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ON REGULAR SOLUTIONS TO TWO-DIMENSIONAL
THERMOVISCOELASTICITY

Abstract. A two-dimensional thermoviscoelastic system of Kelvin—Voigt
type with strong dependence on temperature is considered. The existence
and uniqueness of a global regular solution is proved without small data
assumptions. The global existence is proved in two steps. First, a global
a priori estimate is derived by applying anisotropic Sobolev spaces with
a mixed norm. Then local existence, proved by the method of successive
approximations for a sufficiently small time interval, is extended step by
step in time. By a two-dimensional solution we mean that all the relevant
quantities depend on two space variables only.

1. Introduction. This article is devoted to the problem of global ex-
istence and uniqueness of regular solutions to a two-dimensional (2d) ther-
moviscoelasticity system for small strains which is still strongly nonlinear.
The system describes homogeneous isotropic linearly-responding viscoelastic
materials in the Kelvin—Voigt rheology at small strains. We assume that the
specific heat and the elasticity tensor depend on the temperature in a very
special way.

The paper is a companion paper to [GZ4]. Compared to [GZ4], the proof
of the global a priori estimate is only sketched (see Section [5)) but the proof
of local existence is added.

Recently in [PZ1] global existence of regular solutions to three-dimensio-
nal thermoviscoelasticity with specific heat linearly increasing with temper-
ature and with constant heat conductivity has been proved. This setting
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is a particular case of systems considered in [BG, [R1]. Existence of weak
solutions for generalized thermoviscoelastic materials with various kinds of
boundary conditions has been proved in [R2, [RR]. Moreover, the papers of
Roubicek [RI, R2l R3] and Rossi-Roubic¢ek [RR] present a deep physical
background on thermoviscoelastic materials.

Pioneering papers on global regular solutions to one-dimensional thermo-
viscoelasticity are [SLL D, [DH|, and the spherical case is considered in [GA].
Recently, global existence of large solutions to spherically symmetric nonlin-
ear viscoelasticity has been proved in [GZ1 |[GZ2].

In this paper we consider a two-dimensional thermoviscoelastic system
with the temperature dependent specific heat of the form ¢, = ¢,0° with
1/2 < 0 < 1, ¢, a positive constant, and with constant heat conductivity.
This setting is a particular case of systems addressed in [R1]. Moreover, the
stress tensor is given by a linear thermoviscoelastic law of Kelvin—Voigt type
(cf. [EJK| Chapter 5.4]). The aim of this paper is to prove existence of global
regular solutions to the 2d-thermoviscoelastic system without smallness as-
sumptions on data and for o as small as possible. In the 3d-case (see [PZ1])
existence of global regular solutions for large data is only proved for o = 1.
Restricting our considerations to the 2d case we are able to use the specific
heat ¢, = ¢,07, 0 € (1/2,1).

The proof of global existence is in two main steps. First we need a global
a priori estimate in Sobolev spaces Wy, (27) with mixed norm. This is
possible because equations for displacement and temperature are parabolic.
This idea was developed in [PZ1]. Since ¢, = ¢,07 is the coefficient heat
near ¢ ; we need continuity of 6 to apply the theory for parabolic equations,
so p and pg must be sufficiently large. Next, we prove local existence in
W57£O(QT)—spaces by the method of successive approximations. Combining
these two steps we prove the main result: global existence of regular solutions
with large data.

Thus we consider the following thermoviscoelasticity system:

(1.1)  uyy —div[(Aies) + (Age) + A0 = b in T =0 x(0,7),
(1.2) ¢804 — A0 =0Ac 4 + (Aiet) -4 +9g in o7

where 2 C R?, with boundary S, is bounded, and ¢ is a positive constant.
We add the boundary conditions

(1.3) u=0, n-VO=0 onST=5x(0,T),
where 7 is the unit outward normal vector to S, and the initial conditions
(1.4) ulimo = o, Utli—o = w1, Oli—o =0y in (2.

The field u : 27 — R? is the displacement, and 6 : 27 — R is the absolute
temperature. The second order tensors € = {€;}; j=1,2 and € ; = {41 }i,j=1,2
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denote, respectively, the fields of the linearized strain and the strain rate,
which are defined by

(1.5) e=¢e(u) = %(Vu + (Vu)1), er=c(uy) = %(th + (Vu,t)T).

Equation (|1.1) is the linear momentum balance with the stress tensor given
by a linear thermoviscoelastic law of Kelvin—Voigt type (cf. [EJK], Chapter
5.4])

(16) S = Als?t + Age + A6.

The fourth order tensors A; = {Alijkl}i,j,k,l:1,2 and Ay = {A2ijkl}i,j,k,l:1,2
are respectively, the linear viscoelasticity and the elasticity tensors, defined
by the Hook law

(1.7) e Aje = Njtrel + 2ue,  i=1,2,

where A1, up are the viscosity constants and A, uo are the Lamé constants,
both A1, u1 and Ag, uo with values within the elasticity range

(1.8) wi >0, 3N\ +2u; >0, 1=1,2

and [ is the unit matrix. In the case of (|1.1)), (1.2) the free energy is specified
by

(1.9) f(e,0) = f+(0) + W(e,0),
where
- gt _
(1.10) f«(0) = e 1)9 , €y =const >0,
is the caloric energy, and
(1.11) W(e,0) = 3(c — 0a) - As(e — 0a) — %9204 - (Agar)

= 1c- (Age) — bz - (Aza)

is the elastic energy, where oo = ()i j—1,2, with constant «;j, is the sym-
metric thermal expansion tensor. For notational simplicity we introduce the
second order symmetric tensor A given by

(1.12) — Asa = A.
From ([1.10)) the specific heat takes the form
(1.13) cx = —0f(0) = c,0°.
The dissipation potential corresponding to system (1.1}, (1.2]) is given by
1 kool 1?
1.14 D= _"_¢,.(A rp2lvZ
(1.14) 5t (Area) + 507V

where k > 0 is the constant heat conductivity. Hence, by the Fourier law the
heat flux takes the form

1
(1.15) q= k@ZVE = —kVo.
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The dot will denote the scalar product in R? or in R? x R?. Let u = {u;},
v={vi}, S ={Si}, R ={Rij}, Am = {Amiju}, m =1,2, e = {gj}, A=
{Ai;}. Then we apply the summation convention: u-v = w;v;, S-R = S R;j,
(Su)i = Sl-juj, (Ame)l-j = Amijklszl, (AmE) e = Amijkleklsij. Moreover, we
have

V- (Ame)i = O, (Amijrici)-
We define linear viscosity and elasticity tensors Q1 and Q5 by
(1.16)  u+— Qu=V-(Aie(uw)) = p;Au+ (N + p;))VV-u, i=1,2.
In view of equation takes the form

(1.17) Uy — Qruy — Qau =V - (A0) +0.

We assume that the tensors A,, satisfy the symmetry conditions
(1.18) (Am)ijkt = (Am)jikt = (Am)kiij, m=1,2,

and coercivity and boundedness

(1.19) amsle|®> < (Ame) e < allel’, m=1,2,
where

s = MIn{ 3N\, + 2, 2l },  ay, = max{3\;y, + 2m, 2m }-
Let us consider the problem
Qmu=fm n2CR? m=1,2
u=20 on S.

LEmMMA 1.1 ([LM| Ch. 2|). Let f,, € L2(f2) and suppose conditions

(1.18), (1.19) hold. Then there exists a unique solution to (1.20) such that
u € H%($2) and

(1.20)

(1.21) lullzr2(2) < emllfmllia2),  m=1,2.
For u € Dom Q,, N HE(£2) inequality (1.21)) can be written in the form
(1.22) [ullg2(0) < emll@mully2),  m=1,2.

The operators Qm, m = 1,2, are self-adjoint on Dom Q,, N HZ (£2),

(1.23) (Qmu,v)1y02) = —Hm(VUu, VU)1y0) — (A + pm) (V -4, V- 0) 1,0
= (U, Qm) o) for u,v € Dom Qp, N H(9).

Moreover, the operators —Q, are positive on Dom @, N H&(Q),

124) = (Quww) = il Vul2 ) + O + 1) [V - w20y = 0.

Hence there exists the fractional power Q%z satisfying

(1.25) (@M, Q%) = (—Qmu, V) 1y(2) = (U, —Qmv) 1, (02)

for u,v € Dom Q,, N HY(£2).
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From ((1.19) and the Korn inequality

(1.26) do/?[[ull iy < le(@)l|pyy  for u € HY(R), do >0,
it follows that
(1.27) Qw7 ) = Hml VUL 2y + P+ ) IV - ullF )

= (AmE(U),E(U))LQ(Q) > am*”E(U)H%Q(Q)
> apedo||ull3 g)-

MAIN THEOREM. Suppose that (L.7)), (1.8), g > 0 and the assump-
tions of Lemma with A = const hold. Let T € (0,00), b € Ly, (27),

9 € Lag(27) N Li(0,T; Loo(2)), ug € W2(R2), w1 € Bpp/™(82), 6y €

Bi;oz/qo(ﬂ), 2,00,q,q0 > 4, 1/2 < o0 < 1. Assume S € C?. Then there exists
a global solution to problem (|1 f. ) such that

uy € WL, e WZL(2T),  6>0.>0.

P.Po 490

The paper is organized in the following way. In Section[2] we show that the
property g > 0 (see [PZI]) implies that the second law of thermodynamics
holds. In Section [3|we define the spaces used, together with the corresponding
imbeddings and interpolations, and we present solvability results for some
parabolic initial-boundary value problems (3.1]) and - Section I is de-
voted to showing a positive infimum of the temperature In Section 5| we state
some global a priori estimates. The main estimate is the Holder continuity of
temperature, which implies that W; ’qlo—theory can be applied to . This is
compatible with the results of Section [6] Applying the method of successive
approximations, in Section [f] we prove local existence of solutions to problem
(1.1)—(1.4). Finally, in Section [7| we show global existence of solutions to

(1.1)—(1.4) by applying comparison results from Sections |5| and |§|

2. Physical and thermodynamical background. In view of the basic
thermodynamic relations, the specific internal energy e and the entropy 7
are related to the free energy f by the formula

(2.1) e=[f+ 977, 77 =—Js

For the free energy f defined by f this gives

2.2 — %ot A = 296° 4+ (Asa) -
(2.2) e +1 +2€(2€) n=— + (Az0) - €

As a consequence of the second law of thermodynamics expressed by the
Clausius—Duhem inequality, the stress tensor S and the heat flux ¢ satisfy

of oD oD

and the explicit forms of S and ¢ are described by (|1.6)) and (1.15]).
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Repeating the considerations from [PZ1l, Section 2| we can derive the
Clausius—Duhem inequality

(2.4) mAV- >

>
SAS]

3. Notation and auxiliary results

3.1. Notation. Let 2 C R", n > 1, be a domain with boundary S. Let
02T = 02x(0,T), ST =85x(0,7T) with T finite. By WF(£2), k € NU{0} = Ny,
p € [1,00), we denote the Sobolev space with the norm

/
o = (3 1D )",
|| <K £2

where a = (ai,...,ay) is a multi-index, a; € Ny, |of = a1 + -+ + an,
=901 -9, Let HF(2) = W§(92).
Next, we introduce anisotropic Lebesgue spaces Ly, (27) = Ly, (0, T;
L,(£2)), p,po € [1,00], with the norm

T

1/
ol o ery = (§ @ gy dt) ™.
0

Moreover, W, k/2(QT) k,k/2 € No, p,po € [1, 0], is the Sobolev space with
a mixed norm, which is a completion of the set of C°°(£27)-functions under
the norm

T

o na po/P  \1/po

lll sz ory = (g( S |Dm8tu|pdx) dt) .
0 |a|+2a<k £2

We denote by W,i’;o/z(QT), s € Ry, p,po € [1,00], the Sobolev—Slobodetskit

space with the norm

lulysarziory = D I1D50ulL, ,0m)
lal+2a<s

T
Daaa ,t _ Doc/aa /,t D Po/P 1/po
+[S<SS Z |Dg 0 u(z, t) wOfu(@, 1) da:dx’) dt]

_ n+p(s—|[s
> \ 222 ali2nis |z — o/ [rtp(s=[s)

TT 1
DeHe Daa/ ,t/ P Po/p /po
+[SS<S s 1DRouGe. )~ Didju(z.¥) dx) dtdt,] |
0

t — #|1+p(s/2-[s/2])
2 |a|4+2a=[s] | |

where a € Ny and [s] is the integer part of s.
For s odd the last term in the above norm vanishes whereas for s even
the last two terms vanish. We also use the notation L,(27) = L, ,(027),

W;’S/Z(QT) — W;’;m(QT), and so on.
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Bé,po((z), l € Ry, p,po € [1,00), is the Besov space of functions making

the following norm finite:

2 20 || AT, £2)0k ul}° @) 1/po
||u||Béyp0(Q) = |lullz, ) + <§; (S) B1+(—k)po h) ’

where k € No, m € N, m > 1—k > 0, Al (h, Q)u, j € N, h € Ry, is the finite
difference of the order j of the function u(z) with respect to x; with

Aj(h, Q)u = Ai(h, 2)u

= U(xl, ces L1, T+ h‘7$i+17 s ,l’n) - U(ZL‘l, v 71'n)7

Al (h, Qyu = Ai(h, 2) AT (h, Q)u and Al (h, 2)u = 0 for x + jh & £.
From [G] it is known that the norms of the Besov space B}, , (£2) are equiv-
alent for different m and k satisfying m > 10—k > 0.

We denote by Va(£27) the space Loo(0,T; L2(£2)) N La(0,T; H($2)) of
functions making the following norm finite:

[ullvy(ory = esssup [[u(t)[|,2) + [[Vull 1, or).-
t€[0,T

Next, V5 °(27) = Va(27) N C((0, T); L2(£2)).

Let C4/2(02T), a € (0,1), denote the anisotropic Hélder space of func-
tions making the following norm finite:

lu(z!,t) — u(x”,t)|
L, == ,t
[ull e, /2(0T) S(‘;P u(z, t)| + ;E'I'),t o/ — 2|

u(z, t') — u(z, t")|
+ su
x,t’E’ ‘t/ _ tl/‘a/Q

We denote by ¢ a generic positive constant which changes its value from for-
mula to formula and depends at most on the imbedding constants, constants
of the problem, and the regularity of the boundary.
Let ¢ = ¢(01,...,0k), k € N, denote a generic positive increasing func-
tion of its arguments o1, . . ., ox, which may change from formula to formula.
3.2. Auxiliary results. We need the following interpolation lemma:
LEMMA 3.1 (see [BIN, Ch. 4, Sect. 18]). Let e € (0,1), u € Wis/?(27),
s€Ry, p,po € [1,00], and 2 C R%. Let o € R, U {0}, and suppose
2 2 2 2
-4+ ———-—=—+4la|+2a+0<s.
P PpPo g Qo
Then D29%u € Woa/*(02T), ¢ > p, g0 > po, and

w =

D50 ull e 2 ey < =l s gy + =l
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As a special case of Lemma [3.1] we need

LEMMA 3.2 (see [BIN, Ch. 4, Sect. 18]). Let ¢ € (0,1), u € W;(£2),
sERy, pe[l,o0], 2 CR2 Let 0 € Ry U{0} and suppose
2 2
w=—-———+la|+0<s.
p q

Then Dgu € W7 (§2), ¢ > p, and

1D ullwe (o) < & ullws () + e |ullz, @)
We also need the following interpolation result

LEMMA 3.3 (see [BIN, Ch. 3, Sect. 15]). Assume that w € W (£2) N
Ly, (2), 2 C R? and

2 2 2
2 = (10)+9<l>.
P D1 D2
Then

> D2 ulli ) < elullfyr o llully, o)

|af=r

We recall from [B] the trace and the inverse trace theorems for Sobolev—
Slobodetskii spaces with mixed norm.

LEMMA 3.4.

(i) Let u € W;,’Ifo/g(QT), s € Ry, s > 2/poy, p,po € (1,00). Then
u(z, to) = u(x,t)]i=t, forto € [0,T] belongs to B;y;g/po(()) and

||U(’ tO)HB;;i/pO(Q) S CHUHW;:;éQ(QT)'

(ii) For a given u € B;,;,?/p‘)((z), seRy, s>2/pgy, p,po € (1,00), there

exists a function u € W;’;{Q(QT) such that uli=¢, = @ for to € [0,T]
and

||u||W;:;(<2(_QT) < CHUHB;;?J/PO(Q)’

LEMMA 3.5 (see [BIN, Ch. 3, Sect. 10.4 and Ch. 4, Sect. 18|). Let

e € (0,1), u € W;7’1;50/2(QT), s € Ry, ppo € (1,00), and 2 C RZ%. Let
o € Ry and assume

2 2
=—-—+—+0<s.
b Ppo

Then uw € C7°/2(2Y) and

[tllgmoraary < & Nulysarz gy + 0=l 0.
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Let us consider the problem
w—Qu=f in N7,
(3.1) uw=0 on ST,
ult=0 = uo in {2,
where 2 C R? and
Qu = pAu+ vV (V- u)

with p,v > 0. Notice that Q replaces Q;, so = pi, v = Ay + pg, @ = 1, 2.
Hence assumption (|1.9)) implies that indeed u,v > 0.

LEMMA 3.6 (parabolic system in Wy, (£27) [K| [PZ2, ST, S2)).

(1) Assume that f € Ly, (27), uo € Bi;g/po(ﬁ), p,po € (1,00) and
SeC% If2—2/po—1/p > 0, the compatibility condition ug|s = 0 is
assumed. Then there exists a unique solution to problem such
that u € W, (2T) and

(32) el ory < €11, o cemy + ol - )
with a constant ¢ depending on §2, S, p, po.

(ii) Assume that f =V -g+b, g = {gij}, 9,b € Lpp,(27T), and ug €

Bg;g/m(()). Assume the compatibility condition

uols =0 if 1=2/po—1/p>0.

Then there ezists a unique solution to 1) such that u € Wpljoﬂ(QT)
and

(3-3) HUHW;,;f(QT) < cllgllz, 27y + 10llL, ,, (27) + HUOHB;;?)@O(Q))
with a constant ¢ depending on §2, S, p, po.
Let us consider the problem
oz, )0, — A0 = f in 07
(3.4) n-Ve=0 on ST,
0)i1=0 = b in .
LEMMA 3.7. Assume that f € Ly, (27), 6y € Bﬁ;f/po((z), p,po €

(1,00), and S € C?. Assume that a > ag > 0, g is a constant, a < a, < 00,
o a constant, o € C%/2(QT) oy € Lijp1i-p(92F), € (0,1). Then there

exists a solution to problem (3.4)) such that 6 € Wi’plo(QT) and
(35 Mllwzz (@ry = w0, llaliser, oL, ), 0m)

X (I f Iz, 27y + ||90HBZ;(2J/po(Q))-
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Proof. We prove (13.5)) only, because existence follows from the regular-
izer technique presented in [LSU, Ch. 4 and S2]|. Multiplying (3.4)); by 6,
integrating over {2 by parts and using the boundary condition (3.4))2 yields

1d

(3.6) 5 7 g ab®dz + | V0> dz < || fl|1, 0]z, + | dz.
Q 2]
By the Holder 1nequality the last term on the r.h.s. of (3.6] is estimated by
[ lovsl6? lOlIZ,, @) =11,
Q

where 1/A\; + 1/A2 = 1. Using the interpolation
1—
161130, ) < eIVOIL g 11ty + el e
with 1/Ao =1 — u, p € (0,1), we obtain, for any € > 0,
24
I < cllagllr,,, @IV, H'9||L2(9 +11017,,0))
1/1—
< EHWHL2 + @(1/6)HatH / (107,00 + cladlle, @017, q)-

Using (3.6 and taking e sufﬁ(:lently small we obtain

d 1/1—
(3.7) ﬁﬂaﬁzdwﬂ IVOI* dz < || £l o) 10] Lo (02 +6Hatll/ o IIHIILQ
Q Q

Since {, 0% dx < - S o @0 dz we derive from the inequality

d 1/2
3.8) —\ab?de+ \|VOPde < — ab? dx
(3.8) dtéz (SZI | \/Eollflle)(é )
loally
, Ju(£2) 2 C 2
CT“ S af” dr + a—OHa,tHLl/#(Q) S ab” dx.

Q Q
Omitting the second term on the Lh.s. of (3.8) yields

(3.9) %( § ab? dx)l/2

C(

1/2
[l + — gl to) + llevile, ) ( | ab?da)
f 1n 1/ (Q )

After deriving an estimate for ({, af? dzx)'/? from 1) we insert it in l)

Integrating the result with respect to time yields
(3.10)  [[Bllypen < @(1/ao, a2 1 f a2y 1160l Ly (2))-
X (I fllzgc2ry + 10ollpo)],  t<T.
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Using a partition of unity ¢(¥)(z, ) such that U supp C®) (2, t) = 2x(0,T)
and introducing the notation ©*) = u¢*®) we obtain from 1' the following
problem, localized to supp ¢ (k)

a(g(’“),t(’“))eff) _ A — [a(f(k),t(k)) — a(x7t)]0,(tk)
(k) (k) _ ®) _gAc®)
s + fU) 4 O‘C,t 0 —2VoV(¢ OACY,
- vk = 7. vk,

t=0 = 0o¢® |1=o,

where (€% ¢() is a “middle” point of supp ((¥). In view of [K| S1] and (3.10)

we have

(3.12)  [10® 21 (or) < ©(1/a0, 0" [allgose, | (@)

X [Hf(k)HLp,pO(QT) + H9(k)\t:oHB§;§/m(Q)]~

Summing up over all subdomains supp ¢*) (x,t) we obtain 1} "

4. Lower bound for temperature. The existence of the lower positive
bound on the temperature is important in getting an a priori global estimate
in this paper. We follow [PZ1, proof of Lemma , but the argument is
different.

LEMMA 4.1. Assume that (1.2)) holds, g,00 >0 and A = A(e). Let

(4.1) c=1 and ai(t) = sup\A( )2,

A1

where a1y 1s introduced in (1.19). Then for sufficiently regular solutions to

problem (1.1)—(1.4)) we have

fa(t)
(4.2) o(t) > by exp<—§ dt) f..
0 U
Let now
o<1l and as(t) = lggo” H%Q(g_(gﬂ)) (2)-
Q1 € 2—(o11)

Then for a sufficiently regular solution to (1.1)—(1.4)) we have

1 1/(1-0)
(4.3) 0(t) > | — =0,.
SO 2( )dt/ (70)
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Proof. Multiplying (1.2)) by —67¢ and integrating over (2 yields

(44) = | 0770, dz+ 5 | 07°A0dx + | (Ayey) - e,0 0 da
(9} 2 2
+\ g0 ¢dz+ | A(e) - e 0" 2 dx = 0.
[0} (9}

Now we examine the terms in (4.4]) one by one. The first term is equal to

Co d S dx

o—(c+1) %Q ge—(o+1)"

The second term equals

2

4 1
ads dzx.

| [V
(o—1) s gle—1)/
In view of (1.19) the third term is bounded from below by

| |
9o

a1x S dx.

The fourth term is positive because g > 0. From the Cauchy inequality the
last term in (4.4)) is bounded by
2

a1« S |5,t
4
2 4 0

In view of the above considerations, (4.4) takes the form

1
dv+ — | |A(e)P0* ¢ da.
2a1x 0

(45) — igil do + 22 | |v S
. 0— (O’ + 1) dt b 99—(0’—&-1) L (Q — 1)2 B 9(@—1)/2 T
2
Q1% Et g 1 292—p
5 S 0o derS@deml* S\A(a)] 0“ ¢ dx,
2 2] 0
where o is assumed to be large. Set
1
1 o—(o+1)
Using 1} and assuming that aq(t) = 2;1* supg, |A(g)|? we obtain
c d 1

4.7 —2_—xo) < (1) | — dz.
47 0o— (o +1)dt S a(t) ) oy dr

(9
Setting o = 1 we obtain from (4.7 the inequality
t

CU%X <a(t)X, so X(t) < X(0)exp|
0

aq (t/)
Cy

dt.
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Hence letting o — oo gives

Cai(t))
(4.8) 0(t) > 6(0) exp {— | dt’],
Cy
0
which yields (4.2)).
Let us now consider the case o < 1. Then (4.5 takes the form
Cy d
19) — @ Ayt
(49) o0—(oc+1)dt
1 97(G+1) > gfg(;il)
< dx = as(t, 0) X972,
s A e (15 A(t.0)
Hence
1
4y a2(t,0) vo . 4 d 1o aa(t,g)’
dt Co 1—0 dt Co
SO
¢
t,
Xl—a’(t) S S a2(c ’Q) dt/ + XI_G(O).
0 (%

Letting o — oo we get
1 1/(1-o0)
02 s
XO(GQ/CU)dt + (1/60)
This implies (4.3)) and concludes the proof. =

(4.10)

5. A priori estimates. In this section we give estimates under the
assumption that there exists a sufficiently regular local solution to prob-
lem (1.1)—(L.4). The proofs of these estimates are given in [GZ4]. Moreover,
Lemma implies existence of a constant 6, > 0 such that

(5.1) O(x,t) >0, t<T,
where T is the time of local existence.

LEMMA 5.1. Assume that u; € Lo(82), ug € HY(£2), 0y € L,41(02),
be Ly(2), 0 < ge L1(2Y), t <T. Then solutions to problem (1.1)—(1.4])
satisfy

(52)  NugO7,00) + 1@ ) + 1ODONT (o)
< e (1617, 0y + 19l 20y + luallZ, 0y + HuoH?p + 1601175} ()
=c(t), t<T,

where c(t) is an increasing function.
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LEMMA 5.2. Assume that uy € HY(2), b € Laa(2Y), 0y € Ly42(£2),
g c Ll(o,t;L(o-+1)/o-(\Q)), ug € W22(.Q), o> 1/2. Then

(5.3) V0712 da + | VO[3, ) < c(t, 2),
Q
where
2 = |Jull o) + 16l 2oty + 100l L, o (2)
+ ||g||L1(0,t;L(U+1)/a(Q)) + HUO||W22(Q)

We recall important inequalities necessary to derive a global a priori
estimate.

Applying Lemma [3.6(ii) to problem (1.1)—(1.4]) yields
64)  llealiy @ < il

< ellellzy ey + 1611y, )+ [y a2y + gy gy + ollgan)
Hence, the Gronwall lemma implies

(5.5)
el 2ty < @Ol L, 20) + 10l 2y, 20 + Nunll grozim ) + llwollwp ()]

Moreover, applying Lemma (1) to (1.1)), (1.3)1, (1.4)1,2 and the Gronwall

inequality we obtain

(5'6) Hg,t‘|Wpl:7}/2(Qt)

< cOIVOll, 2t + [bllL,,.(20) + lluall go=2/r ) + lluollwz ()

From Lemma [5.2] we have

(5.7 0.6 Loo(0,1: Lo so(12))
(5.8) 6 € Ly(0,t; Ly(£2)), ¢ € (1,00).
In view of (5.7 inequality ([5.4)) implies

(5.9)

letllzo s can) < clelea) + 0, @0 + luall grve o) + luollwy ()]
=c3, 71€(1,00).
LEMMA 5.3. Assume that b € Lo () and uy € B;/QQ(Q). Then
(5.10) letllz,, ., () < @+ [blly o0y + lurll sy ,2) + w0l z2(2)) = c5

where r1, p1 are such that

(5.11) 1 g2<1+1>.
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From and (| we have

(5.12) H€,t||W217,21/2(Qt) < (U4 (16l £y 200ty + [lwall By, (0) + luolla22))-
Setting 71 = 2 we obtain from (5.12]) the estimate
(5.13) 2(01) < c3,

where p is an arbitrary finite number.
LEMMA 5.4. Assume that 6y € Lsys+1(£2), g € L1(0,t; L%(Q)), and
€ (1,00). Then
(5.14) 101l L,y 0rr(2) < cle2,c3)

+CH9HL1 O,t,Ls_,_U_,_l(Q) C”90HL3+0+1(9) = 4.
o+1

LEMMA 5.5. Assume that b € L4(£2%), uy € Bi’f(ﬁ), ug € W2(9),
g € La(0,t; Ly(£2)), 6y € La(82), 0 > 6, > 0. Then
(5.15) € .tll Lo 0,400 (2)) < C55
where c5 depends on all norms from the assumption.
LEMMA 5.6. Assume that g € L1(0,T; Loo(2)), €4+ € L2(0,T; Loo(£2)),
0o € Loo(82), 0 > 0, > 0. Then
(5.16) 01l1. o) < (1/02)|Rles + ¢ + 191, 051 (2 + 801l 2] = 6
To prove the Holder continuity of the temperature we follow the method of

[LSU, Ch. 2, Sect. 7]. For this purpose we recall the space B2 (27, M, ~, 1,6, »),
2T =2 x (O,T), 2 CR"and M, v, r, §, s are positive constants.

DEFINITION 5.7. We say that u € Bo(27, M,~, 1,6, ») if
(1) we vy (),

(2) esssupgr [u| < M

(3) the function w(x,t) = Fu(x,t) satisfies the inequalities

e @ = k), w0 < 1@ = R) (5 t0) 12,5, (00))

F91(010) 1w = B4l omy + 17 T (K, 0,7)]
and

2
H (w - k)-l‘ HVD(Q(gfalg,Tfag‘r))

<A((@10) 72 + (@27) 7w = B)4 13, 000m) + 17T (K, 0, 7).
Here the following notation is used:
(w—k)y =max{w —k,0}, k>0,
By(zo) = {z € 2: |x — xo| < o},
Q(0;7) = By(wo) x (to, o+ 7),
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and p, 7 are arbitrary positive numbers, 01,02 € (0,1) and k is a positive
number such that

esssupw(z,t) —k < 9.
Q(e,7)

Moreover, V;°(027T) is defined in Section

to+71
M(kv 0, 7_) = S measr/qu,Q(t) dt,
to

where Ay ,(t) = {x € By(wo) : w(x,t) > k}, and the positive numbers ¢, r
are linked by the relation 1/r +n/(2¢q) = n/4.

LEMMA 5.8. Assume 0 < 0, < 0, where 0, is defined by (4.1) and (4.2),
respectively. Let M = ||0|,__ory < c6 (see (5.16)). Let supg () < k and
M — k < & with some § > 0. Let &, € Lox(£21), g € Ly (27), A = : L

1/r+1/qg=1/2, 5> 0. Then
(5.17) 0 € Bo(2F, M, ~, 7,8, ).
REMARK 5.9. By the imbedding (see |[LSU, Ch. 2 Theorem 7.1])
By (92T, M, y,r,8,k) € C¥2(QT),  a€(0,1),
it follows from that
(5.18) 9 € Co2(QT),
where a depends on M, ~,r, 0, s.

REMARK 5.10. In view of (5.14) and (5.5) we have 0,e; € L, ,(27),
p,7 € (1,00). Using this and the Holder continuity of 6 we get for solutions

to problem (1.2]), (1.4)3, (1.3)2 the estimate

(5.19) 101l 2. (ry < #lea, o co),
where ¢, gy € (1,00). Hence

(5.20) VO € Ly (27),
where

(5.21) 2,22 2y

For ¢ = qp and r = r¢ condition ({5.21]) implies

4 4
(5.22) Z-Z<1

q r
Since ¢ can be an arbitrary number from (1,00), the same can be said
about 7.
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Similarly, for solutions to problem (1.1f), (1.3), (1.4)1,2 we have
(5.23) lullwz (or) < $leoscs)
where p, pg € (1,0).

We are not interested in increasing the regularity of solutions to problem
(1.1)—(1.6) as much as possible. We just need enough regularity that the

existence of local solutions and that the local solution may be extended in
time to get global existence.

6. Local existence. To prove local existence of solutions to problem

l) we use the following successive approximations:
(6.1)  ugparyu — V- (Aie(upin) = V- [Aze(upy) + Ay +b in Q7
(6.2) Cv9?n)9(n+1),t - %A‘g(n—i-l)

= Oy Ae(umye) + (A1 - (ugmy)) - (ugmye) +9  in 27,
(6.3) U(pt1) = 0, n- VG(nH) =0 on ST,
(6.4)  Upmgnyli=0 = u0,  Umgn)eli=0 = u1,  Opgnyli=0o =00 in 2,
where u,), 0(,) are treated as given.

Moreover, the zero approximations (u(o), 9(0)) are constructed by an ex-
tension of the initial data in such a way that

(6.5) u(o)lt=0 = o, U()tlt=0 =u1, Olt=0 =0 in £2,
(6.6) wey=0, 7" Vg =0 onS".
First we show uniform boundedness of the sequence {u,), 0}

LEMMA 6.1. Suppose that Xo(t)= ||u(0)7t/HW5’,;0(m) + HH(O)HWQQ;;O(Qt) <00,
where (), () are introduced by (6.5). Suppose that D(t) = |luolwz(e) +
il g2-27m0 g + 1001 22100 g + Bl L,y (2) 11911145 (20 < 00- Let 1/p+

1/po<1,1/q+1/q0 <1, qo > 2. Assume that there exists a constant A and
time t such that Xo(t) < A, p1(t*A,D(t)) < A, a > 0 and ¢, is introduced
in |} and ct°/?A < 0,, 0 > 0, 0, = ming 0y. Then

(6.7)  X,(t) = Hu(n)ut'HW,?jplO(Qt) + HG(,,L)HW;,;O(W) <A for any n € N.
Proof. Applying Lemma to problem (6.1)), (6.3)1, (6.4)12 yields
(6:8)  lugnin.ellwz: @n < IVl o (20 + 1V0) |y g (20
+ 1bllz,  (2) + |’U1HB§;(2)/po(Q)]a

where ¢ does not depend on t. With the use of the formula
t
Uy (T, t) = Su(n)’t/(x, t') dt" + ug(x)
0
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the first term on the r.h.s. of is estimated by

t
(6.9) V%0l 1, 0 020) < [[§ V200 (2,8 HE/70)V 20 | 1, )
0

Lp,pg (£2)
< VU ol L, (21 + PNV U0l L (2)-

Employing in we get

(6.10)  lugninyellwzy on = elVOm)llz, 000 + V() 40

| Ly o (20)
+ C(tl/pOHV2UOHLp(Q) + bl 5 (21) + HUIHBg;(z)/pO(Q))-

Next we examine problem (6.2, (6.3))2, (6.4)3. By Lemma there exists a

solution to this problem and the solution satisfies
611 10yl
1
§¢<Supasup0n7 en o0/ ) Hn / .Qt)
P G Sup O 10 lcoor2 2ty 10n) 0 | Lo (2t)
X [100nye (winy )| Ly 4o 20y + (A1 (ny ) - €(uny )Ly g (2
1191,y (20) + H90HB§’;§/qo(Q)]-
First we estimate the arguments of ¢. Using Lemma [3.1] we have
10| 20y = N0y w2t () + L1/ OOyl g, (20
< (810 w2y (@) + 100l Ly(2)

under the restriction

1 1
(6.12) -+ — < 1
q qo

In view of Lemma [B.5 we have
190 llcocrz(ry < 0l10myllwz,t (ory + P/ OO 2,40 (020)
< C4(taH9(n)HWqQ”;0(_Qt) + HHOHLE,(Q))v

for some « > 0, under the condition
2 2

(6.13) -+ —+o0o<2
q qo

Assuming that gg > 2 we get

< t1/271/q0 H@(

10,0 | L (2) n) /] Lago (20)-

To estimate 6,,) from below we consider

O(ny = On) — 0o +00 > 0 — |0y —bo| > 0 _igg 16 _90”00/2(0’0750/2 =1,
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where 6, = ming, 6y. By Lemma [3.5] we have

(6.14) Oy 2 11 2 0 — cll0a) = Oollyyz2 onyt”"?

under the restriction (6.13)). From (6.14) for ¢ so small that
_ /2

(6.15) CHe(n) 90||Wq27’qlo(gt)t <0./2

we have

(6.16) Oy > 0./2.

Now, we examine the expressions in the square brackets on the r.h.s. of
(6.11)). By the Holder inequality the first term is bounded by
100)8 (W) ) 2.0 (2) S 100m) 23 41100 (@) NEQ) 4 By o (26) = L2
where 1/A1 +1/X2 =1, 1/pu1 + 1/pg = 1. The first factor in Iy is estimated
by (see Lemma
10 12, g 100 (20) = 01Oy ly22 () + P/ OO [ g, (c20)
< st (Bl a0y + 190]1,02)
for some « > 0, under the restriction
1 1 1 1 11 11
6.17 =S ——
(6.17) g G Mg mq A2q  p2 Qo

which holds in view of (6.12]).
The second factor in I, is bounded, in view of Lemma by

<1,

HE(u(n)»t')HLAzq,#zqo(Qt) < 6||u(")at/||Wz?f;o(Qt) + 4’0(1/5)Hu(”)¢'HLq,qo(Qt)
< CGta(Hu(n),t’HWIE;;O(Qf) +lluillz, @)

under the condition

2 2 2 2
(6.18) - - <2

D Po  A2q  H2qo

From (6.17)), (6.18) and the relations between \;, u;, i = 1,2, we have

1 1
(6.19) -+ — <2
P Do

Moreover, the above estimates imply
(6.20) I, < C7ta(H9(n)HWqQ,’;O(Qt) + HQOHLq(Q))

X (lugmy.elwzs @ luilln,2)-
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The second term in the square brackets on the r.h.s. of is bounded by
(6.21)
Vo1, oo ) S IV Ty 200 (20
< Gl oy + /D)y 1, o 20)°
< est®(lug wllwzs (@ + Jutllr, (2)?

under the restriction

2 2 1 1

— + -
P Po g Qo
In view of Lemma . From lb we have, for some « > 0,
(6.23) oyl gy < 2 Xa0), D).

From (6.11)), (6.20)) and (6.21)) we obtain

(0:24 100l ey < 908 X (01, D).

The above estimates hold under the restrictions (6.12), (6.19)) and (6.22).
Summarizing, inequalities (6.23) and (6.24)) imply

(6.22) <1

(6.25) Xn41(t) < @1 (t* X (1), D(1)).

Hence, there exists a constant A such that for sufficiently small ¢,

(6.26) Xo(t) <A, 1(t*A,D(t)) < A.
Then (6.26)) implies
(6.27) X,(t) <A for any n € Np.

This concludes the proof. m

To show convergence of the sequence {uy), 0(,)} we introduce the differ-
ences

(6.28) Un(t) = um)(t) = um-1)(t),  Inlt) = Oy (t) — On_1)(2),
for n € N, which are solutions to the problems
Uny1,0 — V- (A1e(Uns1,t)) = V - (A2e(Up))
+V- (A(e(n) - e(nfl))) in ‘QT7
Upt1 =0 on ST,

Unt1lt=0 =0,  Uny1tlt=0 =0 in {2,

(6.29)
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and
cv9€n)79n+1,t — 2AVp 1 = U(H( )~ Q(n 1))9(n)t
+ (9(n) — 9(n_1))6(U(n),t) + G(n_l) (Unyt)
(6.30) + A1e(Uny) - €(uny ) + Are(ugm_1)s) - €(Uny) in T,
n-Vipe1 =0 on ST,
Unt1lt=0 =0 in £2.
Let
(6-31) Yn(t) = ||Un,t’||ws;1p, (024 + ||19n||W;;1q, (2t
20 M0

LEMMA 6.2. Let the assumptions of Lemma [6.1] hold. Then there ewists
a positive constant d depending on A such that for some o > 0,

(6.32) Yoi1(t) < dt®Y,(t)
Proof. Applying Lemma to problem (/6.29)) yields
(6'33) HUn-‘rLt’ ij;lpl (02t) < C||V2Un||Lp/’p6(Qt) + CHv'ﬁnHLp/’pa (£2t)-
Po

By the formula

t
(6.34) Un(t) = \Upu(t) dt',

0
the first term on the r.h.s. of (6.33)) is estimated by

tl/Po HUn,t’ HW2,’1 (20
P

We will also use the formula
t

(6.35) On(t) = | (t') dt’.
0
To estimate the second term on the r.h.s. of (6.33)) we express it in the form

(§|w V)" = 1

Applying the interpolation
0 —0
||V19n||Lp/(Q) < CHﬂnqu%(Q)||79nH1Lq,(Q)

with 0 = 1/¢' — 1/p' + 1/2 yields
1/py
1_
I SCSliPHﬁnHLq, (SW (t )‘W2(Q)dt)

< ct1=1a)(1=0)||y

n,t’

a OBEWZ (2))
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where for the second inequality we have used (6.35)) and pyé < ¢. Summa-
rizing, we need the restriction

(6.36) po(1/d —1/p"+1/2) <q), 0<1/¢d —1/p'+1/2<1.
Employing the above estimates in (6.33]) yields
(6-37> HUn—&-Lt’HW?;1 L (024 < @(A)tayn(t)-

»’,p)

Applying Lemma to (6.30) gives

(6.38) i
[l () < LA, g0+ D) g

+ HE(Un,t’)HLq/’qé(Qt)
+ HE(Un,t’)E(u(n),t’)HLq/’qé(Qt)
+ Hg(u(nfl),t/)g(Un,t’)”Lq/,qé((ﬁ)]'

Now, we examine the particular terms from the r.h.s. of (6.38)). The first
term in the square brackets is treated as follows:

<

where 1/A; + 1/Aa = 1. Setting \a¢’ = ¢, we have Ay = ¢q/¢ so N\ =
q/(q —¢')- Then

1/q5

198y 1Wabiny 1 ) ')

; 1/
4 _
19 HL)\lq/(.Q)||6(n)7t’”L0/\2q,(Q) dt’) = Ji,

O e o+ O e

t

H < (J10al® o) 0P )

1/¢;
dt’) 0 = Jll.

0 a—d
We use the interpolation (see Lemma
0
1921z () < elallys o

7

It

q9—q
where 6 satisfies the equation
2 2
= (1-0)>+ 9( - 2)
aq'/(qa — ') ( )q q
Solving the equation yields 8 = 1/q. Then

1 . 1-1/q av/a Vag
Jlscsgpuﬁuuq,(m(xw I Be I, y d') ™ = 7.



Two-dimensional thermouviscoelasticity 229
Applying (6.35)) and the Holder inequality to the integrand yields

1— l/q (SH'& quA1/q dt) 1/(qpM)

J? < ct(l——l/QG)(l——l/Q)Hqg w2 (0

) 1/(gpA2)

t
A
x (gue t,u% dt = J3,
0

where 1/A1 + 1/X2 = 1. Setting A\; = ¢, we have Ay = ¢/(q — 1). Next, we
need ¢4q/(q —1) = qo, so qj, = qo(1 — 1/q). Then

_ _ 1-1 1
T < O i 92 v W

Hence, in view of (6.7)) we have
Hﬁne(n),t’

).

) < < tiVa1/w 419, HW“

(£2t)°
where
d0 = qo(1 = 1/q).
The second term in the square brackets on the r.h.s. of (6.38]) is bounded by
t

’ 1/ag
(0} / —
(érwnu%,m)ue( P oy dt) " = e,
where 1/A1 + 1/)\y = 1. Applying Lemmas and we get
_ 0 1/q4
T < sup 9,11 g (S 19I5 g o iy ) = 3,
where 2/p — 2/(A2q’) <

Hence 2/p — 260 < 1.
Using (6.35]) and applying the Holder inequality to the time integral yields

L o (Slw sty ) )
0

= (=002 +0(3 =2) 50 0 = 1/

JI < t(=1/9)(1=0)) 9

n,t’

‘ 1/(ghm2)
X (S [ t,||q0“2 )dt’) s,
0
where 1/p14+1/p9 = 1. Setting Op1q(, = g and gu2 = po we get 2 = po/qp,
6 =1/u1 =1—qy/po. But 0 satisfies 1/p — 0 < 1/2. Hence
(6.39) Hﬁng(u(n),t/)”L L) S t(%*”/’”OAHﬁnHW2»1 (02t)
9 ,4q q/7q6

under the restrictions

(6.40) 1/p+aqy/po <3/2, qy/po<1, 1/p—1/2<1/q.
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The third term in the square brackets in ([6.38)) is bounded by (see Lemmas

E7and B3

, 1/qp
ndnom,wwﬁ(H%HngW>

) 1/q5
(S HUTZ t/Hw2 (Q ||Un t/ qO(l )dt> 0 = J37

where § = 1/p' +1/2—1/¢' and 0 < 0 < 1. Continuing, we have
18 e 4
Jy < esup Ul g <HMWH o) =

Using the formula
t

(6.41) lﬁht::SUﬁ¢%/dﬂ
0

and setting ¢(# < p{, we obtain

Ji< Ct(l—l/p&)(l—e)HUn’t,HWQ,1 (@)
?’.pj

where

11 1
(6.42) %<,+2—>_m

p q

The last two terms in the square brackets on the r.h.s. of (6.38) can be
estimated in the same way. Therefore, it remains to examine the last but
one term:

le(Un,t)e (U(n )HL/ ,(m)

1/q
(XH( Va2 ol oyat') ™ = i,

where 1/A\; +1/X2 = 1. By Lemmas and |3.3| we have

0 1-6 1/q5
h34Www% Unit I (o My 10y ) = T4,

ol

Where/\Zq 1—(1—9),+9(——2)s09:%+ 0<6<1and

2 6.41|) we have

D >\2f1
1 (1=1/p5)(1=0)| 111 1-6
< 0
J4 >~ Ct H n,t/t/‘|Lp,7p6(Qt)

>\1Q”

fq q AL = J2
(10 e ) ™ = 7
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Applying the Holder inequality to the time integral yields

)1/(116/“)

t
0 !
T2 < VRO 10 . )(SHUn,vva%fl(}n d’
0 P

‘ e g\ _
% (Vo150 22') = J3,
0

where 1/p1 + 1/p2 = 1. Setting fgip1 < py and gyue < po we obtain

J3 < A0 =0y, L

2,1 ,
b0
where
1 1 1
(6.43) qo( +—,> <1.
pO p P g
the restrictions (6.36)), (6.38), (6.40)), (6.42)), (6.43) are satisfied if
/ /
l,_l, 1) qf(/]gla 1 1) QOSL
g vl 2 py p 2 po

46 = qo — 1 < po. Hence the lemma is proved. =
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THEOREM 6.3 (local existence). Let the assumptions of Lemma hold.
Then for a sufficiently small time T' there exists a solution to problem (|1.1)—

(1.6) such that there exists a constant A depending on D and T and
X(t) = Hu,t’HW;}}O(m) + HHHW(IQ,*;O(QQ < A

forallt <T.

7. Proof of the Main Theorem. To prove global existence of solutions
to problem f we need the existence of local solutions showed in
Section [0] and the global a priori estimates stated in Section 5] Then global
existence is proved step by step in time. In Section [ we proved local existence

of solutions such that

uy € W2l (QT) 0 c W2l (0",

p,po 4,90

7.1 11
1) 4+ =<1, —+—<17 9 > 2.
P Do q

To prove (7.1) we need the following regularity of data:

bE Lyp(27),  wo € WHQ), w € BI2M(9),

(7.2) -
0y € Bqug/qom), g € Lyg(2Y).
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To show global estimates in Section [5| we need (see Lemmas
Corollary

(7.3)

g€ L1(0,T; Loo(£2)) N Lo(0,T; Ly(£2)), b e Ly(2Y),
u € BYY(92), ug e W(R2), 6,€CR), a>0, 6>6,>0.

In view of the imbedding

2 2
100l ca(ay < CHGOHBZ(?/%(Q)? PRI 1,

we see that (7.2) and (7.3) are compatible if

g€ Lya(27)NL1(0,T; Loo(2)).

This concludes the proof.
Uniqueness can be proved in the standard way.
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