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1. Introduction. If d,d,_1...d1dy is the decimal representation of a
prime, then a result of A. Cohn [I1] asserts that

f(l') = dpx" + dnfll‘n_1 +--+dix+dy

is irreducible over the integers. This paper is inspired by the following two
natural questions. If one views f(z) as being a general polynomial with
non-negative integer coefficients with f(10) prime, does the irreducibility of
f(z) in Z[z] really depend on its coefficients being less than 107 Is there a
particular reason that base 10 is special or do analogous results hold when
10 is replaced by some other integer?

Some answers to these questions have already been given in the litera-
ture. The result of Cohn has been extended to all bases b > 2 by J. Brillhart,
A. Odlyzko and the third author [3], to base b representations of kp where k is
a positive integer < b and p is a prime by the third author [5] (see also [§]),
and to an analog in function fields over finite fields by M. R. Murty [9].
Furthermore, [3] allows the coefficients d; in Cohn’s theorem to satisfy
0 < d; < 167 rather than 0 < d; < 9; and later the third author [6]
showed that the d; need only satisfy 0 < d; < 1030dn, and further that
simply d; > 0 suffices if n < 31. Some further work on upper bounds for d;
can be found in [I] and [2].

Recent work by S. Gross and the third author [7] extended this last line
of investigation even further. They showed that if f(x) is a polynomial with
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non-negative coefficients bounded above by
49598666989151226098104244512918

and f(10) is prime, then f(z) is irreducible over Z. They also showed that
if instead the coeflicients were bounded above by

8592444743529135815769545955936773,

then f(z) is either irreducible over Z or divisible by #? —20x 4 101. Further-
more, and perhaps most surprising, they established that these two upper
bounds are sharp.

The main goal of this paper is to extend the results in [7] to different
bases. We focus on bases b € [2,20]. As we will see, the smaller the base, the
more difficult the analysis becomes. We use ¢, (z) to denote the nth cyclo-
tomic polynomial, and irreducibility throughout will refer to irreducibility
in Z[z]. Our main goal is to establish the following.

THEOREM 1.1. Fiz an integer b € [2,20], and let My(b) and Ma(b) be
as given in Tables and [2, respectively. Let f(z) =377 ajx’ € Z[x) with
a; > 0 for each j and f(b) prime. If each a; < My(b), then f(z) is irre-
ducible. Also, for 3 <b <5, if each a; < My(b) and f(x) is reducible, then
f(x) is divisible by P3(x —b). Similarly, for 6 < b < 20, if each a; < Ma(b)
and f(x) is reducible, then f(x) is divisible by P4(x —b).

We will show that, for 3 < b < 20, the bound M;(b) is sharp. For
4 < b <20, we will likewise show that the bound M>(b) is sharp.

We suspect the bound M;(2) = 7 as given in Table [1| is not sharp. Of
some related interest is the example

f(z) = 2P+ 9214+ 92° + 928 + 927 + 925 + 825 + 102 + 72% + 1022 4+ 92 + 3.

Here f(2) = 51157 is prime, the largest coefficient of f(z) is 10, and f(z)
is divisible by 2 — 32 + 3. This example shows that the largest permissible
value of M;(2) is < 9. Therefore, this largest permissible value is 7, 8 or 9.

Computations in this paper were done using MAPLE 2015. The “isprime”
routine was used to detect likely primes in our computations, and these were
verified by using primality tests in SAGE v. 4.6.

2. Preliminary results. We begin with an instructive lemma adapted
from [3].

LEMMA 2.1. Fiz an integer b > 2. Let f(x) = Y7 ajx’ € Z[z] be such
that each aj > 0 and f(b) is prime. If f(x) is reducible, then f(x) has a
non-real root in the disc D, ={z € C:|b—z| < 1}.

Proof. Assume that f(x) is reducible. Then we may write f(z) =
g(z)h(x) where g(x) and h(x) have integer coefficients, g(x) # +1, and
h(z) # £1. Since f(b) is prime, one of g(b) or h(b) is £1. Without loss of
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generality, we may assume that g(b) = +1. Since g(x) # +1, we know that
g(x) has positive degree.

Let ¢ be the leading coefficient of g(z), and let 3, ..., 5, be the roots of
g(z) including multiplicities. Thus, the degree of g(z) is r, and we have

1=|g®)| = el [T 10 -8l =] Io- 8l
j=1 =1

Therefore, at least one root of g(x), and hence of f(x), is in Dy.
We complete the lemma by noting that since f(x) has non-negative co-
efficients, f(x) has no positive real roots. =

As a quick example of the usefulness of such a lemma and to help moti-
vate the ideas that follow, we establish the following result based on ideas
from [6].

THEOREM 2.2. Fiz an integer b such that b > 2, and let D = D(b) be
as giwen in Table . Let f(z) = Z?:o a;jx? be a mon-constant polynomial in
Zlx] with each aj > 0 and with f(b) prime. If the degree of f(z) is < D,
then f(x) is irreducible.

Table 3. Maximum degree D = D(b)

b 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
D 5 9 12 15 18 21 25 28 31 34 37 40 43 47 50 53 56 59 62

Proof. Assume f(x) is reducible. Then it has a non-real root o € D, =
{z€ C:|b—-z <1} by Lemma Since the complex conjugate of « is
also a root of f(x), we may assume that « has a positive imaginary part.

Note that the line passing through the origin and tangent to D from
above has slope sin~1(1/b). We write a = 7e, where 7 > b — 1 and 0 <
0 < sin~1(1/b). A direct computation shows that for each k € {1,...,D}
we have 0 < kff < Dsin~1(1/b) < 7. This gives

Im(a®) = rFsin(kf) >0 for 1 <k < D.
As f(z) has non-negative coefficients and deg f = n with 1 < n < D, we
have
Im(f(a)) > Im(a™) > 0,
contradicting the fact that « is a root of f(x). =

The bounds D(b) given in Table are not all sharp, but are so for many b.
Take for example b = 4. We see that

f(z) = 23 + 2 + 2358352 + 16576651

is of degree 13, f(4) = 84628919 is prime, each coefficient is < 16576651, and
f(z) is divisible by ®3(x —4) = 22 — 7+ 13. Thus, D(4) in Table[3|is sharp.
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In Section {4} we will give sharp bounds D(b) for all b € [2,20]. Additionally,
although this is not the focus of this paper, we will give sharp bounds on
the size of the coefficients when f(x) is reducible and of degree D(b) + 1.

A motivating idea for the next two sections is to replace the disk Dy
in Lemma with a set of points such that if & = re? is in the new set
of points, then || is bounded above by a number smaller than sin~!(1/b).
This will then allow us to determine sharp bounds for D(b) in place of those
given in Table [3] for Theorem [2.2]

3. A root bounding function. For a given b € {2,...,20}, our main
goal is to establish the upper bounds M; (b) and My (b) given in Theorem 1.1}
and further to show that they are sharp as described after the statement
of the theorem. We will utilize three main methods as in [7]. First, we will
introduce certain rational functions that will give us information on the lo-
cation of possible roots of f(z). These rational functions will vary depending
on b. Even in the case b = 10, we will be able to obtain slightly better in-
formation than in [7] by using a modification of the rational function given
there. Second, we obtain an initial value for Mj(b) and Ms(b) using a result
first introduced in [I] and [2] but based on the main ideas in the earlier
work [6]. Third, we use information gained from recursive relations on the
possible factors of f(z), as outlined in [7], to establish sharp values of M (b)
for b > 3 and sharp values of My (b) for b > 4. In this section, we focus on
the first of these ideas.

We recall that @,,(x) denotes the nth cyclotomic polynomial, and we use
(o = €2™/" Fix an integer b with 2 < b < 20. Let f(z) = > =0 ajx’ € Z[x]
be such that a; > 0 and f(b) is prime.

As in the proof of Lemmal[2.1] we consider the case that f(z) is reducible,
so that f(x) = g(x)h(z), where g(x) and h(x) are polynomials with integer
coefficients and are not identically £1. We may and do suppose that they
have positive leading coefficients. Given that f(p) is prime, we take, without
loss of generality, g(b) = +1. Lemma implies that g(x) has a non-real
root in Dy. Using the ideas of [7], we wish to show that either g(x) has a
root in common with one of

Py(x—b) =a%—(2b— 1)z +b> —b+1,
Oy(x —b) = 2% — 2bx + b% 4+ 1,
Dg(x —b) =2® — (20 + Dz + 0>+ b+ 1,

or g(z) has roots in a certain region Ry to be defined shortly.
We define

(3.1) Fy(z) =
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where o
Ny(z) = [b—1—2[*2(|b+ (3 — 2| [b+ (3 — 2])*

(o+i—z||b—i—2])?4(|b+ ¢ — 2| |b+ Cs — 2])%,
Dy(z) = |b— Z|4(63+e4+e6)+2(32+d+1)7
and ez = ea(b), es = ez(b), eqs = eq(b), e = eg(b) and d = d(b) are all

non-negative integers. For Theorem the numbers eo, e3, e4, €5 and d for
a given b are given in Table [4]

Table 4. Numbers used in Fy(z) for b

b2 4 5 6<b<?20
ea(b) 20 0 0 0
es(b) 4 15 9 6 4
esd) 0 2 2 2 2
es(b) 0 3 3 3
i) 0 3 3 3

We note that these are not the only choices for es(b), e3(b), e4(b), es(b),
and d(b) that can serve our purposes. For example, e3(10) = 0, e3(10) = 3,
e4(10) = 2, e6(10) = 3, and d(10) = 3 are the numbers for b = 10 that were
used in [7]. Our choices for the numbers in Table {4| are based on trial and
error to see what would give us the best results. In the case of b = 10, there
is a slight advantage that will arise from the use of the e;’s given in Table

Setting z = x + 4y, it is not difficult to see or to use direct computations
to verify that each of the expressions

b—1—2% (b+G—2[|b+G—2)? (b+i—-z|b—i—z|)?
(|b+¢6 — 2| b+ 6 — 2[)? and |b— 2|?
is a polynomial in Z[b, z, y]. Therefore, Ny(z) and Dy(z) are polynomials in

Z[b, z,y], so Fp(z) is a rational function in b, x and y.
We write ¢g(z) in the form

9(@) = [« - 8,
j=1

where c is the leading coefficient of g(z) and S, ..., 3, are the roots of g(x),
and therefore also roots of f(z). For ease of notation, we define

go(n) = g(b+ Ga)g(b + Ca)-
One then checks that the two expressions

|g(b — D)2 |gn(3)[>* g (4) || g5 (6) > snd 1
‘g(b)|4(63+€4+66)+2(eg+d+1) c2(d+1

) [175)
j=1
are equal. We denote this common value by V' = Vj(g).
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Now, each of g5(3), g»(4), g»(6) is a symmetric polynomial, with integer
coefficients, in the roots of an irreducible monic quadratic in Z[z]. Hence,
each of these expressions is an integer. Also, g(b— 1) is an integer. Thus, the
numerator of the first expression for V' above is an integer. Since g(b) = £1
and V > 0, we know that either V =0o0r V € ZT.

We recall that f(z) is a polynomial with non-negative integer coefficients.
Thus, f(x) cannot have a positive real root, and neither can g(z) which is
a factor of f(x). Therefore, g(b— 1) # 0. Either definition of V' now implies
that V' = 0 if and only if at least one of ®3(x —b), P4(z — b), Ps(x —b) is a
factor of g(z). If none of these quadratics is a factor of g(x), we necessarily
have V € Z™. In this case, the product in the second expression for V' above
must be a positive integer. Since Fj(z) is a non-negative real number for all
z € C, we deduce that F,(5;) > 1 for at least one value of j € {1,...,r}. In
other words, there is a root /3 of g(x), and consequently of f(x), satisfying
Fy(8) = 1.

Summarizing the above ideas, given only that g(x) € Z[z], g(b—1) # 0,
g(z) # £1 and ¢(b) = +1, we have shown that either g(x) has at least one
of the factors @3(x — b), P4(x — b), Pg(x — b), or g(x) has a root § in the
region

(3.2) Ry ={z€C: F(z) > 1}.

In the latter case, we will use an analysis of the region R; in the complex
plane to obtain important information about the location of 5.

It is of some interest to note that the conditions above that g(z) € Z[x],
g(z) # +1 and g(b) = £1 are sufficient to show that g(z) has a root in Dj.
Figures and |3| depict regions R; for b € {2,3,4} where ea(b), e3(b),
eq(b), eg(b) and d(b) are as given in Table 4l The circle is the unit circle
centered at b, the boundary of Dy. These graphs are, of course, obtained
from plotting only a finite set of points and are not used in our proofs but
are intended to help visualize Ry.

Figure |4| shows R for our choice of e2(10) = 0, e3(10) = 4, e4(10) = 2,
e6(10) = 3 and d(10) = 3 while Figure [5| shows Rio for the choice of
e2(10) = 0, e3(10) = 3, e4(10) = 2, e6(10) = 3 and d(10) = 3 used in [7].
Although the difference is subtle, Figure [5|is symmetric about the vertical
line x = 10, while Figure {4] is slightly narrower at the front of the region.

In what follows, we will sometimes refer to points (x,y) in R;, and
this is to be interpreted as the point z = z + ¢y in the complex plane
in Rp. For example, taking b = 6, we will see later that all the points
(z,y) € R lie below the line y = tan(w/21)z. This then means that any
point z = x + iy € R satisfies y < tan(w/21)x.

To further help us analyze the region Rj, we define

(3.3) Py(z,y) = Dyp(z + iy) — Np(z + 1y).
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2 /) 4 & & 10 |

Fig. 1. Image of Ro

&5

Fig. 2. Image of R3 Fig. 3. Image of R4
Fig. 4. Our choice for Rio Fig. 5. R0 used in [7]
Direct computations for each b € {2,...,20} show that we can write
T
2
(3.4) Py(z,y) = ) aj(b,x)y™
=0

where r = 2(e3+es+eg)+e2+d+1 and each a;(b, z) is an integer polynomial
in b and z. Furthermore, the definition of Dj(z) implies that Dy(z) > 0 for
all z € C with z # b. Thus,

Fya+iy) > 1 and Py(z,y) <0
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are equivalent for z # b. Also, the equations Fy(x +iy) = 1 and Py(x,y) =0
are equivalent for z # b. Note that Py(b,0) = Dy(b) — Np(b) =0—1 = —1.
Therefore, the z = x +iy € C such that Fj,(z) = 1 correspond exactly to the
points (x,y) where Py(z,y) = 0.

We introduce the following technical lemma that corresponds to [7,
Lemma 2].

LEMMA 3.1. Fiz an integer 2 < b < 20. Then there exist real numbers
ap = ap(b), a1 = a1(b), and a non-negative real-valued function py(x) defined
on the interval I, = [b — ag, b+ a1] such that:

(i) Py(x,y) #0 for all z & I, and y € R.
(ii) Py(x,pp(x)) =0 for all x € I,.
(iii) pp(b—ap) =0 and pp(b+a1) = 0.
(iv) The function py(x) is continuously differentiable on the interior
of Iy and is continuous on Iy.
(v) If z and y are real numbers for which Py(x,y) <0, then x € I, and
lyl < py(z).

In view of the above lemma, complex numbers of the form z +ip,(x) are
boundary points of R;, which are on or above the real axis. Since Py(x,y) is a
polynomial in y? with coefficients in Z[b, ], our region Ry, is symmetric about
the real axis. Thus, the points x — ipy(z) are boundary points of R; which
are on or below the real axis. The points b — ag and b+ a; are boundary
points on the real axis.

To prove Lemma we use the Implicit Function Theorem (cf. [12]),
which we state next.

LEMMA 3.2. Let ® be an open set in R? and let W : © — R. Suppose
W has continuous partial derivatives Wy, and Wy on ®. Let (z9,y0) € D be
such that

W(l’o,yo) =0 and Wy(xo,yo) 75 0.

Then there is an open interval J € R and a real-valued, continuously differ-
entiable function ¢ defined on J such that xo € 3, ¢(x0) = yo, (v, ¢(z)) €D
forallxz €3, and W(x,p(x)) =0 for allz €T

Our proof of Lemmal3.1]is a variation of [7, proof of Lemma 2]. A number
of changes and some simplifications are introduced. In particular, the proof
in [7] used more than once the fact that a certain discriminant is non-zero,
which no longer applies in our case, so some changes in the arguments here
become necessary.

We give a proof based on the values of (eg, e3, e4, €6, d) given in Table
for each b. Before delving into the proof, we note that we will want analogous
results for other choices of (e9, e3, €4, €6, d) in the next section and that the
same lemma holds following the same line of argument. Specifically, we will
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additionally use Lemmafor (e9,€3,€4,€6,d) = (0,2,1,0,1) and b = 2, for
(e2,e3,e4,€6,d) = (0,2,3,0,8) and b = 3, for (eq,e3,e4,¢e6,d) = (0,2,4,0,8)
and b = 4 or 5, for (eg,es3,eq,e5,d) = (0,2,5,0,12) and b = 6 or 7, for
(ea,€3,€4,€6,d) = (0,1,8,0,14) and 8 < b < 14, and for (es, 3, €4, €6,d) =
(0,1,10,0,24) and 15 < b < 20.

Proof of Lemma [3.1 We fix an integer b € [2,20], and let e = ea(b),
es = e3(b), es = eq(b), e = eg(b) and d = d(b) be as in Table [4 We set
r=2(es+es+eg)+ea+d+1, and let Py(z,y) be as in (3.4). For 0 < j <r,
define p;(b,x) = a;j(b,z +b), and set

Po(a,y) =S i)y = aj (b, + )y
=0 =0
Thus,
(3.5) Py(w,5%) = Pz +b,y).

Observe that the points (z,y) corresponding to E(m, y?) < 0 are the points
(x—0b,y) where (x,y) € Rp; in other words, the (x, y) satisfying H(:L‘, y?) <0
correspond to the (z,y) € Ry translated to the left by b.

For fixed b € [2,20], the expression p; is a polynomial with integer co-
efficients in the variable z. The dependence on b only arises in our choice
of ea(b), e3(b), ea(b), es(b) and d(b). Since the same choice is used for each
b € [6,20], we have only five sets of p;(b, ) to consider. We computed these
explicitly to help with the analysis that follows.

To simplify our notation and avoid confusion, we use E(y) for Fb(x, Y)
when we are viewing Eix,y) as a polynomial in y whose coefficients are

b

polynomials in z. Table [5| lists r, the degree of E(y), for each b.

Table 5. Degree r of Fb(y) for b € [2,20]

T
29
38
32
26
<20 22

S oot w |

6 <

Using a Sturm sequence, we verify that po(b, z) has exactly two distinct
real roots. One checks that po(b, ) = 0 has a negative root, which we denote
by —ag, and a positive root, which we call a;. Computations give us the
values of ag and a; for b € [2,20], accurate to the digits shown in Table [6]
We show that ag and a; have the properties stated in Lemma [3.1
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Table 6. Values of ag and a; for b € [2,20]

b ap a1 ao a1
2 0.5523770847... 10.0651310946... 0.5523 10.06
3 1.0721963435. .. 3.4397713145.. .. 1.07 3.43
4 1.3782037799. .. 2.4446162254 . . . 1.37 2.44
5 1.4754544841 . .. 2.0416766993 . .. 1.47 2.04
6 <b<20 1.5638035689... 1.7605007116. . . 1.56 1.76

Let J, denote the interval [—ag, a;]. Using a Sturm sequence, one can
verify that for each j € {1,...,7}, the polynomial p;(b,x) has all of its real
roots in the interval [—ag, ai] C Jp, where ag and a; are given in Table @

Recalling , we see that to prove part (i), we need only show that for
each xg ¢ J the real roots of Py(zo,y) are all negative. A simple calculation
shows that p;(b, £11) > 0 for all j € {0,1,...,r} (and each b). Since each
p;(b, z) has its real roots inside J,, we deduce that p;(b, zo) > 0 for each j.
From Descartes’ rule of signs, we find that Py(xg,y) has no positive real
roots. Part (i) now follows. We note for further use that also

(3.6) Py(z,y) >0 forall x ¢ I and all y € R.

We turn to the remaining parts of Lemma For a given z € I, we
want to define pp(z) as the largest non-negative real root of Py(z,y). First,
however, we need to show that such a non-negative real root exists. From
(3-5), we see that for x € J, we want (py(z + b))* to be a root of E(y)
Further, showing P,(x,y) has a non-negative real root for each x € I is
equivalent to showing P,(y) has a non-negative real root for each z € J,.

A direct computation gives po(b,0) = —1 and p,(b,z) = 1. Since po(b, x)
has only the two real roots —ag and aj, it follows that po(b, z9) < 0 for all
xo € (—ap,a1). Since Py(y) is monic and of degree r > 0, we deduce that

»(x0,y) = 0 has a positive real root in y for all zg € (—ag,a1).

We now consider the case that xg = —ag or xg = a1. As noted earlier,
for each j € {1,...,r}, the polynomial p;(b, ) has its roots in the interval
[—ao,a1] and p;(b, £11) > 0. Since each of —ag, a1 and 11 is not in [—ag, a1]
while g = —ag or g = a1, it follows that p;(b,z9) > 0 for each such j.
From Descartes’ rule of signs, we deduce that P,(z¢,y) has no positive real
roots. Thus, E(azo, y) has 0 as its largest real root.

For a given x € I, we now define py(z) as the largest non-negative real
root of Py(x,y). The above arguments show that py(x) is well-defined.
For each = € Jp, define

() = max{y € R : Py(y) = 0},
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Since E(y) has real roots for any given x € Jj,, we see that ¢y(x) is well-
defined. Moreover, we have seen that ,(z) > 0 for all x € (—ap,a1), and
Yp(—ag) = Yp(a;) = 0. Parts (ii) and (iii) now follow by observing that
pp() = \/p(x — b) for each x € I.

Next, we turn to (iv) and (v). The arguments for these parts are similar to
those for [7, Lemma 2(d), (e)]. To prove py(z) is a continuously differentiable
function on (b — ag,b + ay), it is sufficient to show that, given any zy €
(—ap,a1), there exists an open interval J' C (—ap,a;) containing xy such
that 1(x) is a continuously differentiable function on J’. To prove that
pp(x) is a continuous function on [b — ag, b+ a1], we will also want to show
that

lim+wb(x) =0 and lim ¢(x) =0.

T——ag T—a;
Fix xg € (—ap,a1), and let yo = ¥p(x0). We make use of Lemma with
W(z,y) = Py(z,y). Since W(z,y) is then a polynomial, both W, and W,
are continuous on all of R2. The definition of yo implies W (zq,yo) = 0.

For Lemma we also want to show that W, (zo,y0) # 0. In the case
b # 2, we calculate the discriminant Ay(z) of Py(y). A Sturm sequence
computation shows that Ay(x) # 0 for all x € R. To clarify, the computation
of the Sturm sequence was shortened by first factoring the discriminant and
then showing Ay(x) # 0 for all x € R by establishing that each factor of
Ap(x) is non-zero for all x € R using a separate Sturm sequence for each
factor. Therefore, in the case b # 2, we see that Py(x0,y) has no repeated
roots, so Wy (zo,40) # 0.

In the case b = 2, a Sturm sequence computation shows that As(z)
is non-zero on Jy when z # —1/2. Thus, Ps(x,y) has a repeated root for
x € Jy only when z = —1/2. By factoring P»(—1/2,y), one sees that the
only repeated root of Po(—1/2,y) is y = —1/4. Therefore, in our case where
Yo > 0, Wy (o, o) # 0.

Now define ® = {(x,y) € R?: —ag < x < a; and y > 0}. By Lemma
there exist an open interval J” C (—agp, a1) containing =y and a continuously
differentiable function ¢(z) defined on J” such that both ¢(x¢) = yo and
E(w,qﬁ(w)) = 0 for all z € J”. By the definition of 1(z), we know that
o(z) < p(x) for all z € J”. We will show that there exists an open interval
J' C J” containing xo such that ¢ (z) = ¢(z) for all x € J'.

By way of contradiction, assume that no such interval J’ exists. Then
there exists a sequence {zy}>2 satisfying lim,_,o =, = ¢ and having the
property that, for all n > 1, ¥p(z,) > ¢(zy). Since xzg € J”, we suppose
further as we may that each x,, is in J”. Define y,, = ¢(z,,). In particular,

ﬁb(l'n» yn) =0.
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We justify that {y,}°°; is a bounded Sequence In fact, we show that
there is an absolute constant M such that for 2’ € Jj, and 2 € C satisfying
»(2, z) = 0, we have |z| < M. Since each p;(b, z) is continuous on J, and .Jj
is compact, there exists an absolute constant A > 0 such that |p;(b,z)| < A
for all j € {0,...,r} and = € J,. Recall p,(b,x) = 1. Since 2/ € J, and
(2, 2) =0, we deduce

r r—1 r—1
0= pb 2| 2 o7 = Y Ips (b )| |2 = |27 = 4D |
7=0 7=0 7=0

Thus, |z| is less than or equal to the positive real root M of the polynomial
2 — Ar" Tl — A" — = Az — Al

We deduce that {y,}22, is a sequence with |y,| < M for all n.
It follows now that {yn}ney has a convergent subsequence {yy, }72,. Let
L = lim;_;c0 Yn,;- The continuity of Py(x,y) implies

E(q’.())L) = hm Fb(xn]-;ynj) - 0
Jj—00

Since
Yo = (o) = max{y € R : By(xo,y) = 0},

we deduce that L < yo. Since ¢(z) is continuous on J” and (rn;) <
VYp(Tp;) = yn,; for all j > 1, we also have
L= lim g, = lim y(en,) > lim o(rn,) = 6( lim 2, ) = 6(a0) = vo.
Jj—00 Jj—00 Jj—00

Thus, L = yp. In partlcular,
(37) lim ¢b($nj) = Yo = ]liglo (ZS(an)

J—00

We show that this implies a contradiction.
Consider

’W(xnj ) ¢b(mn])) - W(xnj ) ¢($ng))} =0.
By the Mean Value Theorem, we have
(3.8) |¢b(xng) - ¢($ng)| |Wy($nj7§j)| =0
for some &; € [p(zn;), Yp(zn,)]. Since y(zn;) > ¢(xn;), we deduce from
that

Wy(xnj,fj) =0.

Taking the limit as j — oo, we find by that lim;_,. §; = yo so that
Wy (x0,y0) = 0. But this contradicts the fact that W, (zo,y0) # 0. Therefore,
there exists an open interval J' C J” containing xg such that i (z) = ¢(x)
for all z € J'.
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To finish the proof of (iv), we need only show that ;(x) is continuous
at the endpoints of Jy,. Let {z,}°2,; C J, be a sequence that converges to
one of the endpoints of Jy, say a’. Take y, = ¥p(xy,). With M as before, we
have |y,| < M. To show that

Tim () = 0 = (@),

it suffices to prove that every convergent subsequence of ¥, converges to 0.
Suppose that {yn,} is such that lim; .. y,, = L for some L € R. Since
we know that y,,, = wb(xnj) > 0, we deduce 0 < L < M. Now,

Py, L) = Tim Py(wn,,yn,) = lim Py, (@) = 0
j—o0o j—o0

Therefore, L < ,(a’) = 0. Hence, L = 0, completing the proof of (iv).
To establish (v), we first observe that the definition of py(x) implies if
x € Iy and y € R are such that Py(z,y) = 0, then |y| < py(z). Part (i) also
implies that if Py(x,y) = 0 for some real numbers x and y, then = € I;,. Now,
consider real numbers zy and yo for which Py(zo,yo) < 0. Note that
implies z¢ € I and P(0,0) > 0. Since Py(z,y) is a continuous function from
R? to R, we deduce that along any path from (0,0) to (xo,%0) in R2, there
must be a point (z,y) satisfying Py(x,y) = 0. We use again the fact that for
any x € Jp, the number M is a bound on the absolute value of the roots of
»(y). We deduce from that pp(z) < VM for all z € I,. If 2y € I, and
yo > pu(xo), then one can consider the path consisting of line segments from
(0,0) to (0, 14-v/M), from (0, 14++/M) to (zg, 14++/M) and from (zg, 14-+/M)
to (x0,yo) to obtain a contradiction. If xg € I, and yg < —pp(z0p), one can
consider a similar path but from (0,0) to (0, —1 — v/M) to (zg, —1 — v M)
to (x0,yo) to obtain a contradiction. Therefore, zog € I, and |yo| < pp(z0).
This establishes part (v), completing the proof of Lemma =

In the following sections we will use Lemma [3.1] to prove irreducibility
criteria based on the degree of f(z) and on the size of the coefficients of f(z).

4. Irreducibility criteria based on degree. Fix an integer b € [2,20].
Let f(z) € Z[z] have non-negative coefficients, with f(b) prime. Theorem|2.2]
led us to deduce the irreducibility of f(z) given bounds D(b) on the degree
of f(x). As noted there, those bounds were not necessarily sharp. In this
section, we use the region R; to establish sharp bounds corresponding to
Theorem 2.2

Take for example b = 6. Theorem and Table [3[ tell us that if f(6) is
prime and the degree of f(x) is < 18, then f(x) is irreducible. We now prove
that if f(6) is prime and the degree of f(z) is < 19, then f(x) is irreducible.
Furthermore, we give an example to show that this bound is sharp.

Our next lemma follows from the proof of Theorem[2.2] given in Section 2]
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LEMMA 4.1. Let n be a positive integer. A complex number o = re*? with
0 < 0 < w/n cannot be a root of a non-zero polynomial with non-negative
integer coefficients and degree < n.

Now, we can establish the following improvement on Theorem [2.2]

THEOREM 4.2. Fiz an integer b € [2,20], and let D = D(b), D1 = Dy (b),
and Dy = Do (b) be as in Table . Let f(z) =37, a;jxd € Z[x] with a; > 0
for each j and with f(b) prime. If the degree of f(z) is < D, then f(x)
is irreducible. Additionally, if deg f(x) < D;i and f(x) is reducible, then
f(z) is divisible by @4(x —b) and not divisible by P3(x —b). Furthermore, if
deg f(z) < Ds and f(x) is reducible, then f(x) is divisible by either ®4(x—0b)
or 3(x —b).

Table 7. D(b), D1(b), D2(b), ¥(b), and m(b) for b € [2,20]

b D(b) Di(b) Da(b) 9(b) m() b Db) Di(b) Dab) 9(b)  m(b)
2 6 —~ 7 w/7T 13/27 12 37 41 44 w/44  1/14
39 - 11 7/11 32/109 13 40 45 47 w47 1/15
4 12 — 15 w/15 17/80 14 44 49 51 /51 4/65
5 15 16 18 w/18 70/397 15 47 52 55 w/55 125/2186
6 19 20 22 w/22 67/466 16 50 56 58  w/58  2/37
7 2 23 25 w/25 1/8 17 53 59 62 w/62  4/79
8 25 27 29 «/29 5/46 18 56 63 65 w/65 43/889
9 28 30 33 w/33 2/21 19 59 67 69 w/69  1/22
10 31 34 37 m/37 4/47 20 62 70 72 w/72  1/23
11 34 38 40 7w/40 7/89

We note that for b € {2, 3,4}, there is no value for D; due to the equality
T 7r

- | = for b € {2,3,4}.

{arg(b + C4)J {arg(b + Cz)J 254}
By way of examples, we will demonstrate later that the values of D(b) and
D1 (b) given in Table [7| are sharp. We do not know whether this is the case
for the values of Dy(b). It is also worth noting that D2(10) above is an

improvement over the value 36 established in [7].

Proof of Theorem[{.3. Following the remarks before the proof of Lem-

ma [3.1], we set
(0,2,1,0,1)  forb=2,
(0,2,3,0,8) for b =3,
(0,2,4,0,8) for b =14 or 5,
d p—
(e2, €3, €4, €6,d) (0,2,5,0,12)  for b=6 or 7,
(0,1,8,0,14) for 8 <b < 14,
(

0,1,10,0,24) for 15 < b < 20.
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We define Fy(2) asin (3.1)), Py(x, y) asin (3.3), and R, as in (3.2). In addition
to D = D(b), D1 = D1(b) and Dy = Dy (b), we set ¥ = ¥(b) and m = m(b)
as in Table [l We note that m is a rational number.

We consider the line y = tan(d)x or equivalently the points x +i tan(¥)x
in the complex plane. A simple computation gives tan(¢#) > m. So the line
y = ma lies strictly below y = tan(d¥)x for x > 0. Applying Lemma
we find that py(b — ap) = 0 and pp(x) is continuous. We use a Sturm se-
quence to verify that Py(z,mx) has no real roots. Since the coefficients
of Py(z,mx) are rational, this computation involves only exact arithmetic.
Using Lemma [3.1f(ii), we can deduce that R, does not intersect the line
y = mz. Therefore, the entire region Ry lies below that line.

We recall the set-up from Section (3l We suppose f(x) is reducible and
write f(x) = g(x)h(z), where both g(x) and h(z) are in Z[z|, g(x) # +1,
h(z) # +1, and both g(x) and h(z) have positive leading coefficients. Fur-
thermore, without loss of generality, we suppose that g(b) = +1. In Sec-
tion |3, we showed that either g(z) has a root in common with at least one
of @3(x —b), Pa(x —b), Pg(x — b), or g(z) has a root B € Rp. Since f(x)
has non-negative coefficients and the real numbers in R are positive, we see
that 5 ¢ R.

With our choices above, b + (g lies below the line y = max for each
b € [2,20]. This is illustrated in Figure [f] for b = 5, where the straight line
passes through the origin and its slope is 70/397.

5+ Gy
5+(3' *

5+ (g

Fig. 6. y = 70x/397 above Rs and 5 + (s

We conclude that either g(x) has a root in common with @3(x—b) or with
&4(x—b), or g(x) has aroot § = o+it such that 0 < t < mo < tan(d¥)o. Note
that the latter implies that if 8 = re’”’, then ¢ < . With an eye toward
applying Lemma we deduce from Table [7| that ¢ < ¢ = n/Dy < 7/D
for b€ {2,3,4} and ¥ <9 =n/Dy < w/Dy < w/D for b € [5,20].

For b > 3, a computation gives arg(b+(3) < m/D and arg(b+¢(4) < 7/D.
Thus, by Lemma we find that f(x) is irreducible if deg f < D.
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In the case of b = 2, we have arg(2 + (4) < /D but arg(2 + (3) = 7/D.
We show that in this case, if deg f(z) = D = 6 and f(z) is divisible by
$3(x — 2), then f(2) is necessarily composite, contradicting our original
assumption.

Since we want ®3(z — 2) = 2% — 3z + 3 to be a factor of f(z), and
deg f(x) = 6, the other factor of f(z) is uix* + uox® + uzx?® + wgz + us,
where u1,ug, us, uq, us € Z and uy > 1. This yields

fz) = (IE2 — 3z + 3)(u1$4 + usx® + usx?® + ugw + us)
=zl + (ug — 3u1):1:5 + (Buy — 3ug + u3)w4 + (Bug — 3uz + u4)m3

+ (3ug — 3ug + uz)x? + (3ug — 3us)x + 3us.
Observe that 2 + (3 is a root of f(z) and each coefficient of f(x) is

non-negative. Also, the imaginary part of (2+¢3)/ is > 0 for j € {1,...,5},
and (2 + (3)® = —27. If one of the coefficients of x,z% 23, 2% or 2° in f(z)
is > 0, then Im(f(2 4+ ¢3)) > 0, contradicting the fact that 2 4+ (3 is a
root of f(z). Thus, ug — 3u; = 0, 3u; — 3ug + ug = 0, 3ug — 3ug + ug = 0,
3us—3ug+us = 0 and 3uyg —3us = 0. Solving for uo, uz, us and us, we obtain
ug = 3uy, uz = 6uy, ug = 9u; and us = Yu;. This gives f(x) = uxb + 27u;.
Hence, f(2) = 91u; = 7-13 - uy, so f(2) is composite. Thus, the case b = 2
also leads to the statement involving the bound D in Theorem 4.2

We now turn to establishing the statements concerning D; and Ds.

For b > 5, we have arg(b+(3) < 7/Dq, arg(b+C4) > w/D1, and Dy > D.
Thus, by Lemma if f(x) is reducible and deg f(z) < Dj, then f(z)
is divisible by @4(z — b). For 2 < b < 20, we have arg(b + (3) > /Do,
arg(b+ (4) > m/ D2, and Dy > D. Thus, by Lemma if f(x) is reducible
and deg f(x) < Dy, then f(x) is divisible by ®3(x — b) or @4(xz — b). Note
that what is significant, in this part of the argument, is that tan(w/Dy) > m
and y = mx lies above the region Rj.

This completes the proof of Theorem .

Examples given later in Tables[19]and 20| will show that the bounds D(b)
and D;(b) are sharp. For example, take b = 6, where we see that D(6) has
increased from 18 in Theorem to 19 in Theorem The polynomial

f(z) = 220 4 22° 4 135192699913202% 4 6104184021157462
+ 610418402115527
is of degree 20, f(6) = 8415780974560931 is prime, each coefficient of
f(z) is at most 610418402115746, and f(z) is divisible by @4(x — 6) =
x? — 12z + 37. Although not our ultimate goal, we will prove later in Sec-

tion 8] that this polynomial is also optimal in terms of the size of its coef-
ficients. We will show that if f(x) € Z[x] is a polynomial of degree 20 with
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non-negative integer coefficients which are < 610418402115745 and f(6) is
prime, then f(z) is irreducible. More generally, we will establish the follow-
ing result.

THEOREM 4.3. Fiz an integer b € [2,20], let D = D(b) and Dy = D1(b)
(for b > 5) be as in Table |7}, let Ny = Ni(b) be as in Table |8, and let
Nz = Na(b) (for b > 5) be as in Table |9} Let f(x) = > ", a;x? € Z[z] be
such that a; > 0 for each j and f(b) is prime. If deg f(x) = D+ 1 and each
aj < Ny, then f(z) is irreducible. In the case 5 < b < 20, ifdeg f(x) = D1+1
and each aj < Na, then f(x) is either irreducible, or divisible by @3(x — b)
if b=>5, or divisible by ®4(x —b) if b € [6,20].

As indicated before, the bounds N1 (b) and Na(b) given in Tables|[8| and [9]
will all be shown to be sharp and will involve coming up with explicit ex-
amples. These details appear in Section [8]

5. A first bound on the coefficients. Throughout this section, Ry
is as defined in , with Fp(z) given by and Py(z,y) given by .
The numbers ey (b), es(b), e4(b), es(b) and d(b) are as given in Table

We summarize the previous sections and set the goal for this section.
We have fixed an integer b € [2,20], and taken a polynomial f(z) with each
coefficient non-negative and f(b) prime. We considered f(z) = g(z)h(x),
with g(z) # £1, h(x) # 1, and both g(x) and h(z) having positive leading
coefficients. Using the fact that f(b) is prime, we reduced our considerations
to g(b) = £1. We then showed that either g(z), and thus f(x), is divisi-
ble by at least one of @3(x —b), Py(x — b), Pg(x — b), or g(z) has a root
B € Rp.

Now we consider the latter case, that g(z), and thus f(x), has a root
B € Ry, and obtain a lower bound on the coefficients of f(x) in this case.
We will rely heavily on the following lemma.

LEMMA 5.1. Let f(z) = Z?:(]ajxj € Zlzx], where aj > 0 for j €
{0,1,...,n}. Suppose a = re' is a root of f(x) with 0 < § < 7/2 and
r>1. Let

k(p _
B = max rr—1) ,
7/(20)<k<w/6 | 1 + cot(m — k@)
where the maximum is over k € Z. Then there is some j € {0,1,...,n — 1}

such that aj > Bay,.

The proof of Lemma is similar to that of [6 Theorem 5] and is
established in the above form in [7] (cf. [I] and [2]).

We use Lemma [5.1] to prove the following corollary.



M. Cole et al.

156

¢L90€708860C6 T TCG08ELLTLINIEEELTIIIEIV6TISGILTO0LILSO60LTCH8ELINGLERGO6TIBB0ITCETES

LOETTTSOETHELOTOSESTOTEOTTLLIBBTTEB0STIS09E0SCEO66SLT6FCTLOTCSSTITSTESTLITOET 61
PT6EETLOILTLTOSTTST6008E60CC008SESTFTG69E6G5T TS660LG8ESTTS690VSE0E6TTSET 8T
61T2STS6STTTILTIE006ZCIES0ELISSTTE0LTEIOTTIGFIEISLISG6ZTTOSTLEETENT LT
9¥.8000988E6TETT6ZSSTEOGEF00T TEEEIGR00GTLESETIIECO6T LTSIV TOT6 91
LL9T88C0E8GTEEIGLECOGLRIIT TTCHEEEELECICGECO6TTIBESSTLOTI a1
€TFEI0T0SESSET6TTTCS6TS62SST6VSTET6TSTTOSTTISIEESLT i
6S0T6S0LGGTEITLLLLISSTETTSTV6SGGLOLECSTIE06TSST 1
VE60TSTLLETLSS6908G9T0SCTC60ETFITTITTISTH z1
6L7£08CGCL6TTTOTSEVIC00LLICOEREIVETTT T
887GG090T09865SS60ETILFOTFOTE0TI 01
€99FFSFHCT0ELFESG0987026T00CT 6
798TG906625TSTEETTLOGLE 8

66G£0CTSTTTET69LVST L

GPLSTTTOPSTIOTI 9

86£9CTT8TIT6 g

0999.G9T i

LETL ¢

0z z

(Q™N q

02 >9q> 710§ (9)'N °8 9IqeL



157

Irreducibility criteria

CIS8TOLOGORSGETSRY8GE60ETISRILLELE00E]SS0SOTFII090TLTETSCOT005G988TSLIN000T6S6EE6TR0E6L0TSRC6CE 0T
SLTELCGYIER0ELETSOCESTO0E6LELOELTESO6TO06CILETLTIES69L0T6EEB0S0ELTE6EIT688G68C9TS066CST 61
0STIT6T6L679G96CLTTE0TTIRCLEIGSCTETSTES66VICETITSCET8R0TI0880SESTILEETTEIS0LGELOT ST
0S09CLTI6TVTITS6SETES8690S66G0TC6ELTTTSCYLSL6C60SCSLI0LLESGTEIIGTTSCOSLOGILRI0TT L1
8IRTECLECVOESTTI6TTEESTRCTLO0E0STS60TLSTTHELESGILE0ECHTTESGI6E699T0TTT 91
CLEILTOLLYLETIR069G9EICTLITTSH88C088L0S999TLO68LES88LS660L665T ar
G67665686S5C9LB6CTT60619CSCCRSGCTITSS0886TTV.L6T80C0LOTLISET T 71
TO0Z8VL0EER00T68CS8CLETTI6EESLEVICTECEISTLOCTRICSEET &1
9VCC80SGTSTSLLISRT6CECCL60006S6TEE0906L9669LTE ¢l
TZI98666.L89¢9TVSS6C99RTEOTETTIN09CTERTET 1T
0STI78ELTTV69986TEES68C8LIVL6CTTTLOT 0T
¥6666CTLCIVETOSEE6COTSTIETITL 6

8CCLTITEIVTIBORGSEEI6ESTT 8

€CO6LO6RTTSI8STTICYL]T L

08GG9TLICTOECT LI 9

L8GR899¢CC161 g

(@ q

02> 9> ¢ 10§ ()N 6 °IqeL



158 M. Cole et al.

COROLLARY 5.2. Fiz an integer b with b > 2. Let f(z) =377, a;jxd €
Z(x] be such that a;j > 0 for each j and f(b) is prime. If

0<aj <Bya, for0<j<n-—1 with By as in Table[10]

then either f(x) is irreducible, or f(x) is divisible by at least one of P3(x—b),
Dy(x —b), Pg(z —b).

Table 10. Values of By

b 2 3 4 5 6

By 7 4712 5.8802 x 107 4.149 x 10" 6.616 x 10
b 7 8 9 10 11

By 8.762x 10 1.401 x 10%> 1.412x 1030 2.749 x 10%®  5.203 x 10%°
b 12 13 14 15 16

By, 1.159 x 10" 6.969 x 10°*  2.689 x 10°7  1.598 x 10%°®  1.869 x 10%°
b 17 18 19 20

By, 1.269x 107 2.075 x 1080 1.245 x 1087 3.942 x 10%

Before proceeding to the argument for Corollary we note that the
value for Big given in Table [10]is an improvement over the analogous result
given in [7]. This is due to our choice of e3(10), e3(10), e4(10), es(10) and
d(10) in Table 4] which differs from that used in [7]. On the other hand, the
methods used in both cases are similar.

Proof of Corollary . For a fixed integer b € [2,20], let # and € be real
numbers such that 0 < 0 < ¢ < tan™!(R;), where Ry, is given in Table
We are interested in the set of points R(6,60') that are in Rp between the
line passing through the origin making an angle 6 with the positive z-axis
and the line passing through the origin making an angle #’ with the positive
z-axis. Explicitly, we define

Ry(0,0') = {(z,y) € Ry : tan(f) < y/x < tan(d")}.

We are still considering the case that g(x) has a root 8 € R;. We write
B = xg + iy for some (xg,yo) € Ry, where we may take yo > 0.

Along the lines of the proof of Theorem we use a Sturm sequence to
show that the line y = Rz does not intersect the region Ry, where the value
of Ry is given in Table In other words, we take the rational equivalent
of the decimal expression in Table and show that the region R; lies
completely under the line y = Rpx by verifying with a Sturm sequence that
the polynomial Py(z, Ryz) € Q[z] has no real roots.

To utilize Lemma we specify a set @, = {0, 01, . .

0=0p <01 < <Op_1 <Oy <7m/2,

oy O0m—1,0,} where
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Table 11. Values of Ry

b 2 3 4 5 6 7 8

Ry 1.6 0.5 0.26 0.18 0.15 0.124 0.108115
b 9 10 11 12 13 14

Ry,  0.096 0.08622 0.0783 0.072  0.0664 0.0617

b 15 16 17 18 19 20

Ry, 0.0577 0.054053 0.05091 0.0481 0.0456 0.043327

and where tan(;) = r, € Q for 0 < [ < m, tan(f;) = 1/1000 and
tan(6,,) = Rp. Thus,

m—1
(z0,%0) € U R (01, 0141)-
=0
Next, for each [ € {0,1,...,m — 1}, we use Lemma to find a bound
By (61,0,11) so that for all (zo,y0) € Rs(6;,0:41), there is a j € {0,1,...,
n — 1} for which a; > By (6;,0;41)a,. We can then deduce that some coeffi-
cient of f(x) must exceed

(5.1) O<€gln {B(0,0141)} - an.

We judiciously choose each 6; € Oy so that always By (6;,0;+1) > By, where
By is listed in Table [I0] Corollary [5.2] will then follow.

We begin by considering the first sector Ry (6o, 61), where we have already
stated that 6y = 0 and #; = tan—'(1/1000), independent of the value of
b € [2,20]. Take

25m 1
k=k0)=|=— h 6 <tan ' — |.
(9) {%OJ where 0 < § < tan <1000>

We note that
I e T om
2076

25
k) < —
26 <7

257 25T 257 1
k6><269 )9 96 0= g Tt <1000> 3

Later we will use the fact that

since

and

\ 3

2
LSV -
2 26 26

which gives cot(m — k) < cot(m/26).



160 M. Cole et al.

From our definition of £ and the range of # above, we have

25w 257 /26
= | —— > _— = .
F {269J - Lanl(l/lo()O)J 3020

We recall that for each z € Ry, regardless of the b we are using, we have
Re(z) > 1.447, as implied by Table @ Thus, for each z = re? € Ry, we have
r = |z| > 1.447. For each such z, we see that

rk(r —1) S 1.4473929(1.447 — 1)
1+ cot(m —k#) — 1+ cot(m/26)
From Lemma with 6y = 0 and 6; = tan~!(1/1000), we see that we may
take

(1
(5.2) By (00,01) = By (O,tan ! <1000>> = 1.99 x 10783,

Observe that 1.99 x 10483 > B, for each b € [2,20].

There is quite a bit of freedom in choosing the remaining values of 6,
for each b. We want some idea of where the line y = tan(6;)z intersects Ry.
Since the boundary of R, consists of the points (z,y) such that Py(z,y) =0,
we want an estimate of the real numbers = for which P(z,tan(6;)z) = 0.
However, we want to avoid computations that approximate the real roots of
a polynomial based on coefficients that are themselves just approximations
of the actual real coefficients. To this end, we recall ; = tan(6;), where r; is a
rational number. We then find a close rational lower bound approximation z;
to the minimum real root of Py(x,r;z) = 0. Since Py(x,rz) € Q[z] and
z; € Q, we can use a Sturm sequence to verify, with exact arithmetic, that
Py(x,mx) has no roots in the interval [0, ]]. Thus, z] provides us with a
lower bound on the z-coordinate of the intersection of y = tan(6;)z with Ry.
Observe that by construction r; = 1/1000.

The values of r; = tan(6;) we used for each b € [2,20] can be found in [4].
As the exact values are not so significant, we do not duplicate them all here
but rely instead on tabulating the choices we used for b = 2 and b = 10 as
examples. For b = 2, the r; are given in Table for b = 10, the r; are given
in Table I3

We explain the notation in Table [L3| for the values of 0, 01, ...,60,,. The
value 7, corresponds to the first value of tan(6;) being considered in that
row, and the value r, corresponds to the last value of tan(6;51). We used the
rational equivalents of the decimals given for r, and 7 in our computations
to ensure exact arithmetic when computing x; as described earlier. If d is
the number of divisions indicated in the third column of the same row, then
the corresponding intervals (6;,0;41) for that row are given by

—Ta y _ — Ty . 1
al:tan1<7“a+(rbdr)]>, 011 = tan 1<Ta+ (s Tcg(JJr )>7

> 1.99 x 10*83,
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Table 12. Values of B5(0;,0,+1)

o~

r, = tan(@l) Bé(@l, 0[4,_1) l ry = tan(@l) Bé(@l, 01+1)

0 0=0 199 x 10" 25 3 =03 8.48120
1 145 =0.001 1.67316 x 10°* 26 3L =0.31 7.68540
2 325=0.0015 1.88152x10°* 27 £ =0.32 7 86165
— 165 33 __
3 5 =0002 1.78851 x 10 28 3.=0.33 7.61940
23
4 25=0003 2.25395x10'* 29 1 =034 731188
5  55;=0004 159285 x 10 30 5 =035 7.41486
6 555 =0005  3.13071 x 10** 31 - =0.355 7.20197
7 25=0006  3.66576 x 10 32 2 =0.36 7.22629
8 15 =0.007  3.99316 x 10°° 33 2L =0.37 798559
9 3s =0.008 351475 x 10°* 34 12 =038 7.34184
10 155 =0.009 1.01194x 10" 35 22 =10.39 738453
11 555 =001  252294x10°" 36  2=04 7.39514
12 32-=0015 113455 x 10® 37 AL =041 7 74498
13 & =002 8071030 x 10" 38 2l =0.42 7.72610

6.506270 x 10*° 39 L —0.44 7.95266

,_.
~
Jes
Il
<
o
&

15 5 =004 2.576910 x 10° 40 ;15 =0.47 8.65642
16 55=0.05 5.92576 x 10® 41 3=05 8.64546
17 =006 479437 42§ =0.55 8.47305
18 15 =007 62346.5 43 £=06 7.34988
19 Z£=008 12234.5 4 L=07 8.44235
20 155 =0.09 4547.64 45 2=0.75 8.10185
21 5 =01 118.104 46  $=08 7.69225
22 % =015 28.2727 47 £ =09 7.46715
23 1=02 11.9817 48  E=11 7.72974
24 $=025 7.41419 49 =16 -

for 0 < j < d— 1, where [ as indicated depends on j. The fourth column
indicates the minimum value of B} (6, 0;+1) for (0;,6;+1) considered in that
row, and therefore serves as a value of Bfy(6,,6). We explain momentar-
ily how the bounds Bl’)(Ql, 0;+1) were obtained. The number m of intervals
(01,60,41) for b = 10 is 1134, given by the total number of divisions from
the third column of Table This is slightly misleading as the last divi-
sion of (r4,7) = (0.0861,0.08622) into 1000 intervals of equal length leads
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Table 13. Values of Big(0;,0,+1)

re =tan(f,) 7, =tan(0,) # of Divisions Bio(0a,0b)

0 0.001 1 1.88 x 10483
0.001 0.002 2 1.35945 x 101452
0.002 0.01 8 9.47832 x 10%%8
0.01 0.02 2 5.96751 x 1043
0.02 0.08 6 1.33634 x 1036
0.08 0.085 5 3.38637 x 10%°
0.085 0.086 100 2.83670 x 10%°
0.086 0.0861 10 2.75920 x 10%°

0.0861 0.08622 1000 2.74964 x 10%°

to a number of cases where R1g(6;,0;+1) is the empty set. In other words,
y = tan(;)z will lie above Ry for 6; ~ 0.08622. These values of [ are to be
ignored. What is significant here in fact is that for the last 6;1 considered,
y = tan(f;41)z is above Rig. This is the case due to the value of Ry in
Table [Tl

As suggested by Table[13] for b > 3, we want the gaps between consecu-
tive r; considered to become smaller when Bé(@l, 014+1) is near the minimum
value obtained (in the last column). A priori, we did not know where the
minimum occurs, so we revised the number of divisions (ending with the
indicated values in the third column) to be larger until the minimum value
of By(0;,0;4+1) was accurate to the first few digits shown.

For a fixed | € {1,...,m — 1}, we now show how to obtain a value for
B, (0;,0;41). We have already shown how to find a verifiable lower bound
x; for the leftmost point (x,y) on the intersection of the line y = tan(6;)x
and Rp. This was done using a Sturm sequence for a polynomial in Q[z].

Let

0

(5.3) a=x0+iyo = e’ where (z0,0) € Ry(01,0141).

We will show that both zyp > 2} and yo > tan(6;)z;. We begin with the
former. By way of contradiction, assume that zo < . Let (z1,71) be the
point where y = tan(f)z intersects R; with x; being minimal. Therefore,
(1, 1) lies on the boundary of Ry, and, by Lemma we have y; = pp(z1).
Also, z1 < zg < ] and, by Lemma (i), b—ag < x1 < b+ a; where ag
and a1 are given in Table [f] By Lemma [3.1](iii)~(iv), the function po(z) =
py(x) — iz is continuous on [, = [b—ap, b+ a1] and such that po(b—ag) < 0.
However, since (z1,y1) € Ryp(0;,0;41), it lies above the line y = tan(6;)x.
This gives
pp(x1) = y1 = tan(f)zq > tan(0;)x1 = ryxy,

so po(x1)>0. By the Intermediate Value Theorem, there exists a u € [b—ag, 1]
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such that pg(u) = 0. Thus, py(u) = rju, which yields Py(u,ru) = 0. Since
u<z <9< l’;,

we obtain a contradiction to the definition of zj. Therefore, zy > z]. To
show that yo > tan(6;)z], we now simply observe that

yo = tan(0)zo > tan(f;)zo > tan(d;)z].

To get a value for Bj(6;,6;+1), we used 100-digit approximations in
MAPLE 17 to perform the calculations indicated below. Further details can
be found in []. We let L; be a lower bound approximation of sec(6;)z] so
that, for any a = re’ as in , we have

=/} +y2 > \/1 + tan?(0))x) > L.

Now, for every | € {1,...,m — 1}, we let k; = k1(l) be the largest integer
< 7/01+1. We define

ky—1 ifky —1>7/(20;,) + 10710,
kq otherwise.

ky = ko(l) = {

Notably, these values depend on the values for r; and 6; chosen earlier. In
every case, for our choices of r; and 6, the inequalities
T T
op F1070 < ky <k < — 10710
20; 0141
held. The specific choice of 107! is not significant here or later below, but
it provides us with some measure of how much accuracy was needed for our
computations. For each 6 € [0}, 6;11], we are able to conclude that
77 0 T T
— < — <k <kh<—<-—
20 =20, - =M
Hence, in each case, k; and kg are in the interval (7w /(260),7/6).
For each b and [, we compute c(k1) and c(kz2) such that

(5.4)  cot(m — k;0) < cot(m — k;jfi41) < c(k;) — 1071 for j € {1,2}.

Or1 — 0

From the above, Lemma [5.1| now allows us to take

Ly, —1) k1, -1)
B, = l i
AUNZESY maX{ 1+c(k) 1+ c(ks) }

These bounds, combined with (5.1)) and (5.2)), give the lower bound of Bya,,
for at least one of the coefficients of f(x), where B is as listed in Table
Corollary [5.2] now follows. =

Before leaving this section, we note that a certain precaution had to be
made in (5.4) that is connected to an irrationality result. What happens if
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our choices for 6,4, and k; cause the expression cot(m — k16;41) to be unde-
fined? This in fact can happen. Observe that k; = [7/6;+1|. The expression
cot(m — k16;41) is undefined precisely when 7/6;11 € Z. If this happens,
then 6,11 is a rational multiple of 7. Recall that 711 = tan(f;.1) is also
rational. The only rational values of the form tan(um) with u € Q are 0 and
+1 (cf. [I0, Corollary 3.12]). Thus, for our set-up where 0 < 6,41 < 7/2, we
need only avoid 7.1 = 1. Since R} is an upper bound on ;41 = tan(0;41),
we deduce from Table that the possibility of 7,1 = 1 only occurs for
b = 2. This explains the choice of r47 and r4g in Table where we avoided
using the rational number 1 for a value of r;.

6. Bounds based on recursive relations. We will now examine an-
other method to bound the coefficients of f(z) that is motivated by Corollary
In the case that f(x) is divisible by one of the quadratics ®3(x — b),
Dy(xz — b) and Ps(z — b), we find sharp lower bounds for the maximum co-
efficient of f(x). The bound that we find will depend on our choice of b and
the quadratic.

As much of this section is based on the work in [7] for b = 10, we give
enough background from there to describe our work for b € [2,20] but refer
to [7] for the details of the arguments.

Fix positive integers A and B. Let b; be integers such that

(6.1) (boz® + biz* L + -+ by_1x + by) (2> — Az + B)

is a polynomial of degree s + 2 with non-negative coefficients. We will want
A and B to be chosen so that the quadratic on the right is one of @3(x —b),
Py(x —b), Pe(x — b). With f(x) = g(z)h(x) as before and g(x) being the
quadratic, we view h(x) as the polynomial factor on the left in and
further n = deg f(x) = s + 2. The choice of b; as the coefficient of z°~
will help us view the b; as forming a sequence and be more appropriate for
the arguments that follow. If is expanded, we obtain f(z) so that the
resulting coeflicients are all non-negative.

We define b; = 0 for all j < 0 and all j > s. Since the coefficients of f(z)
are all non-negative, we deduce that

(6.2) bp>1 and b; > Abj_1 — Bbj_5 forall j € Z.
Define

0 if 7 <0,
(6.3) Bi=141 if j =0,

ABj—1 — BBj— ifj =1,

so the §; satisfy a recursive relation for j > 0. In particular, 8; = A and
By = A% — B. For each A and B corresponding to a quadratic > — Az + B
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equal to one of @3(x —b), Py(x —b), Pg(x —b) for some b € [2,20], the values
of 3; vary in sign as j increases. Let J be a positive integer for which

(6.4) B >0 for0<j<.J
As shown in [7], we have
(6.5) bj > Bjbg  for all integers j < J + 1.

Although it is natural to consider J maximal satisfying (6.4]) as in [7],
what we want for our purposes is the least J for which 841 < 8. In [1],
these notions are equivalent; but in general, they are not. Tables [14] and
show the A, B, J and S, for b € [2,20]. Note that

By = OrgjagJ{ﬁj}-
Let
= b; d L =min{b;}.
U 151238({ i} an rjnz%l{ i}

Since b; = 0 for j > s, we have the trivial bound L < 0. From , we
obtain U > (sbg.

We are interested in A and B such that f(z) is divisible by 2 — Az + B.
We view A and B as fixed. We want f(x) to have non-negative integer
coefficients but with the largest coefficient as small as possible. Let M =
M (A, B) be the maximum coefficient for such an f(z). For this definition,
we do not require that f(b) is prime. Thus, if fo(z) € Z[x] has non-negative
integer coefficients and is divisible by 22— Az+ B, then fo(x) has a coefficient
that is > M.

We now describe important inequalities obtained in [7]. Let ¢ € Z™.

Define g, pt1,-- -, pte—1 to be the solution to the matrix equation
1 1 1 - 1 1 1 1o 1
-A B 0 --- 0 0 0 11 0
1 -A B --- 0 0 0 2 0
0 o o0 --- B 0 0 fe—3 0
0 o o0 --- -A B 0 He—2 0
0 o o0 -~ 1 —-A B He—1 0

The above corresponds to a system of ¢ equations in the ¢/ unknowns u;
where 0 < j < ¢ — 1. The system depends only on A, B and £. Ideally, we
want to know that a unique solution to this system exists and each p; is in
[0, 1]. For each choice of A, B and ¢ we use, this can be verified with a direct
computation. We therefore suppose this is the case.

We set

(6.6) u=puoB, v=pp_o—pp1A and w = pp_1.
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Table 14. Values of 8y for bases 2 < b < 12

b A B J B

2 3 3 4 9

2 4 5 5 44

2 5 7 71 1265

3 5 7 7 1265

3 6 10 8 7696

3 7 13 11 1275120

4 7 13 11 1275120

4 8 17 11 4839120

4 9 21 15 4342010751

5 9 21 15 4342010751

5 10 26 14 7358602624

5 11 31 18 29466877337101

6 11 31 18 29466877337101

6 12 37 17 21848430755052

6 13 43 22 668421206663764973

7 13 43 22 668421206663764973

7 14 50 20 111210534995557376

7 15 57 26 21999708522958326888168

8 15 57 26 21999708522958326888168

8 16 65 24 1500111128083892163841

8 17 73 29 981412950725117689674949200

9 17 73 29 981412950725117689674949200

9 18 82 27 26831610348844479287132160

9 19 91 33 117704722514097750900952684327901

10 19 91 33 117704722514097750900952684327901

10 20 101 30 604861792550624708513466396499

10 21 111 37 12146960414965144431227887762494414381

11 21 111 37 12146960414965144431227887762494414381

11 22 122 33 17372654348915578396565748340621312

11 23 133 40 2388719391431067586473475435479832953496811
12 23 133 40 2388719391431067586473475435479832953496811
12 24 145 36 631477325821592776208040048198094984801
12 25 157 44  852463967980020982575658211110018018726645270524
13 25 157 44  852463967980020982575658211110018018726645270524
13 26 170 39 28717077224929268201659599157515978503356416
13 27 183 47 15292524334493253461581890961 x 10%°

+ 8898892202903263801780160




167

Irreducibility criteria

18¥67¢5096507L70L0TO0TLY7E0CCITISE6L8500CTS0EE0S +

0T X 79£039880L0SFSSTFOT6.LL0096T6GSI0E0086LETTEVTLOSGE €L Teb T1F 0C
0FTTPSETETLE0T0STSS6TSETTE0TS6TEITTETSE63L09SSGCETERICET0GLSETTTOEGITFOFITE0E00TT 19 TOF OF 0¢
TOOFSTTE8TISESG0THLLISSHSTSLOOSCE6 T LY6ST0E8S88TITESE6S6LLLTSTSEEER0GLY665STL0SIVISLEGITIIS 69  18€ 68 0T
TOOPSTZESTISES60TFLLISGSFSTSL00S66T LY6GT0ES8S8TITTCE6S6LLLTRTIEEER0GLT66TCFLOCIVTSLECITFIS 69 T8 68 61
CSTTOR0STS66EC6TTTTESIE69097STTEIVT6.L698E800968E6STLICTE6SGS0LTLTLTSSTLYSSTT 8¢ 79¢ 8¢ 61
L18V8LTITSTESGC0GI9TTF0S6699800L67 TRLLGTTEGSSTR68LELETTOGTE0EL09ELLSTTLGTFTOSITSSGLEL 99 ¢F¢ L€ 61
L2878LTTITGTEGC0GI9TTF0S6699800L67 TLLGTTEGSGTS6SLELOTTOSTE0EL0IELLSTFLSGTFTOSITSGLEL 99 ¢F¢ LE 8T
9LET66STSTLLTTITSTO0F06TFIETELTIIIE6TSSTOTISTTITSGTLTIITEEST0LESLEETTL GG Gze 9¢ 8T
CSSTTETFOSTLST0LECEETPSETISTFITOLLLSTOSTCLISTLGLOLG6SGT09SGSSLE6LLT6F60STOETSLI g9 L0¢ gE 8T
CSCTTETFOSTLST0LECEeTPEETISTFITOLLLSTOETCLISTLGLOLG6ST09G8SLE6LLT6F60STOETSLI g9 L0¢ ge LT
9T9E866E06STLIELTGILIITFE096TLO6IESTEISTEGTOLTSIS0LITETETIRGE6T gS 06c ¥E€ LT
L80G.7F66088E0TTTOTTE0L9TS098EFFOET600S THECFER0809E0GETTTGSSTT0LT6FFSOT 8¢ €Lz €e AT
L80GL7F66088E0TTTITTE0L9TS098EFF0ET600S THTCFER080SE0GET T TGSF10LT6FFS0F 8¢ €Lz ¢e 91
TEVI9L6TITIELTIBITLINILTTTE06LOB0BIERGSLOLESSLTINNISIGTSECIE 6F L9¢ c& 91
T6SFT0TLT0809G9TET08TLECTSLOSTLTITRECT09699.LE8TSI9ITES69LTLTS0LTE ¢G T¥e 1€ 91
16SFTOFLY08095913T08GLECTSLESTLT6IFSEET09699LG8TCIIGSSE69LTLISOLI6 ¢¢ TP 1€ QI
¥2289%00L0S0VELEICT L6STHT099TLTTLG80TERGLESG6TELEFT0LT 9F 92z 0¢ ¢TI
TSTF996FET6TTTCECT0LGISETTFEF008G8LESTECICSTSTECETLT0060EETT 1 T1g 6% ¢I
TSTFI96VET6TTTSEST0LCISETTHTT008S8LERTEEIESTSTESETLT00603ETT 1S 116 63 ¥
18260TEETE0ST6897 L TG0VYSE TV ITHFSTISITIETCTTEIETIT v L6T 8% VI
09T08.T08£92£06205T688688T96068T8GTOFECTE6TTEETTST6TST Ly €81 Lo 1

rg r g v 9

0 > q > €T soseq 10§ I¢ Jo sonfep *QT SqBL



168 M. Cole et al.

Then [7] establishes that

(6.7) MZ[W.U-‘ZW.U
Sworw? g, W u+ w)?)B;

and

(6.8) 0<-L<_tTW

u?— (v+w)?
The inequalities (6.7]) and can be used to estimate L and U, respec-
tively. We also use to find a lower bound for M (A, B) that is exactly,
or is close to, best possible. With some additional work, as we shall see, we
can determine the exact value of M (A, B). Note that the variables in
and all depend on b, A and B, and in addition u, v and w (as given
in ) depend on £. For ¢, we will choose ¢ = J + 1 where J is given in
Tables [[4] and [I5

As an example of the use of , we can obtain an immediate im-
provement on Corollary [5.2] Take b = 4, A = 9 and B = 21. Computing
[0, H1s - - -, fe With £ = 16, we check that the p; are in [0,1], and compute
u, v and w using . Denoting by a, the leading coefficient of f(z) as in
Corollary we have by = a,. Table [14] gives a lower bound bgS15 = a,f15
for U = U(9,21). From (6.7), we see that

u? — (v +w)?

u

M = M(9,21) > U > 5.6446 x 10'%q,,.

This implies that any polynomial f(x) with non-negative coefficients and
leading coefficient a, that is divisible by 22 — 92 + 21 must have a co-
efficient as large as 5.6446 - 10',,. From Corollary we see that if
f(x) =377 ga;a’ € Z is such that f(4) is prime and
0<a; <58802-107a, for0<j<n,

then either f(x) is irreducible or f(z) is divisible by ®3(x —4) = 22 —7x+13
or @4(z —4) = 22 — 8z + 17. Repeating the analogous calculations for bases
2 < b < 20, with the aid of Corollary we can deduce the following.

COROLLARY 6.1 (Improyement of Corollary . Fiz an integer b with
b>2. Let f(x) =37 a2’ € Z[z] be such that a; > 0 for each j and f(b)
s prime. If

0<a; <Bpa, for0<j<n-—1 with By as in Table[I0]

then either f(x) is irreducible, or f(z) is divisible by ®3(x —b) or P4(xz — ).

Similarly, for each b € [2,20], we can apply (6.7)) to find a lower bound for
M(A, B) in case g(z) = 2°— Az+ B is $3(x—b) or $4(z—b). Tables[16/and [17]
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Table 16. Lower bound on M (A, B) for 3<b<9

b A B Lower bound on M(A, B) from
2 3 3 9

2 4 5 88

3 5 7 3795

3 6 10 38480

4 7 13 8925840

4 8 17 48391200

5 9 21 56446139763

5 10 26 125096244608

6 11 31 618804424079121

6 12 37 568059199631352

7T 13 43 20721057406576714162

7 14 50 4114789794835622912

8 15 57 945987466487208056191223

8 16 65 75005556404194608192049

9 17 73 55940538191331708311472104399
9 18 82 1744054672674891153663590399

list b, A, B, and a lower bound for M (A, B) obtained from our computations.
To clarify, these lower bounds are simply (u? — (v 4 w)?)Bs/u as given in
, where again we take ¢ = J + 1 and we use to compute u, v
and w.

Before proceeding, we note that we have finished establishing the case
b = 2 of Theorem In other words, we can now deduce that if f(z) =
> =0 ajx? € Z[z] with 0 < a; < 7 for each j and f(2) prime, then f(x) is
irreducible. For b € {3,4,5,6,7,14}, the bounds M (A, B) come particularly
close to what we want. These bounds establish that Mj(b) can be taken
to be 1 less than what appears in Table [I} In other words, for these b, we
can now deduce that if f(z) = Y7 a2’ € Z[z] with 0 < a; < M;(b) — 1
for each j and f(b) prime, then f(z) is irreducible. As we shall see, it is
possible for f(z) to have all its coefficients in [0, M;(b)] with f(x) divisible
by 2 — Az + B. Even though this quadratic has the value 1 at = b, we
will see that for such an f(z), f(b) cannot be prime.

7. A sharp bound for M (A, B). We are now ready to complete the
proof of Theorem At the end of the previous section, we noted that the
case b = 2 is complete. For a fixed b € [3,20], we are interested in the case
that f(z) = g(z)h(z), where g(x) = 22 — Az + B is ®3(x — b) or ®4(z —b),
h(x) has a positive leading coefficient that we have denoted by by, and f(x)
has maximal coefficient M (A, B).
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We view A and B as fixed. It is worth recalling that M = M (A, B) is as
small as possible. Recall also that we did not require that f(b) is prime in
the definition of M.

To finish the proof of Theorem [1.1] one checks that it suffices to show
both of the following:

(A) The value of M (A, B) is (1—- A+ B)- 3 for each appropriate choice
of (A, B) as shown in Tables [14] and
(B) If the maximal coefficient of f(x) equals M, then f(b) is composite.

Note that in (B), we are supposing as indicated above that f(x) is divisible
by 2 — Az + B. For example, take b = 8. Then (A) implies

M (16,65) = 75005556404194608192050,
M (15,57) = 945987466487208056191224.

These are respectively the values of M;(8) and M>(8) given in Tables
and 2l Corollary |5.2| implies that if f(z) =377, a;jx’ € Z[z] with 0 < a; <
M(15,57) for each j and f(z) is reducible, then f(x) is divisible by either
P3(x — 8) or P4(x — 8). It follows that if 0 < a; < M(16,65) = M;(8), then
f(z) is either irreducible or divisible by ®4(x — 8). From (B), if also f(8) is
prime, then f(z) cannot be divisible by ®4(x —8) = 2% — 162+ 65. Therefore,
the conditions of f(8) being prime and 0 < a; < M;(8) in Theorem
imply f(x) is irreducible. Similarly, f(8) being prime and 0 < a; < M»(8)
in Theorem imply that either f(z) is irreducible, or f(z) is divisible by
@y(x — 8). A similar argument holds for each b € [3,20].

We begin by establishing (A). We suppose first that
(7.1) M(A,B)<(1-—A+B)-f3.
Observe that we will want eventually to obtain a contradiction if strict
inequality holds in , but there will be a significance to seeing what the
inequality as written in gives us. We are interested in the case that
22 — Az + B is @3(z — b) or $y(x —b).

From and , we have

uM (A, B u(l— A+ B)-

(12) by SU(AB) < —— ((U - w))2 < (u2 AL ;)f‘]~
We compute the leftmost and right-most sides of , based on u, v and w
from with ¢ = J +1 as before, on b € [3,20] and on 22 — Ax + B being
G3(x — b) or @4(x —b). In all cases, gives a contradiction if by > 2, so
that we only consider now the possibility that h(z) is monic. Setting by = 1
in , by the same computations above we obtain U = ;. In other words,

B3, = u(l—A+B)-f8y
I u? — (v 4 w)?
for all b € [3,20] and 22 — Az + B equal to ®3(x — b) or D4(x — b).
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Using (7.1)) with u, v and w as before leads to
v+ w

'Y Me(o,1

u? — (v +w)? (0.1)

for each b € [3,20] and pair (A, B). Hence, implies that L = 0.

Thus, we have established that implies h(x) is monic, the largest
coefficient of h(z) corresponds to the value of §; as indicated in Tables
and and all of the coefficients of h(x) are non-negative.

The approach given in [7] for b = 10 follows through for general b directly
at this point to give us more information about the structure of h(x), based
on the information just obtained about h(x). Following the arguments there,
still under the assumption of , we deduce that h(x) can be written as
a sum over some non-negative integers k of polynomials which are z* times

(73) (ﬁOxJ +61$J_1 4. +6J)xj+t’ + (xJ-i-t’—l +l,J+t’—2 4. +xJ)BJ

+(Bs = Bo)z” 4+ (By = Bu)a P+ + (Br — Bu-),
where t' = #/(k) is a non-negative integer. The k cannot be arbitrary. There
should be no overlapping terms for different k, and the coefficient of zF~1
in h(z) should be 0 for each k.

We are ready to prove (A). Assume that strict inequality holds in ([7.1f).
For b € [3,20], we see that J > 7 in Tables [14] and Observe that,
since f(x) = (22 — Az + B)h(z) with h(z) as above, f(z) has a coefficient
equal to

(Bs—=B1) = A(Bs — Bo) + BBy = (1 - A+ B)B;— 1+ ABo
=(1—-A+ B)gy,
corresponding to the coefficient of x7 when the expression in (7.3) is multi-
plied by 22 — Az + B. This contradicts our assumption.

Thus far, we have shown that M (A, B) > (1 — A+ B)S;. On the other
hand, we know the form h(x) must have if M(A,B) = (1 — A+ B)jj.
Motivated by (7.3) with ¢ = 0, we consider

ho(x) = oa® + pra®’ ™' + - + Bra’
+ (B = Bo)x’ ™t + (Bs — Bu)a 2+ 4 (Bs — Bu-1).
The recursive definition of 3; now implies that
(22 — Az + B)ho(z) = 2*/ 7% + (1 — A)By + BBj—1 — 1)z’
+(1—A+B)Bsa’ +---+(1— A+ B)Ba?
+ ((B=A)By+ ABj—1 — BBj—2)x+ B(Bs — Bs-1).
Note that the coefficient of = here can be rewritten as (1 — A + B)S;.
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Furthermore, the constant term of (z2 — Az + B)ho(z) can be rewritten as

(1-A+B)B;—Bs+ Bt

Recalling that the definition of J gives S;_1 < 7 and Bj41 < 87, we see
that the maximal coefficient of (2 — Az + B)ho(z) is (1 — A + B)B;. The
definition of M (A, B) now implies the equality given in (A).

Now, we prove (B). The approach here differs from that given in [7] and
necessarily has to be different for some values of b € [3,20]. By (A), we know
M(A,B) = (1 - A+ B)jy, so that f(z) = (22 — Az + B)h(x) where h(x) is
a sum over some non-negative integers k of polynomials which are z* times
polynomials of the form . We refer to the polynomial in as part
of h(x). We begin by showing that with A, B and J fixed, but ¢’ arbitrary,
each part of h(x) is divisible by

J
hi(z) = (Bs—j — Br—j-1)7,
j=0

where we recall that 5_; = 0. From this definition of h;(x), we have

7 J J
ZBJ_jwj = ZﬂJ_j_lmj = Zﬁ{]_jxjfl (mod hy(x)).
§=0 =0 j=1

We deduce that the polynomial given in ([7.3)) is

J ' JH-1 J .
(S prga?)a?* 4 (30 2)Bs =D Boge™
j=0 J=0 J=1
J ‘ JHt-1 J '
= (ZﬂJ—jxﬁlﬁJH + ( > CUJ)BJ =Y Byl
J 4 Jrt-2 J '
= (Z 5J7j$j>$‘]+t e ( > xJ)ﬁJ — > Byl
J=0 J=0 J=1

J+t'-3

(ZJ: /Bijxj>$J+t/72 + ( Z ﬂ)ﬂj — zJ:ﬂjﬂjl
j=0 J=1

J=0

J J
Zﬁj_jxj — Zﬁj_j.%’j_l =0 (mod hl(a:))
j=0

j=1
Thus, each part of h(x), and therefore h(x) itself, is divisible by hq(z). Since
h(z) consists of at least one part as in ([7.3) with ¢ > 0 and J > 1, we obtain

h(b) > (Bob” + B1b” " 4+ BT > Bob” + B1b” T+ 4 By > ha(b) > 1.
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Hence, h(b) is the integer h1(b) times an integer that is > 1. We deduce that
f(b) = g(b)h(b) = h(b) is composite. This finishes the proof of (B).

Recall that this completes our proof of Theorem [I.I} but we are still
interested in showing that most of the bounds in that theorem are sharp, as
indicated after its statement.

To establish the sharpness, we find explicit examples of reducible f(z)
€ Z[x] with non-negative coefficients, with maximal coefficient equal to
(1 — A+ B)By+ 1 and with f(b) prime. To this end, we fix an integer
b € [3,20], choose the appropriate A, B and J using Tables [14| and and
then we take hi(z) to be as given in . In each case, we set t' = 0 except
for the case (b, A, B) = (15,30,226) where we set ' = 1. With some trial
and error, we found a quadratic ha(z) € Z[x] such that h(z) = hy(x)+ ha(z)
satisfies the following conditions:

e f(z) = (2% — Az + B)h(z) has non-negative coefficients,

e f(b) is prime,

e the largest coefficient of f(x)is (1— A+ B)By+1,
where (7 is given in Tables or So as to save space in the repre-
sentations of the polynomial examples we found, we indicate f(x) by only
tabulating ho(x). Observe that the value of ho(x) uniquely determines an
f(z) as described. Table |18 below gives our explicit choices of ha(x) to con-
struct f(z) showing us that the bounds M;(b) for b € [3,20] and the bounds
Ms(b) for b € [4,20] given in Theorem [1.1] are sharp.

Table 18. Examples of ha(z) for M1 (b) and M2 (b)

b hao(z) for M1(b) ha(x) for Ma(b) b ha(z) for Mi(b)  ha(z) for Ma(b)
3 22+ 5x5+9 - 12 2241924126 2% + 23z 4+ 135
4 z? 4+ 5z + 10 22 +8x+40 13 22416z +122 22413z 483
5 x? + Tz + 23 224+ 10z +44 14 2+ 14z +114 2?4+ 23z+ 164
6 z? 4+ 8z + 32 2+ 11z +48 15 2® + 24z +198 2?4 152+ 123
7 z? 4+ 9z + 39 224+ 13z +46 16 2>+ 12z +114 22431z +565
8 2+ 15x+72 2*+ 1524106 17 x? 4+ 18x+178 2?4 19z + 176
9 224162+ 76 22+ 17x+115 18 22 4+192+198  z% + 35z 4 742
10 2% +8z+54 22411z +66 19 2% +292 4279 2% + 27z 4 272
11 2?2414z +84 224212 +133 20 2®+21x+232 22 + 39z + 522

8. Final arguments. We finish by supplying a proof of Theorem [£.3]
and, in particular, examples justifying that the degree bounds in Theo-
rem and the coefficient bounds in Theorem are sharp. The bounds
from Corollary imply that we need only consider the case that f(z) =
g(z)h(x) where g(z) = 22 — Az + B is &3(x — b) or ®4(z — b) and where
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h(zx) can be taken in the form of the first factor in (6.1)). In particular, (6.1)
equals f(z).

Fix b € [2,20]. Let f(z) = Y. ,aja’ € Z[z] be such that a; > 0 for
each j and f(b) is prime. From (6.5)), we have

ijﬁij ifﬂi>0f0r0§i§j—1.
Set
J if 8741 <0,
J+1 if By >0.
For (b,A,B) = (2,3,3), one checks that 55, = Bj41 = 0. For all other
(b, A, B) under consideration, /3, > 0. Thus,
B;>0 for0<j<.Jy, if(bA B)#(23,3)orj#J

For (b, A, B) # (2,3,3), we deduce that b; > 0 for all j < Jy; in particular,
s = degh > Jy and deg f > Jo + 2. In the proof of Theorem we
established deg f > Jy + 2 in the case (b, A, B) = (2,3,3). In fact, for
b € [2,20], we note that Jy + 1 agrees with the values of D(b) and D;(b)
in Table |7l In particular, to justify D(b) is sharp and to justify the value
of N1 (b) in Table[8] we will take s = Jy and deg f = Jo+2 with the maximal
coefficient of f(x) as small as possible.
Recall b; has been defined for all integers j. We now set
(8.1) Kj = bj — Abj_l + Bbj_g for j € Z.

Observe that x; > 0 for all j € Z. For integers u and ¢, we also let
u
K (u,t) = Zﬁj"@t—jﬂ
=0

Thus, «/(u,t) = &'(u — 1,t) + Buki—u. Recall fp =1, f1 = A and Bj11 =
Apj — BBj_1 for j > 1. Using the definition of x;, we deduce
by = B1bi—1 — Bfobi—2 + £'(0, 1)
= B1(Abi—2 — BfBobi—3 + ky—1) — BBobi—2 + +'(0,t)
= Baobi_o — BBiby_3 + K'(1,t) = -+ = By_9by — BBy_3b1 + K/'(t — 3,1)
= Bi_1b1 — BBs_obg + K'(t — 2,t) = Bibo + K'(t — 1,1).
For reference purposes, we summarize the above as
(8.2) by = Bibo + K'(t — 1,t).

There are two strategies we consider at this point. The first one is derived
from [7] and applies in most cases. In each strategy, the basic idea is that
h(z) should not differ much from

hs(x) = Box”® + Brz™ ™t + -+ Bro_17 + By,

Jo = JU(baA’B) = {
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where the subscript 3 on the left is used only to avoid conflicts with previous
notation. We will tabulate examples of f(z) more efficiently by tabulating

instead
Jo

ha(w) = h(z) = hy(x) =Y (b — B;)a” .
j=0

Thus, f(z) = (z* — Az + B)(hs(x) + ha(z)), where A and B come from
the coefficients of either @3(xz — b) or ®4(x — b) and where hs(x) is derived
directly from the recurrence for 3; made explicit in .

Given the above, the expression (z? — Az + B)hs(z) can be viewed as
an approximation of f(z). The coefficient of = in (z? — Az + B)hs(z) and
the constant term of (22 — Az + B)hs(z) are

BBj,—1 —ABj, and Bpy,,

respectively. Strategy I will provide us with the hy(x) we want in the case
that the constant term is at least as large as the coefficient of x. Thus, we
use Strategy I when

BBy, > BBjy—1 — AB -

Note that, in particular, this inequality holds if 8, > Bj,—1, which is typ-
ically the case. Strategy II applies when the above inequality does not
hold. This leads to applying Strategy II only in the cases b € {6,14}
(with g(z) either @3(x — b) or P4(x — b)) and (b, A, B) = (2,3,3). The
case (b, A,B) = (7,14,50) is the unique case in our computations where
Strategy I applies but £, < Bj,—1-

The results of applying Strategies I and II appear in Tables [I9] and [20]
respectively. In Table |20, the second column distinguishes whether @3(x —b)
or @4(x—b) is being used, the value 3 referring to the former and the value 4
to the latter.

Table 19. hy(z) from Strategy I

b ha(z) for 3(x —b) ha(z) for Pa(x —b) b ha(x) for P3(x —b) ha(x) for Pa(z —b)
2 - 3 12 T + 48 4r + 102

3 z+8 0 13 z + 62 2

4 x+7 r+13 15 6z + 192 9z + 279

5 2z + 28 14 16 z + 68 4z + 139

7 6z + 95 8 17 3z + 100 12

8 T+ 29 5z + 80 18 S5z + 211 2z + 113

9 6x 4 115 4x 4 92 19 4x 4 176 12

10 3z 4 60 4z 490 20 T+ 72 d5x + 233

11 21 28
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Table 20. hy(z) from Strategy 11

b @ ha(z)

2 3 T+ 7

6 3 4662361342700

6 4 2z + 13519269991344

14 3 2z 4 54237181819689662822645558359568793540061708639396290
14 4 9z 4 190427015436250536820510121014683293286454260001

STRATEGY I. The basic idea here is to focus on the constant term of
f(x) as being its largest coefficient. We take ¢ = Jj in . The constant
term of h(z) is by,, and we view as indicating how far this constant
term is from [;,bp. Note that the constant term of f(x) is Bby,. If the
maximal coefficient of f(x) is M, then necessarily Bbj, < M and we deduce

Jo—1 M
(8.3) Bobo + ]Z% Bitin—j =bn < 5
The idea is to choose an upper bound search value M’ for M that is close
to BBj,. We take M’ = Bf 5, + M), where M), > 0 is relatively small (a value
< 95000 sufficed for each polynomial we tested but often much smaller values
as well). We then seek to determine the polynomials f(x) with maximal
coefficient M € [Bf3;,, M’] that are of the form (6.1)). If none exists, we
increase the value of M. As long as we find such an f(x) with M} < 3,
we know from that by = 1 when M is minimal. The definition of xg
then implies in this case that kg = 1.

From (8.3)), we obtain

Jo—1

BB, + M M
By + Z% Bikjy—j < OTO =B + §0'
Hence, =
Jo—1
M!
8.9 X s <

Since the values of 3; grow qu1ckly as j increases, if M| is relatively small,
then forces kj,—j to be 0 unless j is small. This then allows us to de-
termine a small number of choices for the x; and, therefore, a small number
of choices of b; from (8.1). Thus, we are left with a small number of h(z),
and hence f(z), to examine.

As an example, consider b = 7 and g(z) = @3(z—7) = r2—132+43. Thus,
A =13 and B = 43, and one checks that Jy = J = 22. Take M), = 5000.

Then (8.4) implies 01 000
Zﬁjm ;< TS <116.28.
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Given fy < 81 < -+ < s ~ 6.68 - 10'7 and
Bo=1, p1 =13, p2=126, ...,

we deduce kg = k1 = -+ = Kog = 0, K91 < 8, and Koy < 116. Thus, there are
9 possibilities for k91 € [0, 8] and 117 choices for ko2 € [0, 116], giving a total
of 9 x 117 = 1053 choices for the ;. Each of these leads to a polynomial
h(z) = E?io b;z? by using (8.I). These 1053 polynomials h(z) include all
possibilities for h(x) € Z[z] for which f(x) = (2? — 13z + 43)h(z) is of de-
gree 24 and has non-negative coefficients all bounded above by Bj;, 4+5000.
We are interested in those f(z) for which f(7) = h(7) is prime, and we want
the maximal coefficient of such an f(z) to be as small as possible. A direct
check gives that k21 = 6 and k92 = 17 produces such an f(z).

STRATEGY II. For this approach, we focus on both the coefficient of x
and the constant term of f(x). Recall that these coefficients are

Bbj,—1 — Abj, and DBby,,

respectively. If the maximal coefficient of f(x) is M, then a weighted average
of these coefficients must also be < M. In particular, we deduce that

BQ

by, _ Bb Ab Bb < M.
A+B Jo—1 = A+B( Jo—1 — JO) A B( JO)
We apply (8.2) with ¢t = Jy — 1 to deduce that
Jo—2
A+ B
Bry—1bo+ Z Bikjo—1—j = Bro—1bo+K'(Jo—2,Jo—1) = b1 < 7 - M.
§=0

We deduce that M > B?3;,_1/(A + B). We choose an upper bound search
value M’ for M that is close to B?8y,_1/(A + B). We take
B? ) B?
= p Pt M with My < g e
The upper bound on M| is considerably larger than we want in general, and
this upper bound ensures that by = 1 and hence, by definition, ko = 1. We
deduce now that
Jo—2

_A+B
(8.5) Zﬁﬂ% 1< - M.

With M| small, we are able to deduce reasonable upper bounds from ({8.5)
for every k; except kj,.
The value kj, can be very large, and the idea is to find a very close ap-

proximation k* € Z to kj, and to use this to narrow down the possibilities
for kj,. The value of £* will depend on the values of kg, k1,...,Kk7,-1. We
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fix k; for j € {0,1,..., Jo—1} from the finite collection of possibilities deter-
mined by . By the definition of the x;, the values of b; are determined
for j € {0,1,...,Jp — 1}. The idea now is to choose x* so that the selection
Kj, = K* forces the coefficient of z in f(z) to be close to the constant term
of f(z). One can check that this leads to

+ —

A+B 2

though the justification of this choice for k* is not needed to see that it
provides us with an estimate that will allow us to determine x;,. We explain
this next.

Bbj_1 1
(8.6) . {BbJO_Q—AbJO_lJr Jo ] J

Fixing «* as above, we show that kj;, must be close to x*. Set rj, =
k* + t. Thus, we are interested in showing that |¢| is not very large. Since
the coefficients of f(z) must be < M, by looking at the coefficient of x
in f(z), we deduce that

Bbj,—1 — A(Abjo_l — Bbj,—2 + K"+ t) = Bbj,—1 — Aby, < M.

From the definition of k*, the expression between parentheses above is
bounded above by

Bbj,—1 1

A+ B + 3 + 1.
From the definition of M’, we deduce that

ABbj,—1 A B?
A+B 2 =" T A+B

which simplifies to

: BJo—l + M(/)a

B2 My 1
. t>——" (by_1— By_1)— =2 — =,
(87) ~— A(A+ B) (bso—1 = Bao=1) A 2
By looking at the constant term in f(z), we deduce that

2

B(Abjy—1 — Bbj,—2 + k* +1t) = Bbjy < M < M' = s

' BJ()—I + M(/)

Since
Bbj,—1 1

*> Bbj _o— Abj _
K™ > B0j,—2 J01+A+B %

we are led to

M! 1
(b1 —B7_ =0 4 -
A+B(J01 ﬂJ01)+B+2

Observe that (8.2]) implies bj,—1 — Bj,—1 > 0. Although not needed, (8.5
also implies bj,—1 — Bj,—1 is not very large. In particular, we deduce that
My 1 . M N 1
A 2~ B 2°

(8.8) t< —
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Given K, = k* +t, we are left with only a small number of choices for & j,,
and can test for f(z) as in Strategy I.

As an example, we consider (b, A, B) = (6,12, 37). We take M/, = 200.
One checks that Jy = J + 1 = 18. As is easily checked, then, 0 < £y < (51
<o < Byy—1 and 0 < By, < Bry—1. Also,

(A+B)M)  49-200

B2 - 372
From , we deduce kg = k1 = - = k1g = 0 and 0 < k17 < 7. We set
bp = 1. For each value of k17 € [0, 7], we use to compute the values of
b1,bo,...,017, to compute k*, and and to find the bounds

for ¢t. The choice of k17 that leads to the maximal coefficient of an f(x) as
small as possible and with f(6) prime is k17 = 2. This choice of k17 gives

K* =13519269991324 and —12<t<4.

=7.1585....

The desired f(x) comes from the choice t = —4, where
bigs = 12b17 — 37big + K™ + t = 12b17 — 37b1s + 13519269991320
= 16497794651771.
Thus,

f(z) = (22 =122 4+ 37)h(z) with h(z) = box'® + bz + - + byrz + big
and with f(6) = h(6) prime. The maximal coefficient of f(x) is
610418402115746,

corresponding to the coefficient of z in f(z).

A similar use of Strategy II for (b, A, B) = (6,11, 31) establishes that the
smallest maximal coefficient of an f(z) having non-negative coefficients with
f(x) divisible by @3(x —6) and f(6) prime is 674230217165581. In terms of
Theorem these examples justify the values of N;(6) = 610418402115745
and N>(6) = 674230217165580 given in Tables [§ and [9] are sharp.

9. Concluding remarks. Having dealt with the cases b € [2,20], it is
natural to ask what can be said for b > 21 or b large. In a subsequent paper,
we plan to discuss results for general b > 2, where what we have established
in this paper can be combined with analysis for larger b to obtain explicit
results for all b > 2. For example, Theorem in combination with an
analysis for larger b leads to the following.

THEOREM 9.1. Let b be an integer > 2, and let D = D(b) =
|7/tan"t(1/b)|. Then there are no reducible f(x) € Z[x] of degree < D hav-
ing non-negative integer coefficients for which f(b) is prime. Furthermore,
for every integer n > D, there are infinitely many reducible f(x) € Z[z] of
degree n having non-negative integer coefficients with f(b) prime.
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As indicated early on in this paper, the analysis for smaller b tends to be
more difficult. In particular, recall that we have not been able to establish a
sharp bound for M;(2) or M2(3). We view finding a sharp bound for M;(2)
as a particularly interesting challenge for further investigation.
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