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Totally irreducible representations of algebras

by

Antoni Wawrzyńczyk (Ciudad de México)

Abstract. The principal subject of the paper is the density in the strong operator
topology of subalgebras of the algebra L(X) of continuous operators in a locally convex
space X. Besides a survey of known results we present refinements and generalizations of
theorems related to the, still unsolved, problem of Fell and Doran.

1. Introduction. Although the Jacobson Density Theorem (JDT) is
purely of algebraic character, it inspires a number of questions of topological
nature in the theory of bounded operators on topological vector spaces.

Let A be an associative algebra over the field R or C (denoted as K)
and let X be a vector space over K. A representation of A on X is a homo-
morphism T of A into the algebra L(X) of all linear endomorphisms of X.
A representation T is algebraically irreducible if for every 0 6= x ∈ X the
orbit O(T, x) = {Tax : a ∈ A} coincides with X.

For a given representation T of A we denote T = {Ta : a ∈ A}.
If S ⊂ L(X), the algebraic commutant of S is the set

Scoma = {A ∈ L(X) : AS = SA for all S ∈ S}.
Let I denote the identity operator on X.

Theorem 1.1 (Jacobson Density Theorem). Let X be a vector space
over K and let A be an associative algebra over the same field. If (T,X) is
an algebraically irreducible representation of A in X and T com

a = K I then
for every linearly independent system x1, . . . , xk ∈ X and for every system
y1, . . . , yk ∈ X there is a ∈ A such that yi = Taxi, 1 ≤ i ≤ k.

In particular, if A ∈ L(X) and V ⊂ X is a finite-dimensional space with
a base x1, . . . , xk, there exists a ∈ A such that Axi = Taxi, 1 ≤ i ≤ k, hence
A|V = Ta.
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The property which appears in the conclusion of the JDT is called the
algebraic k-irreducibility or, in other papers, strict k-transitivity of the rep-
resentation. In explicit form, a representation T of A on X is algebraically
k-irreducible if for every linearly independent system x1, . . . , xk ∈ X the
orbit of the action of A on the cartesian product Xk given by the formula
T
(k)
a (x1, . . . , xk) = (Tax1, . . . , Taxk) coincides with Xk. A representation is

algebraically totally irreducible if it is k-irreducible for every k ∈ N. So, the
Jacobson Density Theorem states that every algebraically irreducible repre-
sentation with trivial commutant is algebraically totally irreducible.

If X is a topological vector space, the algebra L(X) of continuous endo-
morphisms of X is a subalgebra of L(X) whose structure can be investigated
by providing it with a topology and studying representations of other algebras
in L(X).

In this paper we consider the case of a locally convex space X.
Throughout what follows, by a representation of an algebra A on X we

mean a homomorphism T of A into L(X). A representation T is irreducible
if for every 0 6= x ∈ X the orbit O(T, x) is dense in X.

The strong operator topology on L(X) is the topology of pointwise con-
vergense of nets. A base of neighbourhoods of zero in this topology can be
parametrized by systems (V, x1, . . . , xk), where V is a neighbourhood of zero
in X and x1, . . . , xk ∈ X, and is given by

U(V, x1, . . . , xk) = {A ∈ L(X) : Ax1, . . . , Axk ∈ V}.
An operator A ∈ L(X) belongs to the closure of a subset S ⊂ L(X) in the
strong operator theory if and only if it can be approximated by elements of
S on every finite-dimensional subspace of X.

In particular, if a representation T of an algebra A on a locally convex
space X is algebraically irreducible and the algebraic commutant T com

a is
trivial, then by the JDT the space T is dense in L(X).

The question which interests us is how to obtain analogous results with
these strong algebraic assumptions replaced by others of topological charac-
ter.

Formulating the problem in this way we can treat as a particular solution
a theorem proved independently by C. E. Rickart [R] and B. Yood [Y] which
states that for an algebraically irreducible representation T of A on a Banach
space X the set T is dense in L(X) in the weak operator topology.

Observe that nothing is assumed about the commutant of the represen-
tation. If X is a Banach space, then L(X) has the structure of a Banach
algebra, which is an exceptional situation.

When studying approximations of operators in the strong operator topol-
ogy, it is convenient to use the notion of (topological) total irreducibility in
the following form.
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A representation T of an algebra A on a locally convex vector space X is
totally irreducible if for every k ∈ N and every linearly independent system
x1, . . . , xk ∈ X the orbit

O(T (k), x1, . . . , xk) = {(Tax1, . . . , Taxk) : a ∈ A}

is dense in Xk.
In the case of a locally convex space X this property is exactly equivalent

to the density of T in L(X) in the strong operator theory.
In the book [A] we find the following theorem.

Theorem 1.2. Let A be a Banach algebra and X a Banach space. If
T is a continuous, algebraically irreducible representation of A then T is
algebraically totally irreducible.

In this theorem the “topologization” concerns the structure of the al-
gebra A, of the carrier space X and of the representation itself. Algebraic
irreducibility is assumed and algebraic total irreducibility is deduced. Again
no assumption about the commutant is necessary. This is explained by the
fact that the structure of a Banach algebra provides an additional argument
in the form of the Gelfand–Mazur theorem.

In Section 2 we prove a generalization of this theorem under the assump-
tion that A is a Waelbroeck algebra and X is a locally convex space.

A quite different approach to the “topologization” of the JDT appears in
the book [FD]. The conjecture of Fell and Doran proposes sufficient condi-
tions for a subalgebra A ⊂ L(X) to be dense in L(X) in the strong operator
topology. Let T com = {S ∈ L(X) : STa = TaS for all a ∈ A}.

Problem of Fell and Doran. Let X be a topological vector space.
Suppose that the representation T of an algebra A on X is irreducible and
T com is trivial.

Is the representation T totally irreducible?

W. Żelazko dedicated a number of papers to the study of the problem
of Fell and Doran treating it as a search of spaces X for which all irre-
ducible representations with trivial commutant are totally irreducible. So
far the conjecture has been confirmed completely only for the space (s) of
real or complex sequences provided with the topology of pointwise conver-
gence [Z3].

An important criterion of total irreducibility was proved in [Z2].
If (T,X) and (R, Y ) are representations of an algebra A, and S is a

densely defined linear operator from X to Y , we say that S is (T, S)-
intertwining if the domain D(S) of S is T -invariant and STax = RaSx
for all x ∈ D(S) and a ∈ A.
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Theorem 1.3 ([Z2]). Let X be a real or complex topological vector space
and let T be an irreducible representation of an algebra A on X such that
T com = K I. Then T is totally irreducible if and only if all densely defined
closed (T, T (k))-intertwining operators are continuous for all k ∈ N.

The theorem provides a solution of the problem of Fell and Doran for
algebraically irreducible representations in spaces X for which the Closed
Graph Theorem is valid.

Corollary 1.4 ([Z2]). Let X be a topological vector space for which
every closed operator S : X → X is continuous. Let T be an algebraically
irreducible representation of an algebra A on X such that T com = K I. Then
T is totally irreducible and T = L(X).

The algebraic irreducibility assumption is a principal disadvantage of this
theorem.

In [RT], in the case of a Banach space X, there is a result which can be
treated as a possible approach to this matter. Instead of algebraic or topolog-
ical irreducibility of the representation it is supposed that the algebra T has
no non-trivial operator ranges, that is, no non-trival T -invariant subspace of
X can be represented as the image under a continuous intertwining operator
B : Xk → X of a closed subspace G ⊂ Xk. This condition is weaker than
algebraic irreducibility but obviously stronger than topological irreducibility.
It is proved that an algebra T ⊂ L(X) which has no non-trivial injective
operator ranges is dense in L(X).

In Section 3 we prove a refinement of Theorem 1.3 in the case of a locally
convex space X. Moreover, we show that k-irreducible representations occur
in pairs: a representation (T,X) of the algebra A is k-irreducible if and
only if the action of A on the dual space X ′ via the adjoint operators is
k-irreducible in the weak∗ topology.

With these results we prove, in Section 4, that for a locally convex
space X, a representation of A which has a trivial commutant T com and
has no non-trivial injective operator ranges is totally irreducible.

We also obtain a criterion of total irreducibility of representations in
a locally convex space X which involves only densely defined intertwining
operators inside X, instead of (T, T (k))-intertwining operators, which appear
in Theorem 1.3:

We prove that an irreducible representation (T,X) of A in a locally
convex vector space is totally irreducible if and only if every injective densely
defined T -intertwining operator is scalar.

2. Algebraically irreducible representations of Waelbroeck al-
gebras. A topological algebra W is called a Waelbroeck algebra if the sub-
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set G of elements invertible in W is open in W and the inverse mapping
G 3 a 7→ a−1 ∈ G is continuous.

The spectral properties of Waelbroeck algebras are very close to those of
Banach algebras. We recall the properties of Waelbroeck algebras which will
be used further (see [Wa] or [W]).

Lemma 2.1. If W is a Waelbroeck algebra and B ⊂ W is a subalgebra
closed with respect to inversion, then B is a Waelbroeck algebra.

If J ⊂ W is a closed two-sided ideal in W then the quotient W/J is a
Waelbroeck algebra.

Gelfand–Mazur Theorem. Let W be a Waelbroeck algebra over C
which admits a non-zero continuous linear functional. If W is a division
algebra then W ∼= C.

Theorem 2.2. Let W be a locally convex Waelbroeck algebra over C and
let (T,X) be an algebraically irreducible representation of W on a locally
convex space. Then (T,X) is algebraically totally irreducible.

Proof. Let J be a maximal left ideal in W and let E = W/J . The left
regular representation of W on E defined by the formula La[u] = [au] is
algebraically irreducible. We begin by proving the statement of the theorem
for this representation.

Let S be a linear operator on E which commutes with all operators La,
a ∈ W . For every 0 6= v ∈ E the orbit O(L, v) coincides with E. Since
S(Lav) = LaS(v), the operator S is uniquely determined by the value S(v).
Let us choose v = [e] and let Sv = [u]. Then for every b ∈ J we have
0 = S([b]) = S(Lb[e]) = LbS([e]) = Lb[u] = [bu]. This proves that Ju ⊂ J .

Let V = {u ∈ W : Ju ⊂ J}. It is a closed subalgebra of W , and J is
a two-sided ideal in V . The algebra V is closed with respect to inversion,
because for u ∈ V invertible the relation Ju ⊂ J implies J ⊂ Ju−1 and by
the maximality of J we obtain Ju−1 = J .

For every u ∈ V the formula Su[a] = [au] defines a linear operator com-
muting with the representation L. Moreover, Su = I if and only if u ∈ J . This
permits us to identify Lcoma , the algebraic commutant of the representation L,
with the quotient algebra V/J , which is a Waelbroeck algebra according to
Lemma 2.1.

The algebraic irreducibility of L implies that for every S ∈ Lcoma the
spaces kerS and imS are trivial. It follows that Lcoma is a division algebra
and V/J is a Waelbroeck division algebra. By the Gelfand–Mazur theorem,
V/J ∼= C.

The representation (L,E) is algebraically totally irreducible by the Ja-
cobson Density Theorem.
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If (T,X) is an algebraically irreducible representation of W on a locally
convex space X then for every 0 6= x ∈ X the space Jx = {a ∈W : Tax = 0}
is a maximal ideal inW which is closed. The operator R : W/Jx 3 [a] 7→ Tax
is a well defined isomorphism intertwining the representations L and T . If S
is a (T, T )-intertwining operator then R−1SR is in Lcoma , hence it is scalar.
By the JDT the representation (T,X) is algebraically totally irreducible.

Notice that in Theorem 2.2, the continuity of the representation is not
required. If we suppose the continuity of T , we can omit the assumption that
W is locally convex.

Following the ideas of the last proof we can obtain a criterion of total
irreducibility for representations of locally convex algebras on their quotient
spaces.

Example 2.3. Let A be a locally convex algebra and let J be a maximal
closed left ideal in A. Then the natural action of A on X = A/J given by
the formula La[b] = [ab], a ∈ A, is algebraically irreducible.

In this case every operator S in X which commutes with the action of A
is continuous.

Indeed, if e denotes the unit in A, we can represent S in the form S[a] =
TaS[e]. Denote S[e] = [b]. For a ∈ J we have 0 = S[a] = La[b] = [ab]. Thus
Jb ⊂ J . The operator Rb of right multiplication by b ∈ A is continuous on
A and it leaves the ideal J invariant. So, it defines a continuous operator
on X = A/J , which coincides with S. By the JDT the action of A on X is
totally irreducible (equivalently, A is dense in L(A/J)) if and only if the set
J̃ = {a ∈ A : Ja ⊂ J} coincides with J .

3. k-irreducibility for X locally convex. Theorem 1.3 of the Intro-
duction provides a characterization of totally irreducible representations in
a very general case.

According to this theorem a representation T of an algebra A on a topo-
logical vector space X, which is irreducible and has a trivial commutant
T com, is totally irreducible if and only if all closed densely defined (T, T (k))-
intertwining operators are continuous.

Note that if R(x) = (R1(x), . . . , Rk(x)) is a continuous (T, T (k))-inter-
twining operator, then for every 1 ≤ i ≤ k the operator Ri belongs to T com,
so by assumption it is scalar. The total irreducibility of (T,X) is equivalent
to all closed densely defined (T, T (k))-intertwining operators being of the
form R(x) = (λ1x, . . . , λkx), where λi ∈ K.

We will prove a refinement of this theorem for X locally convex.
A representation (T,X) of the algebra A is said to be k-irreducible if

for any 1 ≤ j ≤ k and any linearly independent x1, . . . , xj ∈ X the orbit
O(T (j), x1, . . . , xj) is dense in Xj .
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Considering a representation T which is (k − 1)-irreducible but not k-
irreducible we obtain densely defined closed intertwining operators S : X ⊃
D(S)→ Xk with additional properties. ForX a Banach space, the analogous
theorem proved in [RT] is called the Graph Theorem. We also generalize a
result from [Ar] which states that for a representation with this property
the orbit O(T (j), x1, . . . , xj) consists of zero and of k-tuples of vectors which
are linearly independent. This permits us to relate the problem of Fell and
Doran to the problem of injective operator range. After proving a generalized
Graph Theorem we obtain a generalization of Theorem 4.2 from [RT].

In this section, X is supposed to be a locally convex vector space. In
the dual space X ′ we consider the weak∗ topology. We identify the dual
space (Xk)′ with the space (X ′)k by associating to ϕ ∈ (Xk)′ the k-tuple
(ϕ1, . . . , ϕk) ∈ (X ′)k such that ϕ(x1, . . . , xk) =

∑k
j=1 ϕj(xj).

Denote by Ar the reversed algebra of A, i.e. the vector space A provided
with the product a · b = ba. If (T,X) is a representation of A then the
mapping A 3 a 7→ T ∗a is a representation of Ar in the dual space X ′ which
is denoted by (T ∗, X ′).

Theorem 3.1.

(i) If a representation (T,X) is (k − 1)-irreducible then it is not k-
irreducible if and only if there exist a linearly independent k-tuple
x1, . . . , xk in X and ϕ1, . . . , ϕk in X ′ such that

∑k
j=1 ϕj(Taxj) = 0

for all a ∈ A. Every nonzero k-tuple (ϕ1, . . . , ϕk) ∈ (X ′)k satisfying
these equations consists of linearly independent elements.

(ii) The representation (T,X) of A is k-irreducible if and only if the
representation (T ∗, X ′) of Ar is k-irreducible.

(iii) If a representation (T,X) is (k− 1)-irreducible but not k-irreducible
then for every k-tuple (x1, . . . , xk) ∈ Xk of linearly independent
coordinates and for every a ∈ A the system (Tax1, . . . , Taxk) is zero
or consists of linearly independent elements.

Proof. (i) Let (T,X) be a (k− 1)-irreducible representation which is not
k-irreducible. There is a linearly independent k-tuple x1, . . . , xk whose orbit
in Xk is not dense. There is ϕ ∈ (Xk)′ ' (X ′)k which vanishes on that orbit.
Denoting ϕ = (ϕ1, . . . , ϕk) we obtain, for every a ∈ A,

(3.1)
k∑
j=1

ϕj(Taxj) =

k∑
j=1

T ∗aϕj(xj) = 0.

It follows that the T ∗(k)-orbit of ϕ in (X ′)k is not dense. We claim that the
k-tuple ϕ1, . . . , ϕk is linearly independent.
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Suppose that, say ϕk =
∑k−1

i=1 tiϕi. Then for every a ∈ A,

0 =
k∑
j=1

ϕj(Taxj) =
k−1∑
j=1

ϕj(Ta(xj + tjxk)).

This means that the orbitO(T (k−1), x1+t1xk, . . . , xk−1+tk−1xk) is not dense
in Xk−1. As the representation (T,X) is (k−1)-irreducible, the (k−1)-tuple
{xj + tjxk}k−1j=1 is linearly dependent, a contradiction. This proves that the
k-tuple (ϕ1, . . . , ϕk) is linearly independent.

The converse implication is obvious, so assertion (i) proved.
We prove (ii) by induction. For k = 1 the assertion is valid, for if V ⊂ X is

a proper closed T -invariant subspace, then V ⊥={ϕ ∈ X ′ : ϕ(x) = 0, x ∈ V }
is a closed proper subspace invariant under all elements of T ∗. Similarly, if
U ⊂ X ′ is a closed non-trivial T ∗-invariant subspace, then U⊥ = {x ∈ X :
ϕ(x) = 0, ϕ ∈ U} is non-trivial, closed and T -invariant.

Suppose that (ii) is valid for j < k−1. Let (T,X) be a (k−1)-irreducible
representation which is not k-irreducible. By (i) there exist linearly indepen-
dent k-tuples x1, . . . , xk in X and ϕ1, . . . , ϕk in X ′ such that for all a ∈ A,

k∑
j=1

T ∗aϕj(xj) =
k∑
j=1

ϕj(Taxj) = 0.

Hence the T ∗(k)-orbit of (ϕ1, . . . , ϕk) in (X ′)k is not dense, so (T ∗, X ′) is not
k-irreducible.

In an analogous way one can prove that if (T ∗, X ′) is not k-irreducible,
then (T,X) is not k-irreducible.

(iii) In the notation of (i) we have
∑k

j=1 ϕj(TaTbxj) =
∑k

j=1 T
∗
aϕj(Tbxj)

= 0 for all a, b ∈ A. By (ii) the representation (T ∗, X ′) is (k− 1)-irreducible
and is not k-irreducible. The system ϕ1, . . . , ϕk is linearly independent, hence
by the last statement of (i) the system Tax1, . . . , Taxk considered as a func-
tional on (Xk)′ consists of linearly independent functionals. Obviously, this
implies that it is linearly independent in X.

Theorem 3.2. Let (T,X) be a representation which is (k−1)-irreducible
but not k-irreducible. Then there exists a non-scalar densely defined closed
(T, T (k−1))-intertwining operator S = (S1, . . . , Sk−1) : X → Xk−1 such that
each Sj is a densely defined injective operator commuting with all elements
of T .

Proof. By Theorem 3.1(i) there exist linearly independent x1, . . . , xk in
X and linearly independent ϕ1, . . . , ϕk in X ′ such that

k∑
j=1

T ∗aϕj(xj) =
k∑
j=1

ϕj(Taxj) = 0 for all a ∈ A.
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Let G = {(u1, . . . , uk) ∈ Xk :
∑k

j=1 ϕj(Tauj) = 0, a ∈ A}. Then G is
a T (k)-invariant closed subset of Xk which contains (x1, . . . , xk) and is not
equal to Xk.

The set D = {u ∈ X : ∃u2, . . . , uk such that (u, u2, . . . , uk) ∈ G} is dense
in X, because it contains the orbit of x1.

Suppose that (0, u2, . . . , uk) ∈ G. Then for all a ∈ A,
k∑
j=2

ϕj(Tauj) =
k∑
j=2

T ∗aϕj(uj) = 0.

This implies u2 = · · · = uk = 0, because (T ∗, X ′) is (k − 1)-irreducible.
It follows that for every u ∈ D and (u, u2, . . . , uk) ∈ G the operator

defined by S(u) = (u2, . . . , uk) ∈ Xk−1 is well defined.
The operator S, whose domain is D, is linear, closed and (T, T (k−1))-

intertwining. It is not scalar because S(x1) = (x2, . . . , xk) and the k-tuple
(xj) is linearly independent. Thus the first assertion follows.

In the same way for every 1 ≤ j ≤ k we can obtain a densely defined
closed operator associating to uj the value (u1, . . . , uj−1, uj+1, . . . , uk) ∈
Xk−1 when (u1, . . . , uk) ∈ G. This means that in the representation S(x) =
(S1(x), . . . , Sk−1(x)) the operators Sj , 1 ≤ j ≤ k, are invertible and commute
with the elements of T .

Theorem 1.3 in its version for locally convex spaces follows immediately
supplemented with the statement of injectivity of the coordinate opera-
tors Sj .

While proving Theorem 3.2 we have seen that in the case of a represen-
tation which is (k − 1)-irreducible but not k-irreducible, there is in Xk a
set G which is the graph of a family of densely defined intertwining opera-
tors. For linearly independent (x1, . . . , xk) ∈ G and i, j ≤ k every mapping
Sij : Taxi → Taxj is well defined and injective. This implies in particular
that all left ideals Aj = {a ∈ A : Taxj = 0} coincide for 1 ≤ j ≤ k.

We obtain another sufficient condition for an irreducible representation
to be totally irreducible.

Proposition 3.3. Let (T,X) be an irreducible representation of A on
a locally convex space X. If A1 6= A2 for every linearly independent pair
x1, x2 ∈ X then the representation T is totally irreducible.

4. On the Fell and Doran problem. In the case of the problem of Fell
and Doran the topological structure of the algebra A is not relevant, so it is
convenient to formulate the problem as a conjecture concerning properties
of subalgebras of L(X).
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Problem. Let X be a locally convex space and let T be a subalgebra
of L(X) whose action on X is irreducible and T com = K I.

Is the action of T on X totally irreducible and consequently T = L(X)?

By Corollary 1.4 the total irreducibility holds under the assumption of
algebraic irreducibility of the action of T on X if moreover the Closed Graph
Theorem is valid in X.

The algebraic irreducibility assumption can be weakened to T having no
non-trivial invariant injective operator ranges.

The concept of an injective operator range of order k in a Banach space
was defined by Rosenthal and Troitsky [RT] where the corresponding theo-
rem about the density of T in L(X) was proved.

Definition. A subspace Y of a locally convex space X is called an
injective operator range of order k if there exists a closed subspace E ⊂ Xk

and a continuous injective operator B : Xk → X such that Y = B(E).

A subalgebra T ⊂ L(X) has an invariant injective operator range of
order k if there is a proper subspace Y in X and a continuous injective
(T (k), T )-intertwining operator B : Xk → X such that Y = B(E).

Obviously, if an algebra T ⊂ L(X) has no invariant operator ranges
in X, its action in X is irreducible. On the other hand, if the action of T is
algebraically irreducible, then T has no invariant operator ranges in X.

The lack of invariant operator ranges is a condition intermediate between
algebraic and topological irreducibility.

Theorem 4.1. Let X be a locally convex space in which the Closed Graph
Theorem is valid and let T ⊂ L(X) be a subalgebra such that T com = K I.
If T ⊂ L(X) has no non-trivial invariant injective operator ranges then the
action of T on X is totally irreducible.

Proof. If the action of T is not totally irreducible, there is k ∈ N such
that this action is (k − 1)-irreducible but not k-irreducible.

According to Theorem 3.3 there exists a non-trivial densely defined closed
operator S = S1 ⊕ · · · ⊕ Sk−1 commuting with the action of T . If G is the
graph of S then the domain of S is the projection of G onto one of the
coordinates. This projection P is injective onG by Theorem 3.1(iii). Since the
image P (G) is an injective invariant operator range, by the assumption that
P (G) = X and by the Closed Graph Theorem the operator S is continuous.
By Theorem 1.3 the action of T is totally irreducible. This contradiction
proves the statement.

In the next result the representation is supposed to be irreducible but
the assumption about the commutant is strengthened.
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Theorem 4.2. Let X be a topological vector space and let (T,X) be an
irreducible representation of an algebra A. Then T is totally irreducible if
and only if every densely defined T -intertwining operator is scalar.

Proof. Assume that T is totally irreducible. Then T = L(X). For every
T -intertwining operator S we have D(S) = X. Since S commutes with all
elements of L(X), it is scalar.

Suppose now that T is not totally irreducible. By Theorem 1.3 there
exists for some k ∈ N a densely defined closed operator S : D(S)→ Xk which
commutes with the action of T . Let T ∈ T and suppose that T = limα Taα
in the strong operator topology with Taα ∈ T . For every x ∈ D(S) we have
Tx = limα Taαx and

lim
α
STaαx = lim

α
TaαSx = TSx.

The operator S is closed, hence Tx ∈ D(S) and STx = TSx. This shows that
the domain of S is invariant under T , and S commutes with the elements
of T . We can represent S = S1⊕· · ·⊕Sk, where the operators Sj , 1 ≤ j ≤ k,
are T -intertwining. Since at least one of the operators Sj is not scalar, the
conclusion follows.

Recall the well known example of an irreducible representation of an
algebra which does not satisfy the condition T com = K idX and hence is not
totally irreducible. Let X be a Banach space such that there exists A ∈ L(X)
which has no closed invariant subspaces. Let P(A) be the algebra generated
by A in L(X). Then for every 0 6= x ∈ X the orbit P(A)x is a non-zero
A-invariant subspace, so its closure is equal to X. The action of P(A) on X
is irreducible. Obviously, being commutative, the algebra P(A) is not dense
in L(X).

We are going to prove that in this case L(X) is generated by two elements,
namely by A and an arbitrary rank one operator. This is a consequence of
the following more general fact.

Proposition 4.3. Let X be a locally convex topological space and let T
be a subalgebra of L(X) acting irreducibly on X. If F is an arbitrary rank
one operator, then T and F generate L(X).

Proof. Let A be the algebra generated by T and F . The operator F
can be represented in the form F (y) = f ⊗ x(y) = ϕ(y)x, where ϕ ∈ X ′

and 0 6= x ∈ X. By Theorem 3.1(ii), the action of the algebra T ∗ on X ′ is
irreducible, so

∀f ∈ X ′, ε > 0, x1, . . . , xk ∈ X ∃T ∈ T , |T ∗ϕ(xi)− f(xi)| < ε, 1 ≤ i ≤ k.

On the other hand, by the irreducibility of the action of T on X, for every
x ∈ X and every neighbourhood U of zero in X there exists A ∈ T such
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that Av − x ∈ U. Then for every xi,

f ⊗ x(xi)−AFT (xi) = f(xi)x− ϕ(Txi)Av
= (f(xi)− ϕ(Txi))x+ ϕ(Txi)(x−Av)
= (f(xi)− ϕ(Txi))x+ (ϕ(Txi)− f(xi))(x−Av) + f(xi)(x−Av).

The formula shows that for every neighbourhood O of zero in X we can find
A, T ∈ T such that f⊗x(xi)−AFT (xi) ∈ O for all 1 ≤ i ≤ k. It follows that
every rank one operator f ⊗ x belongs to the strong closure A. The action
of the set of rank one operators on X is algebraically irreducible. A linear
operator S on X which commutes with all rank one operators is proportional
to the identity.

By the JDT, the action of A on X is totally irreducible, hence A is
strongly dense in L(X).

Corollary 4.4. If X is a locally convex space such that some A ∈ L(X)
has no non-trivial closed invariant subspace then L(X) is generated by two
elements.

We close this section with some examples of irreducible subalgebras A of
L(X) such that the space of all densely defined operators commuting with
the elements of the subalgebra is trivial. In this case Theorem 3.1 implies
the strong density of A in L(X).

Example 4.5. Denote by E the space of entire functions on the complex
plane provided with its natural topology of almost uniform convergence.
The paper [Z4] is dedicated to generators of the space L(E). The principal
conclusion is that the translations and pointwise multiplications by elements
of E strongly generate L(E).

The proof uses the Jacobson Density Theorem; as part of the proof it
is shown that every element of L(E) which commutes with translations and
multiplications by elements of E is scalar. It is easily seen that all densely
defined intertwining operators are scalar.

First observe that the operator of derivation f ′ = d
dzf generates transla-

tions in E .
The Taylor series

f(z + w) =

∞∑
n=0

f (n)(z)
wn

n!

is convergent in E , which implies that every translation can be strongly
approximated by linear combinations of powers of d

dz .
Let S be a densely defined operator in E which commutes with d

dz and
with multiplication by any element of E .
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For f in the domain of S set g = S(f)/f , which is a function analytic
outside the discrete set of zeros of f . Now,

g′ =
S(f)′f − S(f)f ′

f2
=
S(f ′f)− S(ff ′)

f2
= 0

on the domain of g. It follows that g is constant and S(f) = αf .
In [Z4] Żelazko asked whether L(E) is generated by two operators.
The answer is “yes”: multiplication by z and d

dz generate L(E).
With similar arguments one can prove that z and d

dz generate the algebra
L(H(O)), where H(O) is the space of analytic functions on a connected,
simply connected subset O of the complex plane.

Moreover, using the Corona Theorem the same fact can be proved for
the Hardy space H∞(D) on the disc.

Example 4.6. Let (H, (·|·)) be a Hilbert space. Berntzen and Sołtysiak
[BS] construct two C∗-commutative subalgebras of L(H) which generate
L(H) in the strong operator topology. The construction uses a simple but
useful fact that an arbitrary set Z admits the structure of an abelian group.
If {ei}i∈Z is an orthonormal basis in H, and Z is provided with the structure
of an abelian group, we can define a family of shift operators in H by the
formula

Si(ej) = ei+j .

Let P0(x) = (x|e0)e0, where 0 means the neutral element of the group Z.
The operator P0 is the orthogonal projection on the line generated by e0.

The main result of [BS] states that the subalgebra A generated by the
operators Si, i ∈ I, and P0 is dense in L(X) in the strong operator topology.

Let us verify how this result can be deduced from Theorem 1.3.
Note that for every i ∈ Z we have SiP0S−i = Pi, the orthogonal projec-

tion on the space generated by ei. Thus the algebra A contains all projections
on the basic vectors.

If 0 6= V ⊂ H is a closed A-invariant space, then V is invariant under
all Pi, i ∈ I. There is i such that PiV 6= 0, hence V contains at least one of
the basic vectors. The invariance under all Si implies that all basic vectors
are in V , so V = H and the action of A in H is irreducible.

Now, let A be a densely defined operator which commutes with A on its
domain DA. By the argument above, DA contains all elements ei, i ∈ I.

The formula APi = PiA implies A(ei) = APiei = PiA(ei) = λiei for
some λi ∈ C, so every element of the commutant A′ is a diagonal operator.

Next, we have

λiei+j = λiSjei = SjA(ei) = ASjei = Aei+j = λi+jei+j

for all i, j ∈ I. It follows that λi = λ0, i ∈ I, so the operator A is scalar.
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By Theorem 1.3 the action of A in H is totally irreducible, hence A is
dense in L(H) in the strong operator topology.

Example 4.7. Let X be a Q-algebra and let T be a subalgebra of L(X).
Suppose that left multiplication by each a ∈ X belongs to T . Then the
algebraic commutant T com

a coincides with T com.
In fact, if R ∈ T com

a , then DR has a non-trivial intersection with the
(open) set of elements invertible in X. Let a ∈ DR be invertible. For every
x ∈ X we have x = xa−1a ∈ DR and R(x) = R(xa−1a) = xa−1R(a), which
implies that R is continuous.

If moreover the action of T is irreducible and T com = K I, then T is
dense in L(X) by Theorem 1.3.

Doubtless, the state of investigations on the problem of Fell and Doran
is not satisfactory. It seems that the problem is quite delicate, so the con-
struction of a (possibly existing) counterexample is difficult. To this end it is
sufficient to find for some locally convex spaceX a strongly closed subalgebra
A ⊂ L(X) satisfying the following conditions:

(i) the action of A on X is irreducible,
(ii) Acom = K I,
(iii) there is a non-trivial operator S defined on an orbit O(A, x) com-

muting with all elements of A.

So far, no example of this type is known.
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