
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 64, No. 2-3, 2016

MATHEMATICAL LOGIC AND FOUNDATIONS

On Small Subsets in Euclidean Spaces
by

Jan MYCIELSKI and Grzegorz TOMKOWICZ

Presented by Stanisław KWAPIEŃ

Summary. We study a property of smallness of sets which is stronger than the possi-
bility of packing the set into arbitrarily small balls (i.e., being Tarski null) but weaker
than paradoxical decomposability (i.e., being a disjoint union of two sets equivalent by
finite decomposition to the whole). We show, using the Axiom of Choice for uncountable
families, that there are Tarski null sets which are not small sets. Using only the Principle
of Dependent Choices, we show that bounded subsets of Rn that are included in countable
unions of proper analytic subsets of Rn are small, and several related results.

1. Introduction. Two metric spaces X and Y are equivalent by finite
decomposition (denoted by X ≡ Y ) if there exist finite partitions X1, . . . , Xn

and Y1, . . . , Yn of X and Y , respectively, such that Xk is congruent to Yk
for k = 1, . . . , n. We say that the space X can be packed into a space Y
if there exists a set X ′ ⊆ Y such that X ′ ≡ X. We say that a set S ⊆ X
is Tarski null if it can be packed into any ball K ⊆ X of positive radius.
The sets with this property were studied by Tarski [11], [12] and later by
Hadwiger [3]. We say that K absorbs S if there exists an S′ ⊆ K such that
S′ ≡ S and K \ S′ ≡ K.

In the present paper we introduce a new notion of smallness. We say
that S is small if every ball of positive radius absorbs S. Thus every Tarski
null set is bounded and every small set is Tarski null. Of course, by our
definitions, if X is dense in itself then Tarski null sets and small sets form
invariant ideals and all these sets are bounded.
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We will also relativize the above notions to subgroups G of groups of
isometries which acts transitively on X, i.e., ≡G will denote equivalence
which uses only isometries of G.

A set E ⊆ X is G-paradoxical if E can be partitioned into two sets A
and B such that E ≡G A ≡G B. We will omit the prefix or subscript G when
the intended G is clear from the context. We recall that there are bounded
paradoxical sets in R2, even ones including perfect sets (i.e., non-empty,
closed and without isolated points), and this does not require the Axiom of
Choice (see [13, Theorem 14.15]), but there are no paradoxical sets in R ([13,
Cor. 14.25]).

We will show that every bounded G-paradoxical subset of the Euclidean
space Rn is also a small set (Theorem 5.1).

We will show that there are perfect sets in the real line R which are small
(Corollary 3.3), and that there are Tarski null sets in R which are not small
(Corollary 3.8). We do not know if there are such sets in Rn for n > 1.

The following simple problem is still unsolved: is the classical Cantor set
small in R?

Let Sn and Hn denote the n-dimensional sphere and hyperbolic space,
respectively. By theorems of Banach and Tarski [1] and ours [5, 6] every
bounded set in Rn for n > 2, and in Sn and in Hn for n > 1 is small.
Of course, this theorem depends on the Axiom of Choice for uncountable
families of sets of real numbers (ACR). But the concept of a small set in these
spaces does not trivialize if we forbid ACR and accept only the Principle
of Dependent Choices (DC); for related investigations see [7]. First, by a
proper analytic subset of a connected analytic manifold we mean the set
of zeros of some non-constant analytic function. We will show, using only
DC, that all bounded sets in Rn, Sn and Hn that are subsets of countable
unions of proper analytic subsets are small (Theorem 4.1). We will also
show that a finite union of convex closed curves (i.e. boundaries of bounded
convex sets) in R2 is small. This should generalize to Rn, but we have no
proof. We conjecture that every bounded set which is a union of countably
many convex surfaces in Rn (that is, boundaries of bounded convex sets) is
small.

In [11] Tarski proved certain measure-theoretic theorems in R and men-
tioned the possibility of extending them to R2. But this extension is not
routine. One of his main results is a characterization of his nullsets in R
[11, Satz 2.20]. Following his suggestion we will extend this result to Rn, Sn
and Hn (Theorem 5.2).

2. Generalities. First we summarize Tarski’s theory of semigroups of
types and their measures.
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Definition 2.1. Let a group G act transitively on an unbounded metric
space X and let B be the Boolean ring of all bounded subsets in X. Define
the type [A] of a set A ∈ B as {B ∈ B : A ≡G B}. Now we define the
semigroup of types, S(X,G), in the following way: [A] + [B] = [A ∪ τ(B)],
where τ is an element of G such that A∩τ(B) = ∅. Note that + is associative,
commutative and has a neutral element 0 = [∅].

n · α := α + · · · + α with n summands. Also, we introduce an order
in S, saying that [A] ≤ [B] if there exists A′ ⊆ B such that A′ ≡ A.

µ : S(X,G)→ R is called a measure on S(X,G) if for all α, β ∈ S(X,G),
µ(α) ≥ 0 and µ(α+ β) = µ(α) + µ(β).

Theorem 2.2.

(i) If n · α ≥ (n+ 1) · α, then 2 · α = α (Tarski; [13, Cor. 10.21]),
(ii) If (α ≤ β and β ≤ α), then α = β (Banach–Schröder–Bernstein;

[13, Thm. 3.6]),
(iii) If n · α ≤ n · β, then α ≤ β (König and Valko; [13, Thm. 10.20]).

The following is the main theorem of Tarski’s theory [13, Thm. 11.1]:

Theorem 2.3. 2·ε 6= ε if and only if there exists a measure µ on S(X,G)
such that µ(ε) = 1.

Now we turn to some properties of the relation ≡, pertaining to the
smallness and absorbability defined at the begining of Section 1.

Proposition 2.4. Let A ≡ A′ and B ≡ B′. Then:

(i) A absorbs B [can be packed in B] if and only if A′ absorbs B′ [can
be packed in B′].

(ii) If A ∩B = ∅ = A′ ∩B′, then A ∪B ≡ A′ ∪B′.

Proof. The only nontrivial part pertains to absorbability: A ≡ A′ is
witnessed by a bijection f : A→ A′. Assuming that A absorbs B there exists
C ⊆ A such that C ≡ B and A \ C ≡ A. We find that A \ C ≡ A′ \ f(C),
and since A \C ≡ A ≡ A′, the transitivity of ≡ implies that A′ ≡ A′ \ f(C)
and f(C) ≡ B′. So A′ absorbs B′.

Proposition 2.5. Let G be the group of isometries acting on a metric
space X. Then the family of G-small sets is a G-invariant ideal.

Proof. It is obvious that every subset of a small set is small. Let K be
a ball of positive radius. Then since K absorbs A, K is infinite. Thus K
contains disjoint balls K1 and K2 such that A ≡ A1 ⊆ K1, K1 ≡ K1 \ A1

and B ≡ B1 ⊆ K2, K2 ≡ K2 \ B1. This implies A ∪ B ≡ A1 ∪ B1 and
K ≡ K \ (A1 ∪B1).
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3. Small sets in R, S and Vitali sets. In this section we denote by
S any circle or its group of rotations, by R a straight line or its group of
translations, and by Q the set or additive group of rational numbers. We use
the arc-length metric defined on S such that the distance between x and y is
the length of the shortest arcs from x to y in S, and the usual distance in R.
We could use any distance invariant under the group operations consistent
with the standard topologies. The diameter of R could be finite, but a subset
of R will be called bounded if its closure is compact. In this section we will
consider mostly the relations ≡S and ≡R, and omit the subscripts.

Lemma 3.1.

(i) In Rn, A ≡ B implies s(A) ≡ s(B) for any similarity s.
(ii) If A,B ⊂ S, A ≡ B and f(x) = ei2πx for x ∈ [0, 1), then f−1(A) ≡

f−1(B).

Proof. Obvious.

With the use of Proposition 2.4 the theorems of Sierpiński [10, Theo-
rem 16] and Tarski [11, Satz 1.20] generalize as follows.

Theorem 3.2.

(i) If W is a subgroup of S and there exists an infinite cyclic group
C ⊂ S such that W ∩ C = {1}, then W is small.

(ii) If W is a bounded subset of a subgroup G of R and G ∩H = {0},
where H is a subgroup dense in R, then W is small.

Proof. (i) Let I ⊂ S be an arc of length l. We split G into sets of diameter
less than l. Then using rotations of the form ρm, where ρ ∈ S \ W is an
absorbing element, we pack those sets into I. Now we take a circle S′ of
length l with the arc-length metric and let G′ ⊂ S′ be such that G ≡ G′. It
is clear that G′ is absorbable in S′ using the same ρ acting on S′. Hence, by
Proposition 2.4, G is a small subset of S.

(ii) We may assume that H is countable. The set Q of rationals is
countable, and therefore there are countably many similarities s such that
s(H) ∩ Q 6= ∅. So we can pick a similarity s such that s(H) ⊂ [0, 1) and
s(H) ∩Q = ∅. Now use (i) and Lemma 3.1.

Corollary 3.3.

(i) Every bounded set C of R or of S of cardinality less than 2ℵ0 is
small.

(ii) There exist perfect sets in R and S that are small, and such sets can
be constructed without using the Axiom of Choice.

Proof. (i) This follows from Theorem 3.2(ii).
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(ii) As is well known, there are perfect sets P that are linearly indepen-
dent over Q(π) and contained in [0, 1) (see [4, Theorem 1]). Moreover, ei2πx
restricted to the open interval (0, 1) is a homeomorphism. Thus, applying
the rotation through 1 radian, by Lemma 3.1 and Theorem 3.2 we see that
P is small.

We will show that there are sets in S and R which are Tarski null but
are not small.

A set will be called a Vitali set if it is a choice set from the cosets of the
factor group S/T , where T is the subgroup of elements of finite order in S.
By the structure theorem for abelian divisible groups, S is isomorphic to the
direct sum T ⊕ S/T and S/T is of the form

⊕
i∈I Q, where |I| = 2ℵ0 .

Proposition 3.4. Every Vitali set V ⊂ S and every proper subgroup G
of S is Tarski null.

Proof. The group generated by a Vitali set is a proper subgroup of S.
So it suffices to show the second part of the proposition. Take an arc L ⊂ S
of length d and divide S into finitely many arcs L1, . . . , Lk of length less
than d. Of course S \G is dense in S. So let Gi = G∩Li for i = 1, . . . , k and
choose some ρ1, . . . , ρk ∈ S \ G such that ρi(Gi) ⊂ L for i = 1, . . . , k. Then
ρi(Gi) ∩ ρj(Gj) = ∅ for i 6= j. Therefore G can be packed in L.

The following theorem is well known (so we omit its proof).

Theorem 3.5.

(i) Any maximal subgroup G of S such that G∩T = {1} is a Vitali set,
i.e. a selector from S/T .

(ii) There are 22
ℵ0 such subgroups G.

(iii) S = T ⊕G.
In contrast to Theorem 3.2(i) and Proposition 3.4 we have the following:

Theorem 3.6. If V is a Vitali set which is a subgroup of S, then S ≡
S \ V fails (whence V is Tarski null but not small).

In order to prove this theorem recall that a groupG is called supramenable
if for any nonempty A ⊆ G there is a finitely additive, left-invariant universal
measure normalizing A, and all abelian groups are supramenable (see [13,
Theorem 14.4]). It is clear that if G/H is finite and H is supramenable then
G is supramenable. Hence the group of all isometries of S is supramenable.

To prove Theorem 3.6 we need the following lemma:

Lemma 3.7. If G is a subgroup of S which is a Vitali set, then every
isometric image of G in S is of the form tG, where t ∈ T .

Proof. We begin with two remarks: every isometry between two subsets
of S extends to an isometry of S; each isometry of S is of the form x 7→ rx
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or x 7→ rx−1, where r is a rotation. By Theorem 3.5(iii), r is of the form tg,
where t ∈ T and g ∈ G. Therefore

rG = tgG = tG and rG−1 = rG = tgG = tG.

Proof of Theorem 3.6. By Proposition 3.4, V is Tarski null. So we must
show that V is not absorbable.

Assume to the contrary that V is absorbable, i.e., there is a bijection
f : S → S \ V such that f = f1 ∪ · · · ∪ fk, where each fi is the restriction
of a map rix = tivix or rix−1 = tivix

−1, where ti ∈ T and vi ∈ V . Hence,
fp(V )∩f q(V ) = ∅ for all distinct nonnegative integers p and q. Let H be the
subgroup of T generated by t1, . . . , tk. Being a finitely generated subgroup
of T , H is finite. Let us prove the following

Claim. f(HV ) ⊆ HV .

Proof. Let hv ∈ HV , where h ∈ H and v ∈ V . Then for some i ≤ k,
f(hv) = fi(hv) = tihv or f(hv) = ti(hv)

−1.

Hence
f(hv) = h′v or f(hv) = h′v−1,

where h′ ∈ H. Thus, since V is a group, in both cases f(hv) ∈ HV , which
proves the Claim.

Now we will apply the semigroup of types S(S, G), where G is the group
of all isometries of S. Let m be the order of H. Thus [HV ] = m[V ]. By the
Claim, since f : S → S \ V , we have f : HV → HV \ V . Hence [HV ] ≤
[HV \ V ], and

m[V ] = [HV ] ≤ [HV \ V ] = (m− 1)[V ].

Thus, by Theorem 2.2, we obtain 2[V ] = [V ]. But this is impossible since G
is supramenable.

Corollary 3.8. There is a subset of R which is a Tarski null set but
is not a small set.

Proof. By Proposition 2.4 and Theorem 3.6.

We have two unsolved problems related to Theorem 3.6:

Problem. 1. Does there exist a Vitali set V which is a small set in S?
2. Does there exist a measurable set or a set with the property of Baire

which is Tarski null but not small?

4. Small sets in higher dimensions. Let Xn be one of the spaces:
Rn,Sn or Hn, where n > 1. Let Σ be an o-minimal structure on the field R.
We will consider subsets of Xn which are definable (with parameters) in Σ.
The most natural examples of such definable sets are subanalytic sets, i.e.,
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sets definable in the expansion of R by analytic functions whose domains
are restricted to compact subsets of Xn, and quasi-subanalytic sets, i.e., sets
definable in the expansions of R by restricted quasi-analytic functions (with
respect to various quasi-analytic classes).

For Rn, n ≥ 3, and Sn orHn, n ≥ 2, the next theorem follows immediately
from Banach–Tarski paradoxical decompositions (see [13]), but of course this
requires the Axiom of Choice for uncountable families of sets (AC). But our
next theorem will be proved using only DC. We will apply a theorem proved
in [9].

Theorem 4.1. Let A be a bounded set in Xn such that A ⊆
⋃∞
i=1Ai,

where Ai are subsets of Xn definable in Σ, and dimAi < n for all i. Then
A is small.

Proof. For any set Y ⊆ Xn we define

d(Y ) = min
{
max{dimAi : i = 1, 2, . . . } : Y ⊆

∞⋃
i=1

Ai and

Ai are definable in Σ
}
.

d(Y ) will be called theΣ-dimension of Y . We observe that if Y = Y1∪Y2∪· · · ,
then d(Y ) = max{d(Yi) : i = 1, 2, . . . } ≤ n.

Now we will argue by induction on d(A). For d(A) = −1 the theorem
is obvious since then A = ∅. Suppose the theorem holds whenever d(A) <
d < n. We have to show that for dimA = d, A is absorbable by every ball
B ⊂ Xn of positive radius.

Let Rn be the set of all rotations of Xn whose set of fixed points is a
hyperplane of dimension n− 2 (of course by a hyperplane in Sn we mean a
large sphere).

We choose a closed ball K in the interior of B which does not contain
the center of B.

Now we split A into finitely many sets of diameters less than the radius
of K. By the theorem of [9] there exist rotations in Rn which move those sets
into K in such a way that the Σ-dimension of the intersection of the images
of any two of them is less than d. Hence the union U of the inverse images
of these intersections is also of Σ-dimension less than d. So by the inductive
assumption U is absorbable in B. Thus it suffices to show that A \U is also
absorbable in B.

By our choice of K, it is clear that if the set of fixed points of ρ ∈ Rn is
sufficiently close to the center of B then

⋃∞
n=0 ρ

n(K) ⊆ B. Thus we have a
nonempty open set O ⊆ Rn such that for all ρ ∈ O,

⋃∞
n=0 ρ

n(K) ⊆ B.
Using again the theorem of [9] we find a ρ ∈ O such that theΣ-dimensions

of all intersections of the set ρn(A\U) are smaller than d. So the union V of
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the inverse images of these intersections is also of Σ-dimension less than d,
and hence absorbable by B. It remains to show that (A\U)\V is absorbable
by B—but this is obvious since any two sets ρn((A \ U) \ V ) are pairwise
disjoint.

Theorem 4.1 should also be true if the Ai are convex surfaces in Xn, i.e.,
boundaries of bounded convex sets. Unfortunately, in general the latter are
not definable in o-minimal structures. We have been able to prove only the
following case of the conjecture.

Theorem 4.2. Every bounded set A ⊂ R2 which is a finite union of
convex curves is small.

Proof (outline). Choose any disk D with center c. Let C be a convex
curve. Hence C has at most four points whose interior angles are less than
or equal to π/4. Hence C can be covered by finitely many arcs (a, b] such
that (a, b) does not contain any vertex with interior angle smaller than π/4
and it has a translation t which moves it into D such that t(a) = c. Then
every circle in D concentric with D intersects t((a, b]) exactly once. Thus an
appropriate rotation of D shows that D absorbs (a, b]. Then by Proposition
2.5, C is small, and Theorem 4.2 follows.

Problem. 3. Is every bounded convex surface in Rn small?

5. Bounded paradoxical sets are small and Tarski null sets are al-
most absorbable. Recall that Xn denotes Rn,Sn orHn, where n = 1, 2, . . . .
Recall also that even in X2 there are bounded paradoxical sets (with some
additional properties such as having perfect subsets and being of positive
outer measure; see [2] and [13, Section 14.2]).

The following two theorems are based on a common lemma,

Theorem 5.1. Let G be a subgroup of isometries of Xn (possibly
amenable) which acts transitively on Xn. Then every bounded G-paradoxical
subset of Xn is G-small.

The next theorem generalizes Tarski’s [11, Satz 2.20].

Theorem 5.2. Let G be as in Theorem 5.1. Then for every A ⊂ Xn the
following are equivalent:

(i) A is G-Tarski null,
(ii) there exists an infinite sequence A1, A2, . . . of pairwise disjoint sets

such that A1 ∪A2 ∪ · · · is bounded and A ≡G A1 ≡G A2 ≡G · · · .
Observe that condition (ii) is similar to, but weaker than, absorbability

of A by A1 ∪A2 ∪ · · · .
To prove these theorems we will need the following lemma (which applies

to the semigroup of types introduced in Section 2).
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Lemma 5.3. Let G be as above and ε ∈ S(Xn, G) be the type of a compact
subset of Xn. If α ∈ S(Xn, G) is such that m ·α ≤ k · ε for m = 1, 2, . . . and
some constant k > 0, then any representative set of α is G-Tarski null.

Proof. Choose any real a > 0. For any representative set E of ε there ex-
ists an integer r such that E can be covered by r sets which are G-congruent
and of diameters less than a. Let γ be the type of these sets. Then ε ≤ r · γ
and kr · α ≤ k · ε ≤ kr · γ. Hence by Theorem 2.2(iii) we have α ≤ γ. That
is, any representative of α can be packed, using some isometries of G, into
any ball of positive radius in Xn.

Proof of Theorem 5.1. Let P be G-paradoxical. Then m · [P ] ≤ [P ] for
m = 1, 2, . . . . Hence Lemma 5.3 implies that P is G-Tarski null.

It remains to show that P is absorbable by any ball K. Now, P can be
partitioned into sets A and B such that A ≡G P ≡G B. Let K be any ball.
Then since P is a G-Tarski null, there exists a P ′ ⊂ K with P ′ ≡G P . Hence
P ′ can be partitioned into sets A′ and B′ such that A′ ≡G P ′ ≡G B′. This
implies K \B′ = (K \ P ′) ∪ A′ ≡G (K \ P ′) ∪ P ′ = K. Thus B′ is G-small,
and hence B is G-small. In the same way we show that A is G-small. Since
P = A ∪B, by Proposition 2.5, P is G-small.

Proof of Theorem 5.2. (i)⇒(ii). Since in Xn any ball of positive radius
includes infinitely many balls of positive radii, this implication readily follows
from the definition of G-Tarski null sets.

(ii)⇒(i). Let α ∈ S(Xn, G) be the type of A. Since
⋃
Ai is bounded and

for every positive integer m we have m · α ≤ [
⋃
Ai], Lemma 5.3 shows that

A is G-Tarski null.

The proof of the König and Valko Cancellation Law (Thm. 2.2(iii)) which
is used in the proof Lemma 5.3 requires the Axiom of Choice for uncountable
families of sets. So we have the following:

Problem 5.4. Assuming large cardinal axioms, are Theorems 5.1 and
5.2 true in the universe L(R)?
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