
FOURIER ANALYSIS AND RELATED TOPICS

BANACH CENTER PUBLICATIONS, VOLUME 56

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2002

THE HILBERT TRANSFORM, REARRANGEMENTS,

AND LOGARITHMIC DETERMINANTS

VLADIMIR MATSAEV

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, 69978, Israel

E-mail: matsaev@post.tau.ac.il

IOSSIF OSTROVSKII

Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey

E-mail: iossif@fen.bilkent.edu.tr

and

Verkin Institute for Low Temperature Physics and Engineering, 61103 Kharkov, Ukraine

MIKHAIL SODIN

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, 69978, Israel

E-mail: sodin@post.tau.ac.il

This is an extended version of notes prepared for the talk at the conference “Rajch-

man-Zygmund-Marcinkiewicz 2000”. They are based on recent papers [13] and [15] (see

also [14] and [16]). The authors thank Professor Żelazko for the invitation to participate
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1. Let g be a bounded measurable real-valued function on R with a compact support.

We shall use the following notations:

• The Hilbert transform of g:

(Hg)(ξ) =
1

π

∫ ′

R

g(t)

t− ξ
dt,

the prime means that the integral is understood in the principal value sense at the point

t = ξ.
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• The (signed) distribution function of g:

Ng(s) =

{
meas {x : g(x) > s}, if s > 0;

−meas{x : g(x) < s}, if s < 0.

The (signed) decreasing rearrangement of g: gd is defined as the distribution function of

Ng: gd = NNg
.

Less formally, the functions Ng and gd can be also defined by the following properties:

they are non-negative and non-increasing for s > 0, non-positive and non-increasing for

s < 0, and ∫

R

Φ(g(t)) dt =

∫

R

Φ(s) dNg(s) =

∫

R

Φ(gd(t)) dt,

for any function Φ such that at least one of the three integrals is absolutely convergent.

We shall use notation A . B when A ≤ C · B for a positive numerical constant C.

We shall write A .λ B if C in the previous inequality depends on the parameter λ only.

Theorem 1.1. Let g be a bounded measurable real-valued function with a compact

support. Then

(1.2) ||Hgd||L1 ≤ 4||Hg||L1.

Hereafter, L1 always means L1(R).

Remarks.

1.3. Estimate (1.2) can be extended to a wider class of functions after an additional

regularization of the Hilbert transform Hgd (see §3 below).

1.4. Probably, the constant 4 on the RHS is not sharp. However, Davis’ discussion in

[3] suggests that (1.2) ceases to hold without this factor on the RHS.

1.5. Theorem 1.1 yields a result of Tsereteli [19] and Davis [3]: if g ∈ ReH1, then gd
is also in ReH1, and ||Hgd||L1 . ||g||ReH1 , where ReH1 is the real Hardy space on R.

1.6. Theorem 1.1 can be extended to functions defined on the unit circle T. Let g(t)

be a bounded function on T, gd be its signed decreasing rearrangement, and g̃ be the

function conjugate to g:

g̃(t) =
1

2π

∫ ′

T

g(ξ) cot
t− ξ

2
dξ.

Then

(1.7) ||g̃d||L1(T) ≤ 4||g̃||L1(T).

Juxtapose this estimate with Baernstein’s inequality [1]:

(1.8) ||g̃||L1(T) ≤ ||g̃s||L1(T),

where gs is the symmetric decreasing rearrangement of g. In particular, if gs has a conju-

gate in L1, then any rearrangement of g has a conjugate in L1, and if some rearrangement

of g has a conjugate in L1, then the conjugate of gd is in L1. We are not aware of a coun-

terpart of Baernstein’s inequality for the Hilbert transform and the L1(R)-norm.

2. Here, we shall prove Theorem 1.1. WLOG, we assume that

(2.1)

∫

R

g(t) dt = 0,
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otherwise

(Hg)(ξ) = −
1

πξ

∫

R

g(t) dt+O(1/ξ2), ξ → ∞,

and the L1-norm on the RHS of (1.2) is infinite.

The first reduction: instead of (1.2), we shall prove the inequality

(2.2) ||HNg||L1 ≤ 2||Hg||L1 ,

then its iteration gives (1.2).

We introduce a (regularized) logarithmic determinant of g:

ug(z)
def
=

∫

R

K(zg(t)) dt, K(z) = log |1− z|+Re(z).

This function is subharmonic in C and harmonic outside of R.

List of properties of ug: Since g is a bounded function with a compact support,

(2.3a) ug(z) = O(|z|2), z → 0,

and by (2.1)

(2.3b) ug(z) =

∫

R

log |1− zg(t)| dt = O(log |z|), z → ∞.

In particular,

(2.3c)

∫

R

|ug(x)|

x2
< ∞.

Next,

(2.4)

∫

R

ug(x)

x2
dx = 0.

This follows from the Poisson representation:

ug(iy) =
y

π

∫

R

ug(x)

x2 + y2
dy, y > 0.

Dividing by y, letting y → 0, and using (2.3a), we get (2.4).

Further,

(2.5) ug(1/t) = −π(HNg)(t).

Indeed, integrating by parts and changing variables, we obtain for real x’s:

ug(x) =

∫

R

log |1− xs| dNg(s) = x

∫ ′

R

Ng(s)

1− xs
ds = −π(HNg)(1/x).

We have done the second reduction: Instead of (2.2), we shall prove the inequality

(2.6)

∫

R

u−
g (x)

x2
dx ≤ π||Hg||L1 .

Then combining (2.4) and (2.6), we get (2.2).

Now, we set

f(t) = g(t) + i(Hg)(t).
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This function has an analytic continuation into the upper half-plane:

f(z) =
1

πi

∫

R

g(t)

t− z
dt.

We define the regularized logarithmic determinant of f by the equation

(2.7) uf (z) =

∫

R

K(zf(t)) dt.

The positivity of this subharmonic function is central in our argument:

Lemma 2.8. (cf. [4])

uf (z) ≥ 0, z ∈ C.

Proof. It suffices to consider z’s such that all solutions of the equation zf(w) = 1 are

simple and not real. Then

uf(z) = Re

{∫

R

[
log(1− zf(t)) + zf(t)

]
dt

}
= Re

{
z2

∫

R

tf(t)f ′(t)

1− zf(t)
dt

}

= Re

{
2πiz2

∑

{w: zf(w)=1}

Resw

(
ζf(ζ)f ′(ζ)

1− zf(ζ)

)}
= 2π

∑

{w: zf(w)=1}

Im(w) ≥ 0.

The application of the Cauchy theorem is justified since f(ζ) = O(1/ζ2) when ζ → ∞,

Im(ζ) ≥ 0.

To complete the proof of the theorem, we shall use an argument borrowed from the

perturbation theory of compact operators [5]. We use auxiliary functions f1 = g + i|Hg|

and

u1(z) =

∫

R

log

∣∣∣∣
1− zg(t)

1− zf1(t)

∣∣∣∣ dt.

Then on the real axis

ug(x) = u1(x) + uf(x), x ∈ R,

so that ug(x) ≥ u1(x), or u
−
g (x) ≤ u−

1 (x) = −u1(x), since u1(x) ≤ 0, x ∈ R.

Next, we need an elementary inequality: if w1, w2 are complex numbers such that

Re(w1) = Re(w2) and |Im(w1)| ≤ Im(w2), then for all z in the upper half-plane,
∣∣∣∣
1− zw1

1− zw2

∣∣∣∣ < 1.

Due to this inequality the function u1 is non-positive in the upper half-plane. Since this

function is harmonic in the upper half-plane, we obtain
∫

R

u−
g (x)

x2
dx ≤ −

∫

R

u1(x)

x2
dx = − lim

y→0

∫

R

u1(x)

x2 + y2
dx ≤ −π lim

y→0

u1(iy)

y

= −π lim
y→0

1

y

∫

R

log

∣∣∣∣
1− iyg(t)

1− iyg(t) + y|(Hg)(t)|

∣∣∣∣ dt = π

∫

R

|(Hg)(t)| dt.

This proves (2.6) and therefore the theorem.

3. Here, we will formulate a fairly complete version of estimate (2.2). The proof given

in [15] follows similar lines as above, however is essentially more technical.
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Now, we start with a real-valued measure dη of finite variation on R, and denote by

g = Hη its Hilbert transform. By ||η|| we denote the total variation of the measure dη on

R. Let Rg = H−1Ng be a regularized inverse Hilbert transform of Ng:

Rg(t)
def
= lim

ǫ→0

1

π

∫ ′

|s|>ǫ

Ng(s)

t− s
ds.

The integral converges at infinity due to the Kolmogorov weak L1-type estimate

Ng(s) . ||η||/s, 0 < s < ∞.

Existence of the limit when ǫ → 0 (and t 6= 0) follows from the Titchmarsh formula [18]

(cf. [15]):

lim
s→0

sNg(s) =
η(R)

π
.

Theorem 3.1. Let dη be a real measure supported by R. Then
∫

R

R+
g (t)dt ≤ ||ηa.c.||,(3.2)

∫

R

R−
g (t)dt ≤ ||η|| − |η(R)|,(3.3)

and

(3.4)

∫

R

Rg(t)dt = |η(R)| − ||ηsing||.

Corollary 3.5. The function Rg always belongs to L1 and its L1-norm does not

exceed 2||η||.

The classical Boole theorem says that if dη is non-negative and pure singular, then

Ng(s) = η(R)/s, and therefore Rg vanishes identically. The next two corollaries can be

viewed as quantitative generalizations of this fact:

Corollary 3.6. If dη ≥ 0, then Rg(t) is non-negative as well, and ||Rg||L1 = ηa.c.(R).

Corollary 3.7. If dη is pure singular, then Rg(t) is non-positive and ||Rg||L1 =

||η|| − |η(R)|.

For other recent results obtained with the help of the logarithmic determinant we

refer to [8], [14] and [16].

4. In §2 we used the subharmonic function technique for proving a theorem about

the Hilbert transform. The idea of logarithmic determinants also provides us with a

connection which works in the opposite direction: starting with a known result about the

Hilbert transform, one arrives at a plausible conjecture about a non-negative subharmonic

function in C represented by a canonical integral of genus one. For illustration, we consider

a well known inequality

(4.1) mf (λ) .
1

λ2

∫ λ

0

smg(s)ds+
1

λ

∫ ∞

λ

mg(s)ds, 0 < λ < ∞,

where f = g + iHg, g is a test function on R, mf (λ) = meas{|f | ≥ λ}, and mg(λ) =

meas{|g| ≥ λ} = Ng(λ)−Ng(−λ). Inequality (4.1) contains as special cases Kolmogorov’s
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weak L1-type inequality λmf (λ) . ||g||L1 , and M. Riesz’ inequality ||f ||Lp .p ||g||Lp ,

1 < p ≤ 2. Inequality (4.1) can be justly attributed to Marcinkiewicz. He formulated

his general interpolation theorem for sub-linear operators in [12], the proof was supplied

by Zygmund in [21] with reference to Marcinkiewicz’ letter. Its main ingredient is a

decomposition g = gχ{|g|<λ} + gχ{|g|≥λ}, where χE is the characteristic function of a set

E. This decomposition immediately proves (4.1), see [7, Section V.C.2].

Define a logarithmic determinant uf of genus one as in (2.7), and denote by dµf its

Riesz measure (i.e. 1/(2π) times the distributional Laplacian ∆uf ). For each Borelian

subset E ⊂ C, µf (E) = meas(f−1E∗), where E∗ = {z : z−1 ∈ E}, and f−1E∗ is the full

preimage of E under f . Now, we can express the RHS and the LHS of inequality (4.1) in

terms of µf . First, observe that the counting function of µf equals

µf (r)
def
= µf{|z| ≤ r} = meas{|f(t)| ≥ r−1} = mf (r

−1).

In order to write down mg in terms of µf , we introduce the Levin-Tsuji counting function

(cf. [20], [6]):

nf (r) = µf{|z − ir/2| ≤ r/2}+ µf{|z + ir/2| ≤ r/2}

= µf{|Im(z−1)| ≥ r−1} = meas{|g| ≥ r−1} = mg(r
−1).

Now, we can rewrite (4.1) in the form:

(4.2) µf (r) . r

∫ r

0

nf (t)

t2
dt+ r2

∫ ∞

r

nf(t)

t3
dt, 0 < r < ∞.

We shall show that (4.2) persists for any subharmonic function non-negative in C repre-

sented by a canonical integral of genus one. In this case the operator g 7→ Hg disappears,

and the Marcinkiewicz argument seems to be unapplicable anymore.

Let

(4.3) u(z) =

∫

C

K(z/ζ) dµ(ζ),

where dµ is a non-negative locally finite measure on C such that

(4.4)

∫

C

min

(
1

|ζ|
,

1

|ζ|2

)
dµ(ζ) < ∞.

Subharmonic functions represented in this form are called canonical integrals of genus

one.

Let M(r, u) = max|z|≤r u(z). A standard estimate of the kernel

K(z) .
|z|2

1 + |z|
, z ∈ C,

yields Borel’s estimate (cf. [6, Chapter II])

M(r, u) . r

∫ r

0

µ(t)

t2
dt+ r2

∫ ∞

r

µ(t)

t3
dt.

In particular,

M(r, u) =

{
o(r), r → 0

o(r2), r → ∞.



LOGARITHMIC DETERMINANTS 101

Theorem 4.5. Let u(z) ≥ 0 be a canonical integral (4.3) of genus one, then

(4.6) M(r, u) . r

∫ r

0

n(t)

t2
dt+ r2

∫ ∞

r

n(t)

t3
dt.

The RHS of (4.6) does not depend on the bound for the integral (4.4), this makes the

result not so obvious. By Jensen’s formula, µ(r) ≤ M(er, u), so that µ(r) . the RHS of

(4.6). As a corollary we immediately obtain (4.2) and the Marcinkiewicz estimate (4.1).

5. Here we sketch the proof of Theorem 4.5.

We shall need two auxiliary lemmas. The first one is a version of the Levin integral

formula without remainder term (cf. [10, Section IV.2], [6, Chapter 1]). The proof can be

found in [13].

Lemma 5.1. Let v be a subharmonic function in C such that

(5.2)

∫ 2π

0

|v(reiθ)| | sin θ| dθ = o(r), r → 0,

and

(5.3)

∫

0

n(t) + v−(t) + v−(−t)

t2
dt < ∞.

Then

(5.4)
1

2π

∫ 2π

0

v(Reiθ| sin θ|)
dθ

R sin2 θ
=

∫ R

0

n(t)

t2
dt, 0 < R < ∞,

where n(t) is the Levin-Tsuji counting function, and the integral on the LHS is absolutely

convergent.

The next lemma was proved in a slightly different setting in [11, §2], see also [6,

Lemma 5.2, Chapter 6]

Lemma 5.5. Let v(z) be a subharmonic function in C satisfying conditions (5.2) and

(5.3) of the previous lemma, let

T (r, v) =
1

2π

∫ 2π

0

v+(reiθ) dθ

be its Nevanlinna characteristic function, and let

T(r, v) =
1

2π

∫ 2π

0

v+(reiθ | sin θ)|)
dθ

r sin2 θ

be its Tsuji characteristic function. Then

(5.6)

∫ ∞

R

T (r, v)

r3
dr ≤

∫ ∞

R

T(r, v)

r2
dr, 0 < R < ∞.

For the reader’s convenience, we recall the proof. Consider the integral

I(R) =
1

2π

∫∫

ΩR

v+(reiθ)

r3
dr dθ,
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where ΩR = {z = reiθ : r > R| sin θ|} = {z : |z ± iR/2| > R/2}. Introducing a new

variable ρ = r/| sin θ| instead of r, we get

I(R) =

∫ ∞

R

dρ

ρ2

{
1

2π

∫ 2π

0

v+(ρ| sin θ|eiθ)
dθ

ρ sin2 θ

}
=

∫ ∞

R

T(ρ, v)

ρ2
dρ.

Now, consider another integral

J(R) =
1

2π

∫∫

KR

v+(reiθ)

r3
dr dθ,

where KR = {z : |z| > R}. Since KR ⊂ ΩR, we have J(R) ≤ I(R). Taking into account

that

J(R) =

∫ ∞

R

dr

r3

{
1

2π

∫ 2π

0

v+(reiθ) dθ

}
=

∫ ∞

R

T (r, v)

r3
dr

we obtain (5.6).

Proof of Theorem 4.5. Due to Borel’s estimate condition (5.2) is fulfilled. Due to non-

negativity of u and (4.4), condition (5.3) holds as well. Using monotonicity of T (r, u),

Lemma 5.5, and then Lemma 5.1, we obtain

T (R, u)

R2
≤ 2

∫ ∞

R

T (r, u)

r3
dr

(5.6)

≤ 2

∫ ∞

R

T(r, u)

r2
dr

(5.4)
= 2

∫ ∞

R

dr

r2

∫ r

0

n(t)

t2
dt =

2

R

∫ R

0

n(t)

t2
dt+ 2

∫ ∞

R

n(t)

t3
dt.

The inequality M(r, u) ≤ 3T (2r, u) completes the job.

6. Non-negativity of u(z) in C seems to be a too strong assumption, a more natural

one is non-negativity of u(x) on R.

Theorem 6.1. Let u(z) be a canonical integral (4.3) of genus one, and let u(x) ≥ 0,

x ∈ R. Then

(6.2) M(r, u) . r2

[∫ ∞

r

√
n∗(t)

t2
dt

]2

,

where

(6.3) n
∗(r) = r

∫ r

0

n(t)

t2
dt+ r2

∫ ∞

r

n(t)

t3

(
1 + log

t

r

)
dt.

The proof of Theorem 6.1 is given in [13]. The method of proof differs from that of

Theorem 4.5, and is more technical than one would wish.

Fix an arbitrary ǫ > 0. Then by the Cauchy inequality

[∫ ∞

r

√
n∗(t)

t2
dt

]2

=




∫ ∞

r

√(
1 + log1+ǫ t

r

)
n∗(t)

t3/2
dt

t1/2
√
1 + log1+ǫ t

r




2

.ǫ

∫ ∞

r

n∗(t)

t3

(
1 + log1+ǫ t

r

)
dt

.ǫ
1

r

∫ r

0

n(s)

s2
ds+

∫ ∞

r

n(s)

s3

(
1 + log3+ǫ s

r

)
ds.
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Thus we get

Corollary 6.4. For each ǫ > 0,

(6.5) M(r, u) .ǫ r

∫ r

0

n(t)

t2
dt+ r2

∫ ∞

r

n(t)

t3

(
1 + log3+ǫ t

r

)
dt.

Estimate (6.5) is slightly weaker than (4.6); however, it suffices for deriving inequalities

of M. Riesz and Kolmogorov. Using Jensen’s estimate µ(r) ≤ M(er, u), we arrive at

Corollary 6.6. The following inequalities hold for canonical integrals of genus one

which are non-negative on the real axis:

• M. Riesz-type estimate:

(6.7)

∫ ∞

0

µ(r)

rp+1
dr .p

∫ ∞

0

n(r)

rp+1
dr, 1 < p < 2,

• weak (p,∞)-type estimate:

(6.8) sup
r∈(0,∞)

µ(r)

rp
.p sup

r∈(0,∞)

n(r)

rp
, 1 < p < 2,

• Kolmogorov-type estimate:

(6.9) sup
r∈(0,∞)

µ(r)

r
.

∫ ∞

0

n(r)

r2
dr.

Remark 6.10. If the integral on the RHS of (6.9) is finite, then u(z) has positive

harmonic majorants in the upper and lower half-planes which can be efficiently estimated

near the origin and infinity, see [13, Theorem 3].

7. Here we mention several questions related to our results.

7.1. How to distinguish the logarithmic determinants (2.7) of f = g + iHg from

other canonical integrals (4.3) which are non-negative in C? In other words, let dmf be

a distribution measure of f ; i.e. a locally-finite non-negative measure in C defined by

mf (E) = meas{t ∈ R : f(t) ∈ E} for an arbitrary borelian subset E ⊂ C. It should be

interesting to find properties of dmf which do not follow only from non-negativity of the

subharmonic function uf (z). A similar question can be addressed for analytic functions

f(z) of Smirnov’s class in the unit disk.

7.2. Let X be a rearrangement invariant Banach space of measurable functions on R.

That is, the norm in X is the same for all rearrangements of |g|, and ||g1||X ≤ ||g2||X
provided that |g1| ≤ |g2| everywhere. For which spaces does the inequality

||Hgd||X ≤ CX ||Hg||X

hold? This question is interesting only for spaces X where the Hilbert transform is un-

bounded; i.e. for spaces which are close in a certain sense either to L1 or to L∞. Some

natural restrictions on X can be assumed: the linear span of the characteristic functions

χE of bounded measurable subsets E is dense in X , and ||χE ||X → 0, when meas(E) → 0,

see [2, Chapter 3].
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7.3. We do not know how to extend estimate (1.2) (as well as (1.8)) to more general

operators like the maximal Hilbert transform, the non-tangential maximal conjugate

harmonic function, or Calderón-Zygmund operators. A similar question can be naturally

posed for the Riesz transform [17].

7.4. Does Marcinkiewicz-type inequality (4.6) hold under the assumption that a canon-

ical integral u of genus one is non-negative on R? According to a personal communication

from A. Ph. Grishin, the exponent 3+ ǫ can be improved in (6.5). However, his technique

also does not allow to get rid at all of the logarithmic factor.

7.5. Let u(z) be a non-negative subharmonic function in C, u(0) = 0. As before, by

µ(r) and n(r) we denote the conventional and the Levin-Tsuji counting functions of the

Riesz measure dµ of u. Assume that µ(r) = o(r), r → 0. This condition is needed to

exclude from consideration the function u(z) = |Im(z)| which is non-negative in C and

harmonic outside of R. LetM,M(0) = 0,M(∞) = ∞, be a (regularly growing) majorant

for n(r). What can be said about the majorant for µ(r)? If M(r) = rp, 1 < p < ∞, then

we know the answer:

sup
r∈(0,∞)

µ(r)

rp
≤ Cp sup

r∈(0,∞)

n(r)

rp
,

and ∫ ∞

0

µ(r)

rp+1
dr ≤ Cp

∫ ∞

0

n(r)

rp+1
dr.

It is more difficult and interesting to study majorants M(r) which grow faster than any

power of r when r → ∞, and decay to zero faster than any power of r when r → 0. The

question might be related to the classical Carleman-Levinson-Sjoberg “log log-theorem”,

and the progress may lead to new results about the Hilbert transform.
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(Math.) 3 (1941), 5–14 (in Russian).

[10] B. Ya. Levin, Distribution of zeros of entire functions, Transl. Math. Monographs 5, AMS,

Providence, RI, 1980.

[11] B. Ya. Levin and I. V. Ostrovskii, The dependence of the growth of an entire function

on the distribution of the zeros of its derivatives, Sibirsk. Mat. Zh. 1 (1960), 427–455 (in

Russian); English transl.: Amer. Math. Soc. Transl. (2) 32 (1963), 323–357.

[12] J. Marcinkiewicz, Sur l’interpolation d’opérations, C. R. Acad. Sci. Paris 208 (1939),

1272–1273.

[13] V. Matsaev, I. Ostrovskii and M. Sodin, Variations on the theme of Marcinkiewicz’ in-

equality, J. Analyse Math. 86 (2002), 289–317.

[14] V. Matsaev and M. Sodin, Variations on the theme of M. Riesz and Kolmogorov, Int.

Math. Res. Notices 6 (1999), 287–297.

[15] V. Matsaev and M. Sodin, Distribution of Hilbert transforms of measures, Geom. Funct.

Anal. 10 (2000), 160–184.

[16] V. Matsaev and M. Sodin, Compact operators with Sp-imaginary component and entire

functions, in: Entire Functions in Modern Analysis (Tel Aviv, 1997), Proc. Israel Math.

Conf. 15, Bar Ilan Univ., Ramat Gan, 2001, 243–260.

[17] E. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, NJ, 1993.

[18] E. C. Titchmarsh, On conjugate functions, Proc. London Math. Soc. (2) 29 (1929), 49–80.

[19] O. Tsereteli, A metric characterization of the set of functions whose conjugate functions

are integrable, Bull. Acad. Sci. Georgian SSR 81 (1976), 281–283 (in Russian).

[20] M. Tsuji, On Borel’s directions of meromorphic functions of finite order, Tôhoku Math.
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