). Hence, (6.8) implies that L = 0.

Thus, we have established that (7.1) implies h(x) is monic, the largest
coefficient of h(x) corresponds to the value of βJ as indicated in Tables 14
and 15, and all of the coefficients of h(x) are non-negative.

The approach given in [7] for b = 10 follows through for general b directly
at this point to give us more information about the structure of h(x), based
on the information just obtained about h(x). Following the arguments there,
still under the assumption of (7.1), we deduce that h(x) can be written as
a sum over some non-negative integers k of polynomials which are xk times

(7.3) (β0x
J + β1x

J−1 + · · ·+ βJ)xJ+t
′
+ (xJ+t

′−1 + xJ+t
′−2 + · · ·+ xJ)βJ

+ (βJ − β0)xJ−1 + (βJ − β1)xJ−2 + · · ·+ (βJ − βJ−1),

where t′ = t′(k) is a non-negative integer. The k cannot be arbitrary. There
should be no overlapping terms for different k, and the coefficient of xk−1

in h(x) should be 0 for each k.

We are ready to prove (A). Assume that strict inequality holds in (7.1).
For b ∈ [3, 20], we see that J ≥ 7 in Tables 14 and 15. Observe that,
since f(x) = (x2 − Ax + B)h(x) with h(x) as above, f(x) has a coefficient
equal to

(βJ − β1)−A(βJ − β0) +BβJ = (1−A+B)βJ − β1 +Aβ0

= (1−A+B)βJ ,

corresponding to the coefficient of xJ when the expression in (7.3) is multi-
plied by x2 −Ax+B. This contradicts our assumption.

Thus far, we have shown that M(A,B) ≥ (1− A+ B)βJ . On the other
hand, we know the form h(x) must have if M(A,B) = (1 − A + B)βJ .
Motivated by (7.3) with t′ = 0, we consider

h0(x) = β0x
2J + β1x

2J−1 + · · ·+ βJx
J

+ (βJ − β0)xJ−1 + (βJ − β1)xJ−2 + · · ·+ (βJ − βJ−1).

The recursive definition of βj now implies that

(x2 −Ax+B)h0(x) = x2J+2 +
(
(1−A)βJ +BβJ−1 − 1

)
xJ+1

+ (1−A+B)βJx
J + · · ·+ (1−A+B)βJx

2

+
(
(B −A)βJ +AβJ−1 −BβJ−2

)
x+B(βJ − βJ−1).

Note that the coefficient of x here can be rewritten as (1 − A + B)βJ .
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Furthermore, the constant term of (x2 −Ax+B)h0(x) can be rewritten as

(1−A+B)βJ − βJ + βJ+1.

Recalling that the definition of J gives βJ−1 ≤ βJ and βJ+1 < βJ , we see
that the maximal coefficient of (x2 − Ax + B)h0(x) is (1 − A + B)βJ . The
definition of M(A,B) now implies the equality given in (A).

Now, we prove (B). The approach here differs from that given in [7] and
necessarily has to be different for some values of b ∈ [3, 20]. By (A), we know
M(A,B) = (1−A+B)βJ , so that f(x) = (x2−Ax+B)h(x) where h(x) is
a sum over some non-negative integers k of polynomials which are xk times
polynomials of the form (7.3). We refer to the polynomial in (7.3) as part
of h(x). We begin by showing that with A, B and J fixed, but t′ arbitrary,
each part of h(x) is divisible by

h1(x) =
J∑
j=0

(βJ−j − βJ−j−1)xj ,

where we recall that β−1 = 0. From this definition of h1(x), we have

J∑
j=0

βJ−jx
j ≡

J∑
j=0

βJ−j−1x
j ≡

J∑
j=1

βJ−jx
j−1 (mod h1(x)).

We deduce that the polynomial given in (7.3) is( J∑
j=0

βJ−jx
j
)
xJ+t

′
+
(J+t′−1∑

j=0

xj
)
βJ −

J∑
j=1

βJ−jx
j−1

≡
( J∑
j=1

βJ−jx
j−1
)
xJ+t

′
+
(J+t′−1∑

j=0

xj
)
βJ −

J∑
j=1

βJ−jx
j−1

≡
( J∑
j=0

βJ−jx
j
)
xJ+t

′−1 +
(J+t′−2∑

j=0

xj
)
βJ −

J∑
j=1

βJ−jx
j−1

≡
( J∑
j=0

βJ−jx
j
)
xJ+t

′−2 +
(J+t′−3∑

j=0

xj
)
βJ −

J∑
j=1

βJ−jx
j−1

...

≡
J∑
j=0

βJ−jx
j −

J∑
j=1

βJ−jx
j−1 ≡ 0 (mod h1(x)).

Thus, each part of h(x), and therefore h(x) itself, is divisible by h1(x). Since
h(x) consists of at least one part as in (7.3) with t′ ≥ 0 and J ≥ 1, we obtain

h(b) ≥ (β0b
J +β1b

J−1 + · · ·+βJ)bJ > β0b
J +β1b

J−1 + · · ·+βJ > h1(b) > 1.
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Hence, h(b) is the integer h1(b) times an integer that is > 1. We deduce that
f(b) = g(b)h(b) = h(b) is composite. This finishes the proof of (B).

Recall that this completes our proof of Theorem 1.1, but we are still
interested in showing that most of the bounds in that theorem are sharp, as
indicated after its statement.

To establish the sharpness, we find explicit examples of reducible f(x)
∈ Z[x] with non-negative coefficients, with maximal coefficient equal to
(1 − A + B)βJ + 1 and with f(b) prime. To this end, we fix an integer
b ∈ [3, 20], choose the appropriate A, B and J using Tables 14 and 15, and
then we take h1(x) to be as given in (7.3). In each case, we set t′ = 0 except
for the case (b, A,B) = (15, 30, 226) where we set t′ = 1. With some trial
and error, we found a quadratic h2(x) ∈ Z[x] such that h(x) = h1(x)+h2(x)
satisfies the following conditions:

• f(x) = (x2 −Ax+B)h(x) has non-negative coefficients,
• f(b) is prime,
• the largest coefficient of f(x) is (1−A+B)βJ + 1,

where βJ is given in Tables 14 or 15. So as to save space in the repre-
sentations of the polynomial examples we found, we indicate f(x) by only
tabulating h2(x). Observe that the value of h2(x) uniquely determines an
f(x) as described. Table 18 below gives our explicit choices of h2(x) to con-
struct f(x) showing us that the bounds M1(b) for b ∈ [3, 20] and the bounds
M2(b) for b ∈ [4, 20] given in Theorem 1.1 are sharp.

Table 18. Examples of h2(x) for M1(b) and M2(b)

b h2(x) for M1(b) h2(x) for M2(b)

3 x2 + 5x+ 9 −
4 x2 + 5x+ 10 x2 + 8x+ 40

5 x2 + 7x+ 23 x2 + 10x+ 44

6 x2 + 8x+ 32 x2 + 11x+ 48

7 x2 + 9x+ 39 x2 + 13x+ 46

8 x2 + 15x+ 72 x2 + 15x+ 106

9 x2 + 16x+ 76 x2 + 17x+ 115

10 x2 + 8x+ 54 x2 + 11x+ 66

11 x2 + 14x+ 84 x2 + 21x+ 133

b h2(x) for M1(b) h2(x) for M2(b)

12 x2 + 19x+ 126 x2 + 23x+ 135

13 x2 + 16x+ 122 x2 + 13x+ 83

14 x2 + 14x+ 114 x2 + 23x+ 164

15 x2 + 24x+ 198 x2 + 15x+ 123

16 x2 + 12x+ 114 x2 + 31x+ 565

17 x2 + 18x+ 178 x2 + 19x+ 176

18 x2 + 19x+ 198 x2 + 35x+ 742

19 x2 + 29x+ 279 x2 + 27x+ 272

20 x2 + 21x+ 232 x2 + 39x+ 522

8. Final arguments. We finish by supplying a proof of Theorem 4.3
and, in particular, examples justifying that the degree bounds in Theo-
rem 4.2 and the coefficient bounds in Theorem 4.3 are sharp. The bounds
from Corollary 6.1 imply that we need only consider the case that f(x) =
g(x)h(x) where g(x) = x2 − Ax + B is Φ3(x − b) or Φ4(x − b) and where
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h(x) can be taken in the form of the first factor in (6.1). In particular, (6.1)
equals f(x).

Fix b ∈ [2, 20]. Let f(x) =
∑n

j=0 ajx
j ∈ Z[x] be such that aj ≥ 0 for

each j and f(b) is prime. From (6.5), we have

bj ≥ βjb0 if βi > 0 for 0 ≤ i ≤ j − 1.

Set

J0 = J0(b, A,B) =

{
J if βJ+1 < 0,

J + 1 if βJ+1 ≥ 0.

For (b, A,B) = (2, 3, 3), one checks that βJ0 = βJ+1 = 0. For all other
(b, A,B) under consideration, βJ0 > 0. Thus,

βj > 0 for 0 ≤ j ≤ J0, if (b, A,B) 6= (2, 3, 3) or j 6= J0.

For (b, A,B) 6= (2, 3, 3), we deduce that bj > 0 for all j ≤ J0; in particular,
s = deg h ≥ J0 and deg f ≥ J0 + 2. In the proof of Theorem 4.2, we
established deg f ≥ J0 + 2 in the case (b, A,B) = (2, 3, 3). In fact, for
b ∈ [2, 20], we note that J0 + 1 agrees with the values of D(b) and D1(b)
in Table 7. In particular, to justify D(b) is sharp and to justify the value
of N1(b) in Table 8, we will take s = J0 and deg f = J0+2 with the maximal
coefficient of f(x) as small as possible.

Recall bj has been defined for all integers j. We now set

(8.1) κj = bj −Abj−1 +Bbj−2 for j ∈ Z.
Observe that κj ≥ 0 for all j ∈ Z. For integers u and t, we also let

κ′(u, t) =
u∑
j=0

βjκt−j .

Thus, κ′(u, t) = κ′(u − 1, t) + βuκt−u. Recall β0 = 1, β1 = A and βj+1 =
Aβj −Bβj−1 for j ≥ 1. Using the definition of κj , we deduce

bt = β1bt−1 −Bβ0bt−2 + κ′(0, t)

= β1(Abt−2 −Bβ0bt−3 + κt−1)−Bβ0bt−2 + κ′(0, t)

= β2bt−2 −Bβ1bt−3 + κ′(1, t) = · · · = βt−2b2 −Bβt−3b1 + κ′(t− 3, t)

= βt−1b1 −Bβt−2b0 + κ′(t− 2, t) = βtb0 + κ′(t− 1, t).

For reference purposes, we summarize the above as

bt = βtb0 + κ′(t− 1, t).(8.2)

There are two strategies we consider at this point. The first one is derived
from [7] and applies in most cases. In each strategy, the basic idea is that
h(x) should not differ much from

h3(x) = β0x
J0 + β1x

J0−1 + · · ·+ βJ0−1x+ βJ0 ,
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where the subscript 3 on the left is used only to avoid conflicts with previous
notation. We will tabulate examples of f(x) more efficiently by tabulating
instead

h4(x) = h(x)− h3(x) =

J0∑
j=0

(bj − βj)xJ0−j .

Thus, f(x) = (x2 − Ax + B)
(
h3(x) + h4(x)

)
, where A and B come from

the coefficients of either Φ3(x − b) or Φ4(x − b) and where h3(x) is derived
directly from the recurrence for βj made explicit in (6.3).

Given the above, the expression (x2 − Ax + B)h3(x) can be viewed as
an approximation of f(x). The coefficient of x in (x2 − Ax + B)h3(x) and
the constant term of (x2 −Ax+B)h3(x) are

BβJ0−1 −AβJ0 and BβJ0 ,

respectively. Strategy I will provide us with the h4(x) we want in the case
that the constant term is at least as large as the coefficient of x. Thus, we
use Strategy I when

BβJ0 ≥ BβJ0−1 −AβJ0 .

Note that, in particular, this inequality holds if βJ0 ≥ βJ0−1, which is typ-
ically the case. Strategy II applies when the above inequality does not
hold. This leads to applying Strategy II only in the cases b ∈ {6, 14}
(with g(x) either Φ3(x − b) or Φ4(x − b)) and (b, A,B) = (2, 3, 3). The
case (b, A,B) = (7, 14, 50) is the unique case in our computations where
Strategy I applies but βJ0 < βJ0−1.

The results of applying Strategies I and II appear in Tables 19 and 20,
respectively. In Table 20, the second column distinguishes whether Φ3(x−b)
or Φ4(x−b) is being used, the value 3 referring to the former and the value 4
to the latter.

Table 19. h4(x) from Strategy I

b h4(x) for Φ3(x− b) h4(x) for Φ4(x− b)
2 − 3

3 x+ 8 0

4 x+ 7 x+ 13

5 2x+ 28 14

7 6x+ 95 8

8 x+ 29 5x+ 80

9 6x+ 115 4x+ 92

10 3x+ 60 4x+ 90

11 21 28

b h4(x) for Φ3(x− b) h4(x) for Φ4(x− b)
12 x+ 48 4x+ 102

13 x+ 62 2

15 6x+ 192 9x+ 279

16 x+ 68 4x+ 139

17 3x+ 100 12

18 5x+ 211 2x+ 113

19 4x+ 176 12

20 x+ 72 5x+ 233
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Table 20. h4(x) from Strategy II

b Φ h4(x)

2 3 x+ 7

6 3 4662361342700

6 4 2x+ 13519269991344

14 3 2x+ 54237181819689662822645558359568793540061708639396290

14 4 9x+ 190427015436250536820510121014683293286454260001

Strategy I. The basic idea here is to focus on the constant term of
f(x) as being its largest coefficient. We take t = J0 in (8.2). The constant
term of h(x) is bJ0 , and we view (8.2) as indicating how far this constant
term is from βJ0b0. Note that the constant term of f(x) is BbJ0 . If the
maximal coefficient of f(x) is M , then necessarily BbJ0 ≤M and we deduce

(8.3) βJ0b0 +

J0−1∑
j=0

βjκJ0−j = bJ0 ≤
M

B
.

The idea is to choose an upper bound search value M ′ for M that is close
to BβJ0 . We take M ′ = BβJ0 +M ′0 where M ′0 > 0 is relatively small (a value
≤ 95000 sufficed for each polynomial we tested but often much smaller values
as well). We then seek to determine the polynomials f(x) with maximal
coefficient M ∈ [BβJ0 ,M

′] that are of the form (6.1). If none exists, we
increase the value of M ′0. As long as we find such an f(x) with M ′0 ≤ βJ0 ,
we know from (8.3) that b0 = 1 when M is minimal. The definition of κ0
then implies in this case that κ0 = 1.

From (8.3), we obtain

βJ0 +

J0−1∑
j=0

βjκJ0−j ≤
BβJ0 +M ′0

B
= βJ0 +

M ′0
B
.

Hence,

(8.4)

J0−1∑
j=0

βjκJ0−j ≤
M ′0
B
.

Since the values of βj grow quickly as j increases, if M ′0 is relatively small,
then (8.4) forces κJ0−j to be 0 unless j is small. This then allows us to de-
termine a small number of choices for the κj and, therefore, a small number
of choices of bj from (8.1). Thus, we are left with a small number of h(x),
and hence f(x), to examine.

As an example, consider b = 7 and g(x) = Φ3(x−7) = x2−13x+43. Thus,
A = 13 and B = 43, and one checks that J0 = J = 22. Take M ′0 = 5000.
Then (8.4) implies

21∑
j=0

βjκ22−j ≤
5000

43
≤ 116.28.
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Given β0 < β1 < · · · < β22 ≈ 6.68 · 1017 and

β0 = 1, β1 = 13, β2 = 126, . . . ,

we deduce κ0 = κ1 = · · · = κ20 = 0, κ21 ≤ 8, and κ22 ≤ 116. Thus, there are
9 possibilities for κ21 ∈ [0, 8] and 117 choices for κ22 ∈ [0, 116], giving a total
of 9 × 117 = 1053 choices for the κj . Each of these leads to a polynomial

h(x) =
∑22

j=0 bjx
j by using (8.1). These 1053 polynomials h(x) include all

possibilities for h(x) ∈ Z[x] for which f(x) = (x2 − 13x + 43)h(x) is of de-
gree 24 and has non-negative coefficients all bounded above by BβJ0 +5000.
We are interested in those f(x) for which f(7) = h(7) is prime, and we want
the maximal coefficient of such an f(x) to be as small as possible. A direct
check gives that κ21 = 6 and κ22 = 17 produces such an f(x).

Strategy II. For this approach, we focus on both the coefficient of x
and the constant term of f(x). Recall that these coefficients are

BbJ0−1 −AbJ0 and BbJ0 ,

respectively. If the maximal coefficient of f(x) is M , then a weighted average
of these coefficients must also be ≤M . In particular, we deduce that

B2

A+B
bJ0−1 =

B

A+B

(
BbJ0−1 −AbJ0

)
+

A

A+B

(
BbJ0

)
≤M.

We apply (8.2) with t = J0 − 1 to deduce that

βJ0−1b0+

J0−2∑
j=0

βjκJ0−1−j = βJ0−1b0+κ′(J0−2, J0−1) = bJ0−1 ≤
A+B

B2
·M.

We deduce that M ≥ B2βJ0−1/(A+B). We choose an upper bound search
value M ′ for M that is close to B2βJ0−1/(A+B). We take

M ′ =
B2

A+B
· βJ0−1 +M ′0, with M ′0 <

B2

A+B
· βJ0−1.

The upper bound on M ′0 is considerably larger than we want in general, and
this upper bound ensures that b0 = 1 and hence, by definition, κ0 = 1. We
deduce now that

(8.5)

J0−2∑
j=0

βjκJ0−1−j ≤
A+B

B2
·M ′0.

With M ′0 small, we are able to deduce reasonable upper bounds from (8.5)
for every κj except κJ0 .

The value κJ0 can be very large, and the idea is to find a very close ap-
proximation κ∗ ∈ Z to κJ0 and to use this to narrow down the possibilities
for κJ0 . The value of κ∗ will depend on the values of κ0, κ1, . . . , κJ0−1. We
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fix κj for j ∈ {0, 1, . . . , J0−1} from the finite collection of possibilities deter-
mined by (8.5). By the definition of the κj , the values of bj are determined
for j ∈ {0, 1, . . . , J0 − 1}. The idea now is to choose κ∗ so that the selection
κJ0 = κ∗ forces the coefficient of x in f(x) to be close to the constant term
of f(x). One can check that this leads to

(8.6) κ∗ =

⌊
BbJ0−2 −AbJ0−1 +

BbJ0−1
A+B

+
1

2

⌋
,

though the justification of this choice for κ∗ is not needed to see that it
provides us with an estimate that will allow us to determine κJ0 . We explain
this next.

Fixing κ∗ as above, we show that κJ0 must be close to κ∗. Set κJ0 =
κ∗ + t. Thus, we are interested in showing that |t| is not very large. Since
the coefficients of f(x) must be ≤ M , by looking at the coefficient of x
in f(x), we deduce that

BbJ0−1 −A
(
AbJ0−1 −BbJ0−2 + κ∗ + t

)
= BbJ0−1 −AbJ0 ≤M.

From the definition of κ∗, the expression between parentheses above is
bounded above by

BbJ0−1
A+B

+
1

2
+ t.

From the definition of M ′, we deduce that

BbJ0−1 −
ABbJ0−1
A+B

− A

2
−At ≤M ≤M ′ = B2

A+B
· βJ0−1 +M ′0,

which simplifies to

(8.7) t ≥ B2

A(A+B)
· (bJ0−1 − βJ0−1)−

M ′0
A
− 1

2
.

By looking at the constant term in f(x), we deduce that

B
(
AbJ0−1 −BbJ0−2 + κ∗ + t

)
= BbJ0 ≤M ≤M ′ =

B2

A+B
· βJ0−1 +M ′0.

Since

κ∗ > BbJ0−2 −AbJ0−1 +
BbJ0−1
A+B

− 1

2
,

we are led to

(8.8) t < − B

A+B
· (bJ0−1 − βJ0−1) +

M ′0
B

+
1

2
.

Observe that (8.2) implies bJ0−1 − βJ0−1 ≥ 0. Although not needed, (8.5)
also implies bJ0−1 − βJ0−1 is not very large. In particular, we deduce that

−M
′
0

A
− 1

2
≤ t < M ′0

B
+

1

2
.
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Given κJ0 = κ∗ + t, we are left with only a small number of choices for κJ0 ,
and can test for f(x) as in Strategy I.

As an example, we consider (b, A,B) = (6, 12, 37). We take M ′0 = 200.
One checks that J0 = J + 1 = 18. As is easily checked, then, 0 < β0 < β1
< · · · < βJ0−1 and 0 < βJ0 < βJ0−1. Also,

(A+B)M ′0
B2

=
49 · 200

372
= 7.1585 . . . .

From (8.5), we deduce κ0 = κ1 = · · · = κ16 = 0 and 0 ≤ κ17 ≤ 7. We set
b0 = 1. For each value of κ17 ∈ [0, 7], we use (8.2) to compute the values of
b1, b2, . . . , b17, (8.6) to compute κ∗, and (8.7) and (8.8) to find the bounds
for t. The choice of κ17 that leads to the maximal coefficient of an f(x) as
small as possible and with f(6) prime is κ17 = 2. This choice of κ17 gives

κ∗ = 13519269991324 and − 12 ≤ t ≤ 4.

The desired f(x) comes from the choice t = −4, where

b18 = 12b17 − 37b16 + κ∗ + t = 12b17 − 37b16 + 13519269991320

= 16497794651771.

Thus,

f(x) = (x2 − 12x+ 37)h(x) with h(x) = b0x
18 + b1x

17 + · · ·+ b17x+ b18

and with f(6) = h(6) prime. The maximal coefficient of f(x) is

610418402115746,

corresponding to the coefficient of x in f(x).
A similar use of Strategy II for (b, A,B) = (6, 11, 31) establishes that the

smallest maximal coefficient of an f(x) having non-negative coefficients with
f(x) divisible by Φ3(x− 6) and f(6) prime is 674230217165581. In terms of
Theorem 4.3, these examples justify the values of N1(6) = 610418402115745
and N2(6) = 674230217165580 given in Tables 8 and 9 are sharp.

9. Concluding remarks. Having dealt with the cases b ∈ [2, 20], it is
natural to ask what can be said for b ≥ 21 or b large. In a subsequent paper,
we plan to discuss results for general b ≥ 2, where what we have established
in this paper can be combined with analysis for larger b to obtain explicit
results for all b ≥ 2. For example, Theorem 4.2 in combination with an
analysis for larger b leads to the following.

Theorem 9.1. Let b be an integer ≥ 2, and let D = D(b) =
bπ/tan−1(1/b)c. Then there are no reducible f(x) ∈ Z[x] of degree ≤ D hav-
ing non-negative integer coefficients for which f(b) is prime. Furthermore,
for every integer n > D, there are infinitely many reducible f(x) ∈ Z[x] of
degree n having non-negative integer coefficients with f(b) prime.
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As indicated early on in this paper, the analysis for smaller b tends to be
more difficult. In particular, recall that we have not been able to establish a
sharp bound for M1(2) or M2(3). We view finding a sharp bound for M1(2)
as a particularly interesting challenge for further investigation.
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