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Small Valdivia compacta and trees

by

Claudia Correa and Daniel V. Tausk (São Paulo)

Abstract. We present a characterization of Valdivia compact spaces of small weight
in terms of path spaces of trees and we use it to obtain (under ♦) a counterexample to a
conjecture related to an open problem concerning twisted sums of C(K) spaces.

1. Introduction. The purpose of this article is twofold: first, we use
the description given by Kubís and Michalewski [11] of the class of small
Valdivia compacta involving inverse limits of compact metric spaces to ob-
tain a new characterization of this class in terms of path spaces of certain
types of trees, endowed with appropriate compatible topologies. This char-
acterization allows one to fine-tune the structure of a Valdivia compactum
by manipulating the properties of the corresponding tree. We then use this
technique to construct, under ♦, a counterexample to the following conjec-
ture stated in [6, Section 4].

Conjecture. If K is a nonempty Valdivia compact space satisfying the
countable chain condition (ccc), then either K has a Gδ point, or K admits
a nontrivial convergent sequence in the complement of a dense Σ-subset.

Recall that a compact Hausdorff space K is called a Valdivia compactum
if it admits a dense Σ-subset, i.e., a subset of K of the form ϕ−1[Σ(Γ )],
where ϕ : K → RΓ is a continuous injection and Σ(Γ ) denotes the set of
points x ∈ RΓ such that {γ ∈ Γ : xγ 6= 0} is countable; here Γ is an arbitrary
index set and RΓ is endowed with the product topology. We call a Valdivia
compactum small if its weight is not greater than ω1. Valdivia compact
spaces constitute a large superclass of Corson compact spaces, closed under
arbitrary products, and they were introduced by Argyros, Mercourakis, and
Negrepontis [2]. This class and its relation to the theory of Banach spaces
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have since then been studied by several authors [1, 7, 8, 10, 11, 13, 14] (see
[9] for a survey).

We observe that finding examples of nonempty Valdivia compact spaces
with no Gδ points and no nontrivial convergent sequences in the complement
of a dense Σ-subset is not a trivial task, since the absence of Gδ points tends
to make the complement of dense Σ-subsets “large” (see, for instance, [9,
Theorem 3.3] for a more precise statement). In [6, Proposition 4.7], it was
shown that the path space of a certain tree T , endowed with the product
topology of 2T , provides such an example. However, using this topology it
is not possible to have a nonempty path space with no Gδ points and ccc.

The techniques presented in this article allow us to handle more compli-
cated topologies on path spaces, and after a technically elaborate construc-
tion a counterexample to the Conjecture is obtained under ♦. Recall that ♦
is a combinatorial principle stronger than the continuum hypothesis (CH)
and consistent with ZFC (see [12]).

As shown in [6], the Conjecture implies, under CH, that for every non-
metrizable Valdivia compact space K there exists a nontrivial twisted sum
of c0 and C(K), i.e., a Banach space X containing a noncomplemented iso-
morphic copy Y of c0 such that X/Y is isomorphic to C(K). As usual, C(K)
denotes the Banach space of continuous real-valued functions on K endowed
with the supremum norm. The existence of a nontrivial twisted sum of c0
and C(K), for every nonmetrizable compact Hausdorff space K, is an open
problem discussed in many articles [3, 4, 5]. This problem remains open
even in the context of Valdivia compact spaces [5] and was only recently
settled, under CH, for Corson compacta [6, Theorem 3.1]. In fact, a non-
trivial twisted sum of c0 and C(K) for every nonmetrizable Corson compact
space K is known to exist also under Martin’s Axiom [6, Remark 3.5], but
it is not known whether this can be proven in ZFC.

Even though the Conjecture turned out to be false (under ♦), a deeper
understanding of the class of counterexamples to the Conjecture should
shed light upon the problem of existence of nontrivial twisted sums of c0
and C(K) for K a nonmetrizable Valdivia compact space. The authors do
not know whether such a nontrivial twisted sum exists if K is the counterex-
ample to the Conjecture constructed in this article. We note, in addition,
that to prove the existence of a nontrivial twisted sum of c0 and C(K)
for an arbitrary nonmetrizable Valdivia compact space K, one can restrict
attention to the case when K is small, since every nonmetrizable Valdivia
compact space contains a nonmetrizable small Valdivia subspace as a retract
[2, Lemma 1.3].

Here is an overview of this article. In Section 2, we review the relevant
material concerning inverse limits and we recall the characterization of small
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Valdivia compacta from [11]. In Section 3, we develop the theory relating
inverse limits to trees endowed with some additional structure and we study
the relevant topologies on the path space. Finally, Section 4 is devoted to
the construction of the counterexample to the Conjecture.

2. Inverse limits and Valdivia compacta. Throughout the article,
we denote by |X | the cardinality of a set X , by w(X ) the weight of a topo-
logical space X and by S the class of all successor ordinals. We start by
recalling some standard definitions and facts concerning inverse limits.

Definition 2.1. Let (I,≤) be a partially ordered directed set. An in-
verse system of sets K = ((Ki)i∈I , (rij)i≤j∈I) indexed by I consists of a
family (Ki)i∈I of sets and a family (rij : Kj → Ki)i≤j∈I of maps such that
rii is the identity of Ki for all i ∈ I, and rij ◦ rjk = rik for all i, j, k ∈ I
with i ≤ j ≤ k. We call

(
K, (ri)i∈I

)
a cone over K if K is a set and

(ri : K → Ki)i∈I is a family of maps with rij ◦ rj = ri for all i, j ∈ I with
i ≤ j. An inverse limit of K is a cone

(
K, (ri)i∈I

)
over K such that, for every

cone (K ′, (r′i)i∈I) over K, there exists a unique map f : K ′ → K such that
ri ◦ f = r′i for all i ∈ I.

A concrete description of an inverse limit of K is obtained by considering
the set

(1)
{

(xi)i∈I ∈
∏
i∈I

Ki : rij(xj) = xi for all i, j ∈ I with i ≤ j
}

together with the restrictions of the projections. Note that (K, (ri)i∈I) is
a cone over K if and only if the image of the map (ri)i∈I : K →

∏
i∈I Ki

is contained in (1), and that (K, (ri)i∈I) is an inverse limit of K if and
only if the map (ri)i∈I is a bijection between K and (1). When the sets
Ki are endowed with compact Hausdorff topologies such that the maps rij
are continuous, we call K an inverse system of compact Hausdorff spaces.
Cones and inverse limits are then defined by replacing “set” with “com-
pact Hausdorff space” and “map” with “continuous map” in Definition 2.1.
In this context, the set (1) should be endowed with the product topol-
ogy.

The following simple results give information on the closed Gδ subsets
of an inverse limit.

Lemma 2.2. Let K = ((Ki)i∈I , (rij)i≤j∈I) be an inverse system of com-
pact Hausdorff spaces and (K, (ri)i∈I) be an inverse limit of K. Given a
closed subset F of K and an open subset U of K containing F , there ex-
ists i ∈ I with r−1i [ri[F ]] ⊂ U . In particular, if every countable subset of I
is bounded and F is a closed Gδ subset of K, then there exists i ∈ I with
F = r−1i [ri[F ]].
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Proof. Note that {(x, y) ∈ K ×K : ri(x) = ri(y)}, i ∈ I, is a downward
directed family of closed subsets of the compact space K ×K whose inter-
section is the diagonal. This intersection is contained in the complement of
the closed set F × (K \ U), and therefore {(x, y) ∈ K ×K : ri(x) = ri(y)}
is contained in the complement of F × (K \ U) for some i ∈ I.

Corollary 2.3. Let K = ((Ki)i∈I , (rij)i≤j∈I) be an inverse system
of compact metric spaces and assume that every countable subset of I is
bounded. If (K, (ri)i∈I) is an inverse limit of K, then the set

{r−1i [F ] : i ∈ I, F closed in Ki}
coincides with the collection of closed Gδ subsets of K. In particular, K has
a Gδ point if and only if there exist i ∈ I and x ∈ Ki with |r−1i (x)| = 1.

Definition 2.4. Let K = ((Ki)i∈I , (rij)i≤j∈I) be an inverse system of
sets (resp., of compact Hausdorff spaces). A right inverse of K is a family
of maps (resp., of continuous maps) (σij : Ki → Kj)i≤j∈I such that σij is a
right inverse of rij and σjk ◦ σij = σik for all i, j, k ∈ I with i ≤ j ≤ k.

If (σij)i≤j∈I is a right inverse of K and (K, (ri)i∈I) is an inverse limit
of K, then there exists a unique family (σi : Ki → K)i∈I of maps such that
σi is a right inverse of ri and σj ◦ σij = σi for all i, j ∈ I with i ≤ j; these
maps are automatically continuous if K is an inverse system of compact
Hausdorff spaces [11, Lemma 3.1]. We call the maps σi induced by the right
inverse (σij)i≤j∈I , and they will always be denoted by σi whenever (σij)i≤j∈I
denotes a right inverse of an inverse system. Note that, for i, j ∈ I, we have
rj ◦ σi = σij if i ≤ j, and rj ◦ σi = rji if j ≤ i.

Definition 2.5. An inverse system K = ((Kα)α∈θ, (rαβ)α≤β∈θ) whose
index set θ is a nonzero ordinal (endowed with the natural order) is called
an inverse θ-sequence or, more simply, an inverse sequence. It is called con-
tinuous if, for every limit ordinal α ∈ θ, (Kα, (rβα)β∈α) is an inverse limit
of ((Kβ)β∈α, (rβγ)β≤γ∈α).

The next lemma gives a useful description of the image of the maps σα
induced by a right inverse of a continuous inverse sequence.

Lemma 2.6. If K = ((Kα)α∈θ, (rαβ)α≤β∈θ) is a continuous inverse se-
quence with a right inverse (σαβ)α≤β∈θ, and (K, (rα)α∈θ) is an inverse limit
of K, then for all α ∈ θ, the image of σα is equal to

(2) {x ∈ K : rβ+1(x) ∈ σβ,β+1[Kβ] for all β ≥ α with β + 1 < θ}.
Proof. Obviously σα[Kα] is contained in (2). To prove equality, take x

in (2) and show by induction on β that rβ((σα ◦ rα)(x)) = rβ(x) for all
β ≥ α. Since the maps rβ, β ≥ α, separate the points of K, it follows that
(σα ◦ rα)(x) = x.
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A collectionD of nonempty open subsets of a topological space X is called
dense in the topology of X if every nonempty open subset of X contains an
element of D. Obviously, if D is dense, then X has ccc if and only if every
family of pairwise disjoint elements of D is countable. We are interested in
determining conditions under which an inverse limit has ccc, and to this end
we describe in the next lemma a convenient dense subset of its topology.

Lemma 2.7. Let K = ((Kα)α∈θ, (rαβ)α≤β∈θ) be a continuous inverse
sequence of compact Hausdorff spaces with a right inverse (σαβ)α≤β∈θ and
let (K, (rα)α∈θ) be an inverse limit of K. Consider the collection D of open
subsets of K of the form r−1α+1[U ] with U a nonempty open subset of Kα+1 \
σα,α+1[Kα] and α + 1 < θ. If

⋃
α∈θ σα[Kα] has empty interior in K, then

D is dense in the topology of K.

Proof. Let V be a nonempty open subset of K and pick x ∈ V not in⋃
α∈θ σα[Kα]. By Lemma 2.2 there exists β ∈ θ with r−1β (rβ(x)) ⊂ V , and by

Lemma 2.6 there exists α ≥ β with α+1 < θ and rα+1(x) not in σα,α+1[Kα].
Then r−1α+1(rα+1(x)) ⊂ r−1β (rβ(x)) ⊂ V , and setting

U = Kα+1 \ (rα+1[K \ V ] ∪ σα,α+1[Kα])

we find that rα+1(x) ∈ U and r−1α+1[U ] ⊂ V .

Corollary 2.8. Let K = ((Kα)α∈ω1 , (rαβ)α≤β∈ω1) be a continuous in-
verse sequence of compact metric spaces with a right inverse (σαβ)α≤β∈ω1

and let (K, (rα)α∈ω1) be an inverse limit of K. Assume that
⋃
α∈ω1

σα[Kα]
has empty interior in K. Then K does not have ccc if and only if there
exist an uncountable subset Λ of ω1 and a family (Uα)α∈Λ with each Uα
a nonempty open subset of Kα+1 \ σα,α+1[Kα] such that the sets r−1α+1[Uα],
α ∈ Λ, are pairwise disjoint.

Proof. Follows directly from the lemma, if we keep in mind that the
spaces Kα have ccc.

We recall the following characterization of small Valdivia compacta in
terms of inverse limits.

Theorem 2.9. Let K be a Valdivia compact space with w(K) ≤ ω1

and let S be a dense Σ-subset of K. Then there exist a continuous inverse
sequence K = ((Kα)α∈ω1 , (rαβ)α≤β∈ω1) of compact metric spaces with a right
inverse (σαβ)α≤β∈ω1 and a family (rα : K → Kα)α∈ω1 of continuous maps
such that (K, (rα)α∈ω1) is an inverse limit of K and

(3) S =
⋃
α∈ω1

σα[Kα].

Conversely, if (K, (rα)α∈ω1) is an inverse limit of a continuous inverse se-
quence K = ((Kα)α∈ω1 , (rαβ)α≤β∈ω1) of compact metric spaces with a right



122 C. Correa and D. V. Tausk

inverse (σαβ)α≤β∈ω1, then K is a Valdivia compact space with w(K) ≤ ω1

and (3) is a dense Σ-subset of K.

Proof. The first part of the statement follows from [2, Lemma 1.3], and
the fact that (3) is a dense Σ-subset of K follows from the proof of [11,
Theorem 4.2].

In view of Theorem 2.9, when a small Valdivia compact space K is rep-
resented as an inverse limit of a continuous ω1-sequence of compact metric
spaces with a right inverse, the assumption of Corollary 2.8 states that a
certain Σ-subset of K has empty interior. It turns out that this condition is
satisfied for a Valdivia compact space without Gδ points, as we now show.
Recall that a compact Hausdorff space is said to be Corson if it is a Σ-subset
of itself.

Lemma 2.10. If K is a Valdivia compact space without Gδ points, then
every Σ-subset of K has empty interior.

Proof. If S is a Σ-subset of K with nonempty interior, then S contains a
nonempty closed Gδ subset F of K. It follows that F is a nonempty Corson
compact space and therefore has a Gδ point [9, Theorem 3.3].

3. Inverse limits and trees. Recall that a tree is a partially ordered
set (T,≤) such that, for all t ∈ T , the set ]·, t[ = {s ∈ T : s < t} is
well-ordered. A subset X of T is called an initial part of T if ]·, t[ ⊂ X for
all t ∈ X; a chain if it is totally ordered; an antichain if any two distinct
elements of X are incomparable; a path if it is both a chain and an initial
part of T . We say that X ⊂ T satisfies the countable chain condition (ccc)
if every antichain contained in X is countable. We denote by P (T ) the set
of all paths of T and by P ∗(T ) the set of nonempty paths of T . We have a
canonical embedding p of (T,≤) into (P ∗(T ),⊂) defined by

p(t) = {s ∈ T : s ≤ t}
for all t ∈ T . Any subset of T endowed with the restriction of ≤ is itself
a tree and is called a subtree of T ; an initial part of T endowed with the
restriction of ≤ is called an initial subtree of T . If Z is an initial subtree
of T , then the paths of Z are precisely the paths of T that are contained
in Z. Given a path A ∈ P (T ), we set

NA = {t ∈ T : ]·, t[ = A}.
We now introduce the structure that makes the connection between trees

and inverse systems.

Definition 3.1. A graded tree (T, δ) consists of a tree T and a mapping
δ : T → S ∪ {0} such that δ(t) = 0 for every minimal element t of T , and
δ(t) < δ(s) for all t, s ∈ T with t < s. The map δ is called a grading function
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for T . For every ordinal α, we denote by Tα the initial subtree of T defined
as

Tα = {t ∈ T : δ(t) ≤ α},

and by ρα : P ∗(T )→ P ∗(Tα) the map given by ρα(A) = A ∩ Tα for all A ∈
P ∗(T ). By a compatible topology on P ∗(T ) we mean a compact Hausdorff
topology on P ∗(T ) such that the maps ρα : P ∗(T )→ P ∗(T ) are continuous
for every ordinal α. Given a nonzero ordinal θ, we say that the graded tree
(T, δ) is θ-graded if δ(t) < θ for all t ∈ T .

Note that if (T, δ) is a graded tree, then

(4) P ∗(T0) = p[δ−1(0)]

and, for every ordinal λ,

(5) P ∗(Tλ+1) = P ∗(Tλ) ·∪ p[δ−1(λ+ 1)],

with the union in (5) being disjoint.

A θ-graded tree (T, δ) is associated in a natural way with a continuous
inverse θ-sequence of sets Kθ(T, δ) with a right inverse (Proposition 3.2);
moreover, a compatible topology on P ∗(T ) makes Kθ(T, δ) an inverse se-
quence of compact Hausdorff spaces. It turns out (Proposition 3.3) that every
continuous inverse θ-sequence with a right inverse is of the form Kθ(T, δ),
up to isomorphism.

Proposition 3.2. Let (T, δ) be a θ-graded tree and let

Kθ(T, δ) =
(
(P ∗(Tα))α∈θ, (ραβ)α≤β∈θ

)
,

where ραβ = ρα|P ∗(Tβ) : P ∗(Tβ)→ P ∗(Tα). Then:

(a) Kθ(T, δ) is a continuous inverse sequence of sets;
(b) (P ∗(T ), (ρα)α∈θ) is an inverse limit of Kθ(T, δ);
(c) the inclusion maps P ∗(Tα)→ P ∗(Tβ), α ≤ β ∈ θ, constitute a right

inverse of Kθ(T, δ) and the induced maps P ∗(Tα) → P ∗(T ) are in-
clusion maps as well.

Moreover, if P ∗(T ) is endowed with a compatible topology and each P ∗(Tα)
has the subspace topology, then (a)–(c) hold when “set” is replaced with
“compact Hausdorff space”.

Proof. The proof of (a)–(c) is straightforward. For the last statement,
note that P ∗(Tα) is closed in P ∗(T ), being the set of fixed points of the
continuous map ρα.

Proposition 3.3. If K = ((Kα)α∈θ, (rαβ)α≤β∈θ) is a continuous inverse
sequence of sets and (σαβ)α≤β∈θ is a right inverse of K, then there exist a
θ-graded tree (T, δ) and a family of bijections ϕα : Kα → P ∗(Tα) such that,
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for all α, β ∈ θ with α ≤ β, the diagrams

(6)

Kβ

ϕβ //

rαβ

��

P ∗(Tβ)

ραβ

��
Kα

ϕα // P ∗(Tα)

Kβ

ϕβ // P ∗(Tβ)

Kα
ϕα //

σαβ

OO

P ∗(Tα)

inclusion

OO

commute. In particular, if (K, (rα)α∈θ) is an inverse limit of K, then there
exists a bijection ϕ : K → P ∗(T ) such that the diagrams

K
ϕ //

rα

��

P ∗(T )

ρα

��
Kα

ϕα // P ∗(Tα)

K
ϕ // P ∗(T )

Kα
ϕα //

σα

OO

P ∗(Tα)

inclusion

OO

commute, for all α ∈ θ. Moreover, if K is a continuous inverse sequence of
compact Hausdorff spaces, then the topology on P ∗(T ) that makes ϕ a hom-
eomorphism is a compatible topology, and each map ϕα is a homeomorphism
if P ∗(Tα) is endowed with the subspace topology.

Proof. Consider the set T =
⋃
α∈θ(Kα × {α}) endowed with the partial

order defined by

(x, α) ≤ (y, β) ⇔ α ≤ β and rαβ(y) = x.

For every t ∈ T , the projection π2 : T → θ restricts to an order isomorphism
between ]·, t[ and a subset of θ, so that T is a tree. Let T be the subtree
of T defined by

T = (K0×{0})∪
⋃
{(Kα+1 \σα,α+1[Kα])×{α+ 1} : α ∈ θ with α+ 1 ∈ θ}

and let δ : T → S ∪ {0} be the θ-grading function given by the restriction
of π2. For each α ∈ θ, define ϕα : Kα → P ∗(Tα) by setting

ϕα(x) = {(z, γ) ∈ T : (z, γ) ≤ (x, α)}

for all x ∈ Kα. It is clear that the left diagram in (6) commutes. To see that
the right diagram commutes, pick x ∈ Kα and observe that no t ∈ T with
(x, α) < t ≤ (σαβ(x), β) is in T : if it were, it would be of the form (z, γ + 1)
with α ≤ γ < β and

z = rγ+1,β(σαβ(x)) = σα,γ+1(x) = σγ,γ+1(σαγ(x)),

which contradicts z 6∈ σγ,γ+1[Kγ ]. The fact that the maps ϕα are bijec-
tive is proven by induction on α using the commutativity of the diagrams
in (6), keeping in mind (5) and the continuity of the inverse sequences K and
Kθ(T, δ). The proof of the remaining parts of the proposition is straightfor-
ward.
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Using the relation between graded trees and continuous inverse sequences
with a right inverse presented above, we now obtain a characterization of
small Valdivia compacta in terms of graded trees.

Theorem 3.4. Let K be a Valdivia compact space with w(K) ≤ ω1 and
let S be a dense Σ-subset of K. Then there exist an ω1-graded tree (T, δ),
a compatible topology on P ∗(T ) such that P ∗(Tα) is metrizable for all α ∈ ω1,
and a homeomorphism between K and P ∗(T ) that carries S to the set

(7)
⋃
α∈ω1

P ∗(Tα) = {A ∈ P ∗(T ) : |A| ≤ ω}.

Conversely, given an ω1-graded tree (T, δ) and a compatible topology on
P ∗(T ) such that P ∗(Tα) is metrizable for all α ∈ ω1, then K = P ∗(T ) is
a Valdivia compact space with w(K) ≤ ω1 and (7) is a dense Σ-subset of K.

Proof. Follows from Theorem 2.9 using Propositions 3.2 and 3.3.

Let (T, δ) be a graded tree and let P ∗(T ) be endowed with a compatible
topology. It follows from (5) that, for every α ∈ S, the set p[δ−1(α)] is open
in P ∗(Tα). Thus, the topology on δ−1(α) induced by p is locally compact
Hausdorff and, by (4), the topology on δ−1(0) induced by p is compact Haus-
dorff. Our goal is to construct a compatible topology on P ∗(T ) from given
locally compact Hausdorff topologies on the sets δ−1(α) satisfying certain
compatibility conditions. To this end, we make the following definition.

Definition 3.5. Let (T, δ) be a graded tree. For each α ∈ S ∪ {0}, we
denote by gα : P ∗(T )→ δ−1(α) ·∪{∞} the map defined by gα(A) = t if t is the
(automatically unique) element of A∩ δ−1(α), and gα(A) =∞ if A∩ δ−1(α)
is empty; here∞ denotes any point not in δ−1(α). Given α, β ∈ S∪{0} with
α ≤ β, we set gαβ = gα ◦ p|δ−1(β) : δ−1(β)→ δ−1(α) ·∪ {∞}. We call gαβ the
connecting maps of the graded tree (T, δ).

When a locally compact Hausdorff topology is given on a set X , we
always endow the disjoint union X ·∪{∞} with the unique compact Hausdorff
topology that induces the given topology on X , i.e., X ·∪{∞} is the one-point
compactification of X if X is not compact, and the point ∞ is isolated in
X ·∪ {∞} otherwise.

Proposition 3.6. Let (T, δ) be a graded tree. If P ∗(T ) is endowed with
a compatible topology and the sets δ−1(α), α ∈ S∪{0}, are endowed with the
topologies induced by p, then the maps gα and the connecting maps gαβ are
continuous for all α, β ∈ S∪{0} with α ≤ β; moreover, the topology of P ∗(T )
coincides with the topology induced by the maps gα, α ∈ S∪{0}. Conversely,
let the set δ−1(α) be endowed with a locally compact Hausdorff topology τα for
each α ∈ S, and let δ−1(0) be endowed with a compact Hausdorff topology τ0.
If the connecting maps of (T, δ) are continuous, then there exists a unique
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compatible topology on P ∗(T ) such that τα is equal to the topology on δ−1(α)
induced by p for all α ∈ S ∪ {0}.

Proof. Let P ∗(T ) be endowed with a compatible topology and let each
set δ−1(α) be endowed with the topology induced by p. To see that gα is
continuous, note that gα = q ◦ ρα, where q : P ∗(Tα) → δ−1(α) ·∪ {∞} is
defined by q(A) = p−1(A) for A ∈ p[δ−1(α)], and q(A) =∞ otherwise. The
continuity of the connecting maps then follows. The fact that the topology
of P ∗(T ) is induced by the maps gα is a consequence of the observation that
the map

(8) (gα)α∈δ[T ] : P ∗(T )→
∏

α∈δ[T ]

(δ−1(α) ·∪ {∞})

is continuous and injective. To prove the converse, let P ∗(T ) be endowed
with the topology induced by (8) and let us show that this topology satisfies
the required properties. It is easy to see that the image of (8) is

F =
{

(tα)α∈δ[T ] ∈
∏

α∈δ[T ]

(δ−1(α) ·∪ {∞}) : t0 6=∞ and, for all α, β ∈ δ[T ]

with α ≤ β, if tβ 6=∞, then gαβ(tβ) = tα

}
and that the continuity of the connecting maps implies that F is closed;
hence P ∗(T ) is compact. The continuity of ρα follows from the fact that
gβ ◦ ρα = gβ, for β ≤ α, and gβ ◦ ρα ≡ ∞, for β > α. Finally, the topology
induced on δ−1(α) by p is equal to the topology induced by the maps gβα,
with β ∈ δ[T ] and β ≤ α. That this topology is equal to τα follows from the
continuity of the connecting maps and from the fact that gαα is the inclusion
of δ−1(α) in δ−1(α) ·∪ {∞}.

Corollary 3.7. Let (T, δ) be a θ-graded tree, P ∗(T ) be endowed with a
compatible topology and the sets δ−1(α) be endowed with the topology induced
by p. Then

w(P ∗(T )) ≤ max
{
|θ|, sup

α∈θ
w(δ−1(α))

}
.

In particular, if δ−1(α) is second countable for all α ∈ ω1, then P ∗(Tα) is
second countable for all α ∈ ω1.

4. The counterexample to the Conjecture. Combining Theorem 3.4
with Proposition 3.6 and Corollary 3.7, we obtain the following strategy for
constructing a small Valdivia compact space: Take an ω1-graded tree (T, δ)
and locally compact Hausdorff second countable topologies on the sets δ−1(α)
such that δ−1(0) is compact and the connecting maps of (T, δ) are continuous.
Then combine the topologies into a compatible topology on P ∗(T ), which
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is a small Valdivia compact space. Moreover, every small Valdivia compact
space is of this form.

The purpose of this section is to use this strategy to prove the following
result.

Theorem 4.1. Assume ♦. There exists a Valdivia compact space K such
that:

(a) w(K) = ω1;
(b) K has ccc;
(c) K has no Gδ points;
(d) K does not have a nontrivial convergent sequence in the complement

of a dense Σ-subset.

Remark 4.2. We observe that property (d) in the statement of Theo-
rem 4.1 is independent of the choice of the dense Σ-subset: more precisely, if
K is a Valdivia compact space and if K \S contains a nontrivial convergent
sequence for some dense Σ-subset S of K, then K \ S contains a nontrivial
convergent sequence for any dense Σ-subset S of K (see [6, Remark 4.5]).

We start by investigating conditions on the ω1-graded tree (T, δ) and
on the topologies of the sets δ−1(α) that imply conditions (a)–(d) of Theo-
rem 4.1.

Lemma 4.3. Let (T, δ) be an ω1-graded tree and let P ∗(T ) be endowed
with a compatible topology such that P ∗(Tα) is metrizable for all α ∈ ω1.
Then P ∗(T ) has no Gδ points if and only if δ[NA] is uncountable for every
countable path A ∈ P ∗(T ).

Proof. Follows from Corollary 2.3 and Proposition 3.2, if we keep in mind
that, for α ∈ ω1 and A ∈ P ∗(Tα), we have |ρ−1α (A)| = 1 if and only if δ[NA]
is contained in [0, α].

In what follows, whenever (T, δ) is a graded tree and P ∗(T ) is endowed
with a compatible topology, we will consider the sets δ−1(α) endowed with
the topology induced by p.

Lemma 4.4. Let (T, δ) be an ω1-graded tree and let P ∗(T ) be endowed
with a compatible topology such that P ∗(Tα) is metrizable for all α ∈ ω1.
Assume that (7) has empty interior in P ∗(T ). Then P ∗(T ) has ccc if and
only if for every antichain X ⊂ T the set

(9) {α ∈ S : X ∩ δ−1(α) has nonempty interior in δ−1(α)}
is countable.

Proof. By Corollary 2.8 and Proposition 3.2, P ∗(T ) does not have ccc if
and only if there exist an uncountable subset Λ of S∩ω1 and a family (Uα)α∈Λ
with each Uα a nonempty open subset of δ−1(α) such that the sets ρ−1α [p[Uα]],
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α ∈ Λ, are pairwise disjoint. The conclusion follows by observing that these
sets are pairwise disjoint if and only if X =

⋃
α∈Λ Uα is an antichain of T .

Corollary 4.5. Let (T, δ) be an ω1-graded tree and let P ∗(T ) be en-
dowed with a compatible topology such that P ∗(Tα) is metrizable for all
α ∈ ω1. Assume that (7) has empty interior in P ∗(T ). Set

(10) Z = {t ∈ T : t is an isolated point of δ−1(δ(t))}.
If Z ∩ δ−1(α) is dense in δ−1(α) for all α ∈ S ∪ {0}, then P ∗(T ) has ccc if
and only if Z has ccc.

Proof. Note that the set (9) is equal to δ[X∩Z]\{0} and that Z∩δ−1(α)
is countable for all α.

Lemma 4.6. Let (T, δ) be an ω1-graded tree and let P ∗(T ) be endowed
with a compatible topology such that P ∗(Tα) is metrizable for all α ∈ ω1.
Assume that δ−1(α) has at most one nonisolated point for all α ∈ S ∪ {0},
and that the set Z defined in (10) is an initial part of T . If P ∗(T ) has a
nontrivial convergent sequence outside a dense Σ-subset, then Z contains
an uncountable path.

Proof. By Remark 4.2, we can assume that the complement of (7) has
a nontrivial convergent sequence. Let then A ∈ P ∗(T ) be an uncountable
path which is the limit of a sequence (An)n∈ω in P ∗(T )\{A} and let α0 ∈ ω1

be such that ρα0(An) 6= ρα0(A) for all n ∈ ω. We claim that, for α ∈ δ[A]
with α ≥ α0, there exists n(α) ∈ ω such that An ∩ Z ∩ δ−1(α) 6= ∅ for
all n ≥ n(α). Namely, for such α we have gα(A) 6= ∞, so that, by the
continuity of gα, there exists n(α) ∈ ω with gα(An) 6= ∞ for all n ≥ n(α).
Since gα(An) 6= gα(A) for all n, we see that gα(A) is not isolated in δ−1(α),
and thus gα(An) ∈ Z ∩ δ−1(α) for all n ≥ n(α). This proves the claim. To
conclude the proof, pick n ∈ ω such that n = n(α) for uncountably many
α ∈ δ[A] \ α0 and note that An is an uncountable path contained in Z.

A tree T is called ever-branching if, for every t ∈ T , the set

{s ∈ T : s > t}
is not a chain. We recall (see [12, Lemma 7.4]) that if T is an ever-branching
tree with ccc such that ]·, t[ is countable for all t ∈ T , then every path of T
is countable.

Lemma 4.7. Let (T, δ) be a nonempty ω1-graded tree and let P ∗(T ) be
endowed with a compatible topology such that P ∗(Tα) is metrizable for all
α ∈ ω1. Assume that:

(i) NA is uncountable for every countable path A ∈ P ∗(T );
(ii) δ−1(α) has at most one nonisolated point for all α ∈ S ∪ {0};
(iii) the set Z defined in (10) is an initial part of T with ccc.
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Then K = P ∗(T ) is a Valdivia compact space satisfying conditions (a)–(d)
in Theorem 4.1.

Proof. By Theorem 3.4, K is a Valdivia compact space, (7) is a dense
Σ-subset of K and w(K) ≤ ω1. Since δ−1(α) is countable for all α ∈ S∪{0},
we find that δ[NA] is uncountable for every countable path A ∈ P ∗(T ), so
Lemma 4.3 implies that K has no Gδ points. It then follows from Lem-
ma 2.10 that (7) has empty interior, and from Corollary 4.5 that K has ccc.
By Lemma 4.6, to conclude the proof, it suffices to show that Z does not
contain an uncountable path. To this end, we show that Z must be ever-
branching. Let z ∈ Z and note that, since Np(z) is an uncountable antichain,
there exists t ∈ T \Z with t ∈ Np(z). Setting α = δ(z) and β = δ(t), we have

gαβ(t) = z. Since z is isolated in δ−1(α) and t is not isolated in δ−1(β), it
follows from the continuity of gαβ that g−1αβ (z) is infinite; moreover, by (ii),

g−1αβ (z) \ {t} is contained in Z. Hence, g−1αβ (z) \ {t} is an infinite antichain
in Z consisting of elements greater than z.

Our goal now is to construct an ω1-graded tree (T, δ) and a compatible
topology on P ∗(T ) such that the assumptions of Lemma 4.7 hold. Observe
that the initial subtree Z of T will be a Suslin tree, i.e., |Z| = ω1, every
path of Z is countable and Z has ccc. Our construction is similar to the
standard construction of a Suslin tree using ♦ (see [12, Theorem 7.8]), but
technically much more involved, since we have to ensure the continuity of
the connecting maps. The first step is to develop the technique that will be
later used to prove that Z has ccc. The construction itself is the content of
Subsection 4.1.

Definition 4.8. Let (T, δ) be a graded tree. An antichain X of T is said
to be special in T if, given a finite subset F of S∪{0} and an element t ∈ T
with p(t) ∩X = ∅, there exists s ∈ X with s > t such that δ

[
]t, s]

]
∩F = ∅,

where ]t, s] = {u ∈ T : t < u ≤ s}.
Obviously a special antichain is also a maximal antichain.

Lemma 4.9. Let (T, δ) be an ω1-graded tree and let X be a special an-
tichain in T . If Tα is countable for all α ∈ ω1, then the set

(11) {α ∈ ω1 : X ∩ Tα is a special antichain in Tα}
is closed and unbounded (club).

Proof. The above set is clearly closed. To see that it is unbounded note
that, given α ∈ ω1, the fact that Tα is countable implies that there exists
f(α) in ω1 with f(α) > α having the following property: for every t ∈ Tα
with p(t)∩X = ∅ and every finite subset F of [0, α], there exists s ∈ X∩Tf(α)
with s > t and δ

[
]t, s]

]
∩F = ∅. Hence, denoting by fn the nth iterate of f ,

we conclude that supn∈ω f
n(α) is in (11) for all α ∈ ω1.
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Given a set Γ with |Γ | = ω1, by a continuous filtration of Γ by countable
sets we mean an increasing family (Γα)α∈ω1 of countable subsets of Γ such
that Γ =

⋃
α∈ω1

Γα and Γα =
⋃
β∈α Γβ for every limit ordinal α ∈ ω1.

A ♦-sequence for this filtration is a family (Γ♦α )α∈ω1 such that each Γ♦α is a
subset ofΓα and, for anyX ⊂ Γ , the set {α ∈ ω1 : X∩Γα = Γ♦α } is stationary.
The combinatorial principle ♦ states that there exists a ♦-sequence for the
filtration ω1 =

⋃
α∈ω1

α. It is easy to prove that ♦ implies the existence
of a ♦-sequence for any continuous filtration Γ =

⋃
α∈ω1

Γα by countable
sets.

Corollary 4.10. Let (T, δ) be an ω1-graded tree such that Tα is count-
able for all α ∈ ω1. Let (T♦α )α∈ω1 be a ♦-sequence for the continuous filtra-
tion T =

⋃
α∈ω1

Tα. Assume that:

(i) for all α ∈ ω1, if T♦α is a special antichain in Tα, then p(t) intersects
T♦α for every t ∈ T \ Tα;

(ii) every maximal antichain in T is special in T .

Then T has ccc.

Proof. Given a maximal antichain X in T , from (ii) and Lemma 4.9 we
get α ∈ ω1 such that X ∩ Tα is a special antichain in Tα and X ∩ Tα = T♦α .
It then follows from (i) that X ⊂ Tα.

4.1. Construction of the graded tree. Throughout this subsection,
T and Z are defined by

T = [0, ω]× [(S ∪ {0}) ∩ ω1], Z = ω × [(S ∪ {0}) ∩ ω1],

and δ : T → S ∪ {0} denotes the projection onto the second coordinate.
As usual, we write Tα = δ−1

[
[0, α]

]
and Zα = Z ∩ Tα. Moreover, for α in

(S∪{0})∩ω1, we endow δ−1(α) = [0, ω]×{α} with the topology that makes
the projection onto the first coordinate a homeomorphism, where [0, ω] has
the order topology. Clearly, equality (10) holds. The hard part will be the
construction of the partial order of T .

Definition 4.11. Let (Z♦α )α∈ω1 be a ♦-sequence for the continuous fil-
tration Z =

⋃
α∈ω1

Zα. Given α ∈ [0, ω1], we say that a partial order ≤ in
Tα is admissible (with respect to the given ♦-sequence) if it satisfies the
following properties:

(1) (Tα,≤) is a tree, δ|Tα is a grading function and the connecting maps
of (Tα, δ|Tα) are continuous;

(2) Zα is an initial part of (Tα,≤);
(3) for all β < α, if Z♦β is a special antichain in (Zβ, δ|Zβ ), then p(z)

intersects Z♦β for every z ∈ Zα \ Zβ.
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Note that (1) and (2) imply that Tβ and Zβ are initial parts of (Tα,≤) for
all β ≤ α; in particular, (Tβ, δ|Tβ ) and (Zβ, δ|Zβ ) are graded trees (endowed
with the restriction of ≤).

In Corollary 4.13 below, we show that if T is endowed with an admissible
partial order satisfying a simple extra property, then the assumptions of
Lemma 4.7 are satisfied.

Lemma 4.12. Let ≤ be an admissible partial order in T and assume
that, for every z ∈ Z, the set Np(z) \Z is uncountable. Then every maximal
antichain in Z is special in Z.

Proof. Let X be a maximal antichain in Z and pick z ∈ Z with p(z)∩X
= ∅; write α = δ(z). If F is a finite subset of (S∪{0})∩ω1, then there exists
t ∈ Np(z) \ Z with δ(t) = β > supF . Since gαβ(t) = z and gγβ(t) = ∞ for
all γ ∈ ]α, β[∩ S, it follows from the continuity of the connecting maps that
there exists w ∈ Z ∩ δ−1(β) such that gαβ(w) = z and gγβ(w) = ∞, for all
γ ∈ F with γ > α. Note that w > z and δ

[
]z, w]

]
∩ F = ∅. To conclude

the proof, use the fact that X is a maximal antichain in Z to obtain v ∈ X
comparable with w and note that v > z and δ

[
]z, v]

]
∩ F = ∅.

Corollary 4.13. Let ≤ be an admissible partial order in T and assume
that, for every countable path A ∈ P ∗(T ), the set NA \ Z is uncountable.
If P ∗(T ) is endowed with the compatible topology given by Proposition 3.6,
then K = P ∗(T ) is a Valdivia compact space satisfying conditions (a)–(d)
in Theorem 4.1.

Proof. It follows from Corollary 4.10 that Z has ccc, and from Corol-
lary 3.7 that P ∗(Tα) is metrizable for all α ∈ ω1. The assumptions of
Lemma 4.7 are thus satisfied.

We are going to construct, by recursion, an admissible partial order in T
satisfying the assumption of Corollary 4.13. Note that, if α ∈ [0, ω1] is a
limit ordinal and, for each β < α, an admissible partial order ≤β is given
in Tβ such that (Tβ,≤β) is a subtree of (Tγ ,≤γ) for all β ≤ γ < α, then
≤α =

⋃
β<α≤β is an admissible partial order in Tα. For the recursion step,

we will use the lemma below.

Lemma 4.14. Given α ∈ ω1, an admissible partial order ≤ in Tα and a
path A ∈ P ∗(Tα), there exists an admissible partial order ≤′ in Tα+1 such
that (Tα,≤) is a subtree of (Tα+1,≤′) and A = {t ∈ Tα : t <′ (ω, α+ 1)}.

We postpone the proof of Lemma 4.14 for a moment to conclude the
proof of Theorem 4.1.

Corollary 4.15. There exists an admissible partial order ≤ in T such
that NA \ Z is uncountable for every countable path A ∈ P ∗(T ).
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Proof. Denote by ℘ω(T ) the collection of all countable subsets of T and
let ψ : ω1 → ℘ω(T ) be a map with ψ−1(A) uncountable for all A ∈ ℘ω(T ).
Using Lemma 4.14, construct by recursion a family (≤α)α∈ω1 with ≤α an
admissible partial order in Tα such that (Tα,≤α) is a subtree of (Tβ,≤β) for
α ≤ β ∈ ω1, and such that, for all α ∈ ω1,

{t ∈ Tα : t <α+1 (ω, α+ 1)} = A,

where A = ψ(α) if ψ(α) ∈ P ∗(Tα), and A = {(ω, 0)} otherwise. Finally, set
≤ =

⋃
α∈ω1

≤α.

Proof of Theorem 4.1. Follows directly from Corollaries 4.13 and 4.15.

We now turn to the proof of Lemma 4.14. In order to extend an admis-
sible partial order from Tα to Tα+1, we need to specify, for each n ∈ [0, ω],
a path An ∈ P ∗(Tα) which will be the set of predecessors of (n, α + 1). We
introduce the following definition.

Definition 4.16. Given α ∈ ω1, let ≤ be a partial order in Tα such
that (Tα,≤) is a tree and let (An)n∈[0,ω] be a sequence in P (Tα). We define
a partial order ≤′ in Tα+1 by requiring that, for all t, s ∈ Tα+1, we have
t <′ s if and only if one of the following conditions holds:

• t, s ∈ Tα and t < s;
• t ∈ An and s = (n, α+ 1) for some n ∈ [0, ω].

We call ≤′ the partial order in Tα+1 induced by the sequence (An)n∈[0,ω].

Lemma 4.17. Let α ∈ ω1 and fix a partial order ≤ in Tα such that
(Tα,≤) is a tree and δ|Tα is a grading function. Let (An)n∈[0,ω] be a sequence
in P ∗(Tα) and ≤′ be the partial order induced in Tα+1. Then:

(1) (Tα+1,≤′) is a tree, δ|Tα+1 is a grading function and (Tα,≤) is a
subtree of (Tα+1,≤′).

(2) If Zα is an initial part of (Tα,≤) and An is in P ∗(Zα) for all n ∈ ω,
then Zα+1 is an initial part of (Tα+1,≤′).

(3) Assume that the connecting maps of (Tα, δ|Tα) are continuous and
let β ≤ α in S ∪ {0} be such that the connecting map gβ,α+1 of
(Tα+1, δ|Tα+1) is continuous. If gβ,α+1(ω, α + 1) 6=∞, then the con-
necting map gγ,α+1 of (Tα+1, δ|Tα+1) is continuous for all γ ≤ β in
S ∪ {0}.

Proof. The proofs of (1) and (2) are straightforward, and to prove (3),
note that the equality gγ,α+1 = gγβ ◦ gβ,α+1 holds in the open subset

{t ∈ δ−1(α+ 1) : gβ,α+1(t) 6=∞}
of δ−1(α+ 1).

Our task now is to find an appropriate sequence (An)n∈[0,ω] to induce
the partial order of Tα+1.
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Lemma 4.18. Let α ∈ ω1 and fix a partial order ≤ in Tα satisfying
conditions (1) and (2) of Definition 4.11. Given Aω ∈ P ∗(Tα), there exists
a sequence (zn)n∈ω in Zα satisfying the following properties:

(a) supn∈ω δ(zn) = sup δ[Aω];
(b) given a sequence (An)n∈ω in P ∗(Tα) with zn ∈ An for all n ∈ ω, if

Tα+1 is endowed with the partial order induced by (An)n∈[0,ω], then
the connecting maps gβ,α+1 of the graded tree Tα+1 are continuous
for all β ∈ S ∪ {0} with β ≤ sup δ[Aω].

Proof. Assume first that Aω ⊂ Zα. If Aω has a largest element z, take
zn = z for all n ∈ ω; otherwise, let (zn)n∈ω be an increasing cofinal sequence
in Aω. Assume now that Aω is not contained in Zα. If Aω has a largest ele-
ment t, then it must be in Tα \Zα, since Zα is an initial part of Tα. Then t is
of the form (ω, β) and we take zn = (n, β) for all n ∈ ω. Finally, if Aω does
not have a largest element, let ((ω, βn))n∈ω be an increasing cofinal sequence
in Aω. For each n ∈ ω, since gβiβn is continuous and gβiβn(ω, βn) = (ω, βi)
for i ≤ n, we can take zn ∈ ω × {βn} with gβiβn(zn) ∈ [n, ω] × {βi} for all
i ≤ n. In all the four cases considered above, it is easy to check that (zn)n∈ω
satisfies properties (a) and (b), keeping in mind item (3) of Lemma 4.17.

Lemma 4.19. Let α ∈ ω1 and fix an admissible partial order ≤ in Tα.
Given z ∈ Zα and a finite subset F of S∪{0}, there exists B ∈ P ∗(Zα) with
z ∈ B satisfying the following conditions:

(a) for all β ≤ α, if Z♦β is a special antichain in Zβ, then B inter-

sects Z♦β ;

(b) for all w ∈ B with w > z, we have δ(w) 6∈ F .

Proof. Note first that if β ≤ α and Z♦β is a special antichain in Zβ, then

Z♦β is also a special antichain in Zα, by property (3) in Definition 4.11. Set

Λ = {β ∈ [0, α] : Z♦β is a special antichain in Zβ and p(z) ∩ Z♦β = ∅}.

If Λ = ∅, take B = p(z). Otherwise, let {βn : n ∈ ω} be an enumeration of Λ
and define by recursion a chain {wn : n ∈ ω} such that wn ∈ Z♦βn , wn > z,

and δ
[
]z, wn]

]
∩ F = ∅, for all n ∈ ω. Given wi, i ≤ n, we obtain wn+1

as follows. Setting w = max{w0, . . . , wn}, pick wn+1 ∈ p(w) ∩ Z♦βn+1
if this

intersection is not empty; otherwise, select wn+1 ∈ Z♦βn+1
with wn+1 > w

and δ
[

]w,wn+1]
]
∩ F = ∅. To conclude the proof, set B =

⋃
n∈ω p(wn).

Proof of Lemma 4.14. Set Aω = A and take (zn)n∈ω in Zα as in Lem-
ma 4.18. By recursion, we define An∈P ∗(Zα) and injective maps φn : An→ω
as follows: given Ai and φi for i < n, obtain B ∈ P ∗(Zα) from Lemma 4.19
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with z = zn and

(12) F =
⋃
i<n

δ
[
φ−1i [[0, n]]

]
;

set An = B. Let ≤′ be the partial order in Tα+1 induced by the sequence
(An)n∈[0,ω]. That ≤′ satisfies property (3) of Definition 4.11 follows from the
fact that each An satisfies condition (a) in Lemma 4.19. To conclude the
proof, fix β ∈ S∪{0} with sup δ[Aω] < β ≤ α and let us check that gβ,α+1 is
continuous at the point (ω, α+ 1). To this end, it is sufficient to verify that
β ∈ δ[An] for at most a finite number of n ∈ ω. If β = δ(v) for some v ∈ Ai
with i ∈ ω, we claim that β 6∈ δ[An] for all n > max{i, φi(v)}. Namely, for
such n, we know that β is in (12) and then, by the construction of An, we
get δ(w) 6= β for all w ∈ An with w > zn. Finally, for w ≤ zn, we have
δ(w) ≤ δ(zn) ≤ sup δ[Aω] < β, proving the claim.
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plementation and embeddings of c0(I) in Banach spaces, Proc. London Math. Soc.
85 (2002), 742–768.

[2] S. A. Argyros, S. Mercourakis, and S. Negrepontis, Functional-analytic properties
of Corson compact spaces, Studia Math. 89 (1988), 197–229.

[3] F. Cabello Sánchez, J. M. F. Castillo, N. J. Kalton, and D. T. Yost, Twisted sums
with C(K) spaces, Trans. Amer. Math. Soc. 355 (2003), 4523–4541.

[4] F. Cabello Sánchez, J. M. F. Castillo, and D. Yost, Sobczyk’s theorems from A to B,
Extracta Math. 15 (2000), 391–420.

[5] J. M. F. Castillo, Nonseparable C(K)-spaces can be twisted when K is a finite height
compact, Topology Appl. 198 (2016), 107–116.

[6] C. Correa and D. V. Tausk, Nontrivial twisted sums of c0 and C(K), J. Funct. Anal.
270 (2016), 842–853.

[7] O. Kalenda, A characterization of Valdivia compact spaces, Collect. Math. 51 (2000),
59–81.

[8] O. F. K. Kalenda, Continuous images and other topological properties of Valdivia
compacta, Fund. Math. 162 (1999), 181–192.

[9] O. F. K. Kalenda, Valdivia compact spaces in topology and Banach space theory,
Extracta Math. 15 (2000), 1–85.

[10] O. Kalenda and W. Kubís, The structure of Valdivia compact lines, Topology Appl.
157 (2010), 1142–1151.

[11] W. Kubís and H. Michalewski, Small Valdivia compact spaces, Topology Appl. 153
(2006), 2560–2573.

[12] K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland,
1980.

[13] M. Valdivia, Projective resolution of identity in C(K) spaces, Arch. Math. (Basel)
54 (1990), 493–498.

http://dx.doi.org/10.1112/S0024611502013618
http://dx.doi.org/10.1090/S0002-9947-03-03152-0
http://dx.doi.org/10.1016/j.topol.2015.11.009
http://dx.doi.org/10.1016/j.jfa.2015.11.002
http://dx.doi.org/10.1016/j.topol.2010.02.001
http://dx.doi.org/10.1016/j.topol.2005.09.010
http://dx.doi.org/10.1007/BF01188677


Small Valdivia compacta and trees 135

[14] M. Valdivia, Resolutions of the identity in certain Banach spaces, Collect. Math. 39
(1988), 127–140.

Claudia Correa, Daniel V. Tausk
Departamento de Matemática
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