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Zeros of the Derivatives of L-Functions Attached to
Cusp Forms
by
Yoshikatsu YASHIRO

Presented by Jerzy KACZOROWSKI

Summary. Let f be a holomorphic cusp form of weight k with respect to SL2(Z) which
is a normalized Hecke eigenform, and Ly (s) the L-function attached to f. We shall give
a relation between the number of zeros of Ly(s) and of the derivatives of Lf(s) using
Berndt’s method, and an estimate of zero-density of the derivatives of Lf(s) based on
Littlewood’s method.

1. Introduction. Let f be a cusp form of weight &k for SLo(Z) which
is a normalized Hecke eigenform. Let af(n) be the nth Fourier coefficient
of f and set A;(n) = af(n)/n*~1/2. Rankin showed that 3" __[\;(n)]> =
Cyx+ O(x3/5) for & € Rsq, where C'y is a positive constant depending on f
(see [8, (4.2.3), p. 364]). The L-function attached to f is defined by

(1.1) o

Lf(s):ZAf;(f): I1 <1—af(m>l(1—ﬁf(@>1 (Res > 1),

S S
n=1 p prime p p

n<x

where af(p) and By (p) satisfy ap(p)+5r(p) = Ar(p) and af(p)Br(p) = 1. By
Hecke’s work [4], the function Ly(s) is analytically continued to the whole
s-plane by
-1 o
12 n Ve (s BT 100 = § a0y,
0
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and has a functional equation

Ly(s) = xs(s)Ly(1 =)
where x(s) is given by

_ 1 I'(1—s+
9 - )
= 2(2%)_2(1—5)F<s + k;1>lﬂ<s - k;1> cos(m(1l — s)).

The second equality is deduced from the fact that I'(s)I'(1 —s) = 7/sin(7s)
and sin(m(s + (k — 1)/2)) = (=1)*/2 cos(n(1 — s)). Similarly to the case of
the Riemann zeta function ((s), it is conjectured that all complex zeros of
L(s) lie on the critical line Re s = 1/2, which is the Generalized Riemann
Hypothesis (GRH). In order to support the truth of the GRH, the distribu-
tion and the density of complex zeros of L (s) are studied without assuming
the GRH.

Lekkerkerker [6] proved an approximate formula for the number of com-
plex zeros of L¢(s):

T T

where T' > 0 is sufficiently large, and N¢(T") denotes the number of complex
zeros of L(s)in 0 < Ims < T'. The formula is analogous to the formula
for N(T), the number of complex zeros of ((s) in 0 < Ims < T, given by
Riemann [9]:

T T
(1.5) N(T) = o log 5o + O(logT).

(Later von Mangoldt [14] proved rigorously.) In the Riemann zeta
function, the zeros of the derivative of ((s) have a connection with the
Riemann Hypothesis (RH). Speiser [10] showed that RH is equivalent to
the non-existence of a complex zero of ¢’(s) in Res < 1/2. Levinson and
Montgomery [7] proved that if RH is true, then ¢(™)(s) has at most finitely
many complex zeros in 0 < Res < 1/2 for any m € Z>o.

There are many studies of the zeros of (™) (s) without assuming RH.
Spira [I1], [I2] showed that there exist o, > (7m + 8)/4 and a,, < 0 such
that (™ (s) has no zero with Res < o,, or Res < a,,, and exactly one
real zero in each open interval (—1 — 2n,1 — 2n) for 1 — 2n < «,. Later,
Yildirim [I6] showed that ¢”(s) and ¢"”'(s) have no zeros in 0 < Res < 1/2.
Berndt [2] gave a relation between the numbers of complex zeros of ((s) and

of (™) (s):

(1.6) No(T) = N(T) — 11282

2

+ O(logT),
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where m € Z>; is fixed and N, (T') denotes the number of complex zeros
of (™(s) in 0 < Ims < T. Recently, Aoki and Minamide [I] studied the
density of zeros of ((™)(s) in the right hand side of the critical line Re s =
1/2 by using Littlewood’s method. Let N,,(o,T) be the number of zeros of
¢ (s) in Res > o and 0 < Im s < T. They showed that

T 1
].. Nm 7T == 1 )
(L7) (0,T) 0(0—1/2 Oga—1/2>
uniformly for o > 1/2. From (|1.6)) and (|1.7)), we see that almost all complex
zeros of (™ (s) lie in the neighbourhood of the critical line.

The purpose of this paper is to study the counterparts of the results of
Berndt, Aoki and Minamide for the derivatives of L¢(s), namely, the relation

between the number of complex zeros of L¢(s) and that of Lgcm)(s), and the

density of zeros of Lgcm)(s) in the right half-plane Res > 1/2. Let ns be the
smallest integer greater than 1 such that Af(ny) # 0. The mth derivative of
Ly(s) is given by

LU7(s) = i Ap(n)(=logn)™ i Ar(m)(=logm)™ By,

ns ns
n=1 n=ng

Differentiating both sides of li we find that Lgem)(s) is holomorphic in
the whole s-plane and has the functional equation

(1.8) L =3 (m) (L0 - ),

r
r=0

First, we shall exhibit zero free regions for Lgcm)(s) by following Berndt’s
method (see [2]) and Spira’s method (see [11], [12]).

THEOREM 1.1. The following assertions hold for any m € Z>q.

(i) There exists ofm € Rsq such that L;m)(s) has no zero in Res >
Ofm-

(ii) For any e € Rxo, there exists 7 m e € Ry (y_1)/241 such that Lgcm)(s)
has no zero with |s| > 6, satisfying Res < —e and [Ims| > €.

(iii) There exists afm € Re_(y_1)/2-1 such that L;m)(s) has only real
zeros in Res < aym, and one real zero in each interval (n — 1,n)
forn € Z<q, -

Next, based on Berndt’s proof, we can obtain the following formula for

the number of complex zeros of L;m)(s):

THEOREM 1.2. For any fited m € Z>1, let Nf,(T) be the number of
complex zeros of Lgcm)(s) im0 < Ims <T. Then for any large T > 0, we
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have

T T T
Nm(T) = —~ log% ~ 5 logns 4+ O(log T').

Moreover the relation between N¢(T') and Ny, (T') is given by
T
Nym(T) = Ny(T) — o logny + O(logT).

Finally, using the mean value formula for Lgcm)(s) obtained in [15] and
Littlewood’s method, we obtain the estimate of the density of zeros:

THEOREM 1.3. For any m € Zx>q, let Ny, (0,T) be the number of com-

plex zeros of L;m)(s) with Res > o and 0 <Ims <T. For any large T' > 0,
we have

(1.9) Nym(o,T) = O<U —T1/2 o8 ; —11/2>

uniformly for 1/2 < o < 1. More precisely,

(1.10) Nf’m(U,T)
< 2m +1 T 1 1 T (2m)!nfo

1 X 1
ST 012 %012 2o 172 Ay P(log ny)Pm
9 _12m+11 T2m
10g(1+0<(0 )7 (log T) )) 1/2 <0 <1,

log T’
o 2s)
T20—1

1 T (20 _ 1)2m+1 (log T)2m+2
—1—%70_1/2 10g<1+0< T , o=1,

25 — 1 2m+41
10g<1 + O<(a)>>, 1<o<ofm,

T

where 0§y, s given by Theorem [1.1|(i).

2. Proof of Theorem To show (i), we write

L) = Ap(ng) (= log )" F (s)n
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Deligne’s result |Af(n)| < d(n) < n® implies that there exist ¢y € Ry and
ofm € Rsq depending on f and m such that

s (o) ()

> (logn/logny)™ 1
< < Z
S 2 e 3

(e 9]

(2.2) |Flo+it)—1]< >

n=ny+1

n=nj+1
for 0 € R>,,,, and t € R, where ¢ is an arbitrary positive number. Hence
Lgcm)(s) has no zeros with Res > o, that is, (i) is proved.

Next we shall show and . Replacing s with 1 — s in and
, we have

(23) (-1 s)

_ m0< ) m=r) ( (2m) 2 cos(m)r<s—k;1)r<s+’?>>(r).

T

Since (cos(ws))") = 7" (a, cos(ws) —|— b, sin(ws)) where a,,b, € {0,£1}, and
(2m)=29)(") = (=2log2m)"(21) 2% for r € Z>p, the formula (2.3) can be
written as

24)  (-)"LYM -

r=0
where
m-—r m-—r
Ry—r(s) = cos(ms) aj L(]) ) + sin(7s Z v L
3=0 =0
and a), b, € R. It is clear that af = 1, by = 0 and Ro(s) Ly (s)cos(ms).

MOI‘GOVQI" we write as
<—1>mL§:“><1 ~ )
2(2m)—2s

f(s) = Ro(s) <F<s _ k;1>F(s 4 "?))(m),
m—1
g(s) =

(2.5)

= f(s) +9(s)

where
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The formula (2.5)) implies that if | f(s)| > |g(s)| in some region then Lgcm)(s)
has no zero in that region.

In order to investigate the behavior of f(s) and g(s), we shall consider the
approximate formula for (F (s— %) F(s+ %) ) (T)/ (F( )F(s—i— %)) .
By Stirling’s formula, it is known that

!
(2.6) IZ:() logs—2+s{u} 1/2du
for s € C such that |args| < m — § where § € Ry is fixed (see [0, Theorem
A5 b)]). Let D :== C\ {s € C | Res < ¢, [Ims| < ¢}, where ¢ is any
fixed positive number. Setting G (s) := (d/~1/ds?~1)GM (s) for j € Z>y
and s € D where GV (s) is the right-hand side of (2.6), we shall use the
following lemma:

LeEmMMA 2.1 ([15, Lemma 2.3]). Let F' and G be holomorphic functions
such that F(s) # 0 and log F(s) = G(s) for s € D, where D C C is

a domain. Then for any fized r € Z>1, there exist ly,...,l, € Z>o and
C(ll,---,lr) S ZZO such that
F) W (Nl - . (G ()
7 (8)= Y Clpean(GH () (G7(s))
Ui +-+rlp=r

for s € D. In particular, C'(T’O 77777 0 =L
The estimates

lu 4 s|? = u? + |s|® + 2uls| cos arg s

|52, u < |s|, larg s| < 7/2,
- |5|?(sin arg s)2, u<|s|, /2 < |args| < 7w — 4,
=\ u> 3|, [args| < /2,
4(1 + cosarg s)u?, u>|s|, 7/2 <|args| <7 —9
o T {u} —1/2 o du T du 1
(S) T < [S) wiEs +|§| T <o

for j € Z>1 and s € D. Then
GW(s) = logs—i—O(’ ’>

. 177G =2 (=1)i(j —1)! up —1/2
G(])(8)=< F U )+( il )+( 1)J+1'§({ui—s)aild“

si—1 257

=)
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for j € Z>s. Hence the approximate formula for (I'") /T")(s) is
o M (5))" T 160 ()
—=@VEr+o( > e

lgi+-Frgr=r, q#r j=1

(o) o) e 5

for s € D and r € Zx¢, where M;(s) = O(1/|s|?) for j € Z>; and My(s) = 1.
Using (2.7)) and the approximate formula

k—1 k—1
(2.8) log<s:|:2> = 10g3+10g(1:|:28> = log |s|+iargs+O(1/]s|)
for |s| > (k —1)/2, we can write

(P(s 55 1(s + 25) "
(s~ 507+ 1))

(2.7)

(2.9)

o<ip<t  (log(s —551))" (log(s + 53))”
0<1<5,0<2<l—j

= Si(s) + Ti(s)

for | € Z>o, s € D" and |s| > (k —1)/2, where D' := C\ {s € C| Res <
(k—1)/2+¢, |Ims| < e} and

s = (15— £52) s s +552)).

Ly (log |5} (logs])'~*
(210)  Ti(s) = O 77 p_(og|s[)!(log|s) ™7 ) = O ———
(e 2 )=o("45)
for | € Z>1, in particular Sp(s) =1 and Tp(s) = 0.
Next using R, (s), Sy(s) and T).(s), we shall give a condition which implies
|7 (s)] > ]g(s)] for some region. From and (2.9)), the inequality |f(s)| >

lg(s)| is equivalent to

1Sm (8) + Tn(s)] >

m—1 R
> RS 0) + o)
r=0
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Dividing both sides by S,,—1(s) and applying the triangle inequality, we see
that if

)

2.11
1) 519> |5 () g

]ZRO (5@ 50)

then |f(s)| > |g(s)| for s € D’ and |s| > (k — 1)/2. To prove (2.11]), we shall
obtain upper bounds of (1/5;)(s) and (R,/Rp)(s). The formula gives

1 Cy
2.12 —(8)]| < —
(2.12) 5| = Togls)y
for the above s and r € Zx>q; here and later, C,Cy,... denote positive

constants depending on f, r and . Since L(fj) (s)and (1/Ly)(s) are absolutely
convergent for Res > 1, it follows that

(2.13) &( )| = z”": L;') s)+tan(ms Z )
Ry = I Ly
for Res > 1+ €. Here tan(7s) is estlmated as
e 2te2mio 1‘ < {2/(1 —e %) if |t| > €,
e e + 1] 7 |3 if o € Z.

Combining (2.10) and (2.12)—(2.14)), we see that the right-hand side of
(2.11)) is estimated as

e ol 250)

m—1
Cy 1 1
< — + Cs|tan(rs)| < —— + - > < Crme
5] ZO (log[s[ym=1=" " [s[(log|s[)m—" /

for |s| > (k—1)/2 and Res > 1 + ¢ provided [Im s| > € or Re s € Z, where
C¢me is a positive constant depending on f, m and e. Choose ry,, . €

Ry (k—1)/2 such that Cfme < (logrpme)/Cr. The inequalities (2.12)) and

(2.15) imply that (2.11)) is true, that is, Lgcm)(l — s) has no zero for s € C
such that |s| > r¢,,., Res > 1+ ¢ and |Ims| > e. Therefore, we conclude

< Ca+Csltan(ms)|

(2.14) [tan7(o +it)| =

(2.15) ‘

that for any € € R~ there exists 67, € Rs(,_1)/241 such that Lgcm)(s) has
no zero with |s| > ¢, ., Res < —¢ and |Im s| > ¢, that is, the proof of
is complete.

Finally, we show by applying Rouché’s theorem to f(s) and g(s).
For n € Z>1 let D,, be the region where n < Res <n+1 and |[Ims| < 1/2.
By and , we see that there exists 0y, 1/2 € Ry (x—1)/2 such that
|£(s)] > |g(s)| on the boundary of D,, and in the region where |s| > &, 1/2
and Res > 1 + 1/2. Then the number of zeros of f(s) is equal to that of
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f(s) + g(s) in the interior of D,. From (2.4)), and (2.9),
(2.16) f(s) = Ly(s) cos(ws)F( - I€;1>F<s + k;1> (Sm(s) + Tn(s)).

When Ry, is chosen such that Ry, > 0,172 and Cs /(R log Ry m) < 1,
(2.12) gives

Cs

2.17 ST oo
(210 Tlog]s
that is, Sy (s) + T (s) has no zero with |s| > Ry ,,. Hence f(s) has the only

real zero s = n+1/2 in D,,. It is clear that f(s) = f(5) and g(s) = g(5)

for s € C, which implies that Lgcm)(l — s) can only have a real zero in
the interior of D,. Replacing 1 — s with s, we conclude that there exists

<1,

afm € Re_(y—1)/2—1 such that Lgcm)(s) has no complex zero in Res < ay,,
and one real zero in each open interval (n —1,n) for n € Z<a,,,. The proof

of is complete.

3. Proof of Theorem Using Theorem we can choose ay,, €
Ro_(k—1)/2 and oy, € R>q such that Lgcm)(s) has no zeros with Re s < ay,,

or Res > oy p,. Moreover, choose 77, € Rs2 and T" € R+ such that Lgcm)(s)
has no zeros with 0 < Ims < 7¢,, or Ims = T'. Using the residue theorem
in the region where ay,, < Res <oy, and 77, < Ims < T', we get

1 Ofm+iTfm ofm+iT af m+iT

B Nm@=5=( § + § + |
Afm+iTrm  Ofm+iTrm  Ofm+iT
af’m—&-i’rf,m

+ )(log LY (s))ds = I + I + I3 + L.
af’m+iT

First, it is clear that
logL(m) Ot + 1Trm —logL(m) Qfm +1Ttm
(32) L= ; oy, fm) log Ly (ay, . ):0(1).

27

s

To approximate Iz, we write Lgcm)(s) = Ap(ng)(=lognys)™F(s)n;* where
F(s) is given by (2.1). Using we find that 1/2 < |F(s)| < 3/2,
Re F(s) > 1/2 and |arg F(s)| < m/2 for s = o4, + it (t € R). Hence

ot m+iT
+ log F'(s)

O'f‘m%»i‘l‘fym

1 g Ap(ng)(=lognys)™
27 nfc

(33) L=

(G f 4+ iT)1 T
_ (0fm +i )ognf+0(1):_27r10gnf+0(1).

271
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Next we shall estimate I3. By (L1.8]), the approximate functional equation
for Lgcm)(s) (see [15, Theorem 1.2]) and Rankin’s result, there exists A € R>g

such that L;m) (o +it) = O(|t|) uniformly for o € [afn, 0 fm]. This implies
that

log Lgcm)(afm +4T) — log Lgcm)(af,m +iT)

4 I3 =

(3-4) 3 21

arg L afm,+iT) —arg L Otm + 1T

_ gLy (o, )2 gLy (f: )—G—O(logT).
s

To estimate the first term of the right-hand side, we write Lgcm)(a +1T) =

(—1)me=Tloens \¢(ns)G (o +iT) where

o0

Clo+iT) = (10%7?”)’" L1 3 Meing”J‘/”
Ny Ap(ng) n—m 41 n

for o € R5. Let @ be the number of zeros of Re G(s) on the line segment
(afm + 1T, 05m + iT). Divide this line into @ + 1 subintervals by these
zeros. Then on each subinterval, the sign of Re G(s) is constant, and the
variation of arg G(s) is at most m. Hence, there exists a constant C' such

that arg G(s) = arg Lgem)(s) + C on the divided line, and so
(3.5)  Jarg LY (g +iT) — arg LY (0 +iT)| < (Q + ).

In order to estimate Q, let H(z) = (G(z+iT)+ G(Z +iT'))/2. Then we find
that

(3.6) H(oc)=ReG(c+iT)

- (I(Jgi%]‘)m <1 * _i A/\ff(g;)) <1i)0gg:f>m(fg>gcos <T o 720))

n=ny+1
for o € R-y. Now (12.2)) and (3.6) give
1 (logng)™ 3 (logng)™
= R < 2
(37) 5 nfo.f’m = H(O’f,m) =9 nf"f’m .

Take T so large that T — 7¢,, > 2(0fm — fm). Since Im(z + iT) >
T — (T —7fm) > 0 for z € C such that |z — o,| <T — Tfm, it follows that
H(z) is analytic in the disc |z — 04| < T — Tf4m. Note that there exists a
positive constant B such that H(z) = O(T?) in that disc because L¢(o +it)
= O(|t|Y). For u € Rsg, let P(u) be the number of zeros of H(z) in
|z — 0¢m| < u. Then using the trivial estimate
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200 fm—Cf m 2(of,m—afm
1 (o, f, )P(u) 1 (o7, £, )P(u)

log 2 S u ~ log2 S u du,

Ofm—Q&fm 0

P(ofm —apm) <

Jensen’s formula (see [I3, Chapter 3.61]), the above remark and (3.7), we
have
2(0f,m—0fm)
P(0fm — Qpm) < |
0
27

1 .
“or S log [H(0fm +2(0fm — 04f7m)e“9)\ df —log |H (o ¢m)|
0

P(u)

u

du

2
< | logTPdf +1 < logT,

0
Therefore
(38) Q=#{o€ (apmorm) ]| Flo) =0} K P(ofm— ofm) < logT.
Combining (3.4)), (3.5)), (3.8]), we obtain
(3.9) Is = O(logT).

Finally, in order to approximate I, we shall obtain an approximate for-

mula for log Lfm)(afym +1iT) as T'— oo. By the proof of Theorem there
exists 7, € R such that

g

7 (1—3s)
for s € C in the region where |s —(1—(k—1)/2)| > d¢m, Res <1—(k—1)/2
and |Im s| > 1/2. Choose o, € Reg such that ay,, <1—(k—1)/2—0fmn.
Then the path of I is contained in the above region. Replacing s with 1 — s
and taking the logarithm of both sides of , we obtain

(3.10) <1

T,
1 m =
< 9 ’Sm( S)

(3.11)  log V™ (afm +iT)
= —2(1 —afym —iT)log2m +log f(1 — aypp — iT)

+ log<1 + %(1 — O — ZT)) + O(1).
The first inequality of (3.10) gives |arg(1+ (¢9/f)(1 —afm —iT))| < 7/2 and

(3.12) log(l + ?(1 — O — z'T)>

2
+ (arg(l + %(1 — O — zT))) < 1

2

< \/’ch(l—aﬁm—m
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By (2.16)), the second term of the right-hand side of (3.11)) can be written
as

(3.13)  log f(1 —aypm —iT)

k—1 k—1
= 10gF<1—af7m—2—iT> +10gF<1—af7m—|—2—iT>

Tm .
+1og S (1 — afpm —iT) + log<1 + Sf(l — O — ZT))

m
+log L(1 —ayym —iT) +logcosm(l — apy —iT).
Now it is clear that

COS(?T(l — Qfn — ZT)) — eﬂTei(lfaf,m)flogQ(l + 6727T(17af,m)i/€27rT)7

— bs(n)

nl—afym—iT
n=1

log L¢(1 —ofpm —iT) =

where bg(n) is given by

bﬂ@—{
and ay(p), Br(p) are given by (1.1)). Hence for the last two terms of the
right-hand side of (3.13) we have
(3.14) log L(1 — afp — 1) +logcos(m(l — apm — 1)) = 7T 4+ O(1).
By a similar discussion to (3.12)), the fourth term of the right-hand side of
(3.13)) is estimated as

T .
(3.15) log<1+S(1—af7m—zT)> < L

(af(p)" + Br(p)")/r, n=p",
0, otherwise,

The trivial formula
k—1
log(l —ofy £ S iT) =logT — (7/2)i+ O(1/T)

shows that the third term of the right-hand side of (3.13) is approximated
as

(3.16)  log Sy (1 — afpm —iT)

k—1 k—1
= mlog(log(l —Qfm 5 —iT) —|—log<1 —Qfm+ 5 —iT))

=mloglogT + O(1).
Using Stirling’s formula

log I'(s) = (s — 1/2) log s — s + log V2w + O(1/|s])
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and the approximate formula for log(1 — a ¢, £ (k —1)/2 —iT'), we approx-
imate the sum of the first two terms of the right-hand side of (3.13)) as

2
= (1= 20y — 2T)(log T — (7/2)i + O(1/T)) — 2(1 — at.p — iT) + O(1)
= —2iTlog(T/e) — T + (1 — 2af, ) log T 4+ O(1).
Combining ([3.11))—(3.17]), we obtain the desired approximate formula

k-1 E—1
(3.17) logF(l —Qafm+ —5 iT> + logF<1 —Qfy — —— — iT)

m ) . T
log LSC )(af,m +iT") = —2iT log 5o + O(logT),
which implies that

T T
(3.18) Iy = = log - +O(logT).

By (3.2), (3.3), (3.9) and (3.18]), the proof of Theorem is complete.

4. Proof of Theorem Write L;m)(s) = Ar(ng)(—logns)"F(s)/n}
where F'(s) is given by (2.1). By the proof of Theorem we can choose
of.m € Rs1 such that L¢(s) has no zero with Res > o, and

o

S o)
1 )\f(nf) log nf n B
Note that (2.2)) and the above inequality give

N | =

o0

A (n) logn m n af,m/2+a/2
e (R
nmreal Ar(ng) [ \logny n

1 n o/2
(g
- 2(nf+1>

for Res > oy,,. Applying Littlewood’s formula (see [13, Chapter 3.8])
to F'(s), we obtain

(42) 21 > (Rep—o)

F(p)=0
o<Re p<of.m
1<Im p<T T T
= \log |F (o + it)|dt — | log |F (0 f,m + it)| dt
1 1
Ofm Ofm
+ S arg F(u+14T) dt — S arg F'(u+1) dt

=L+ +1I3+ 14
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for o € Ry /5. We first estimate I. Cauchy’s theorem gives

T v v
(4.3) Inglog\F(v—i—it)]dt—i— S log |F(u+1)| du — S log |F(u+iT)|du
1 Ofm Ofm

for all v > o, The facts that log | X| < |X — 1| for X € C and —log |Y| <
2|Y — 1| for Y € C satisfying |Y'| > 1/2, and (4.1)), imply that

T T-1 ny v/2
44 log |F it)|dt < ——
(4.4 Jlog o+ it < T (1)
and
(4.5) S log |F'(u +1)| du — S log |F'(u+iT)| du
If,m Ofm

v n u/2
< S ( ! ) du < 1.
ny+1

fim

Combining f we get

(4.6) I, =0().

Following the estimation of I3 in the proof of Theorem [1.2] we obtain
(4.7) Is+ 1, = O(logT).

To estimate I, we calculate

T-1 ny’ . )
4.8 I = 1 —\log|L it)|“ dt.
(48 h = g S logmy o 3 ) 0B IE o+ )

Jensen’s inequality gives

T T
(m) D 1 (m) D)
(4.9) §log\Lf (o 4 it)|2dt < (T—l)log(T_1§|Lf (o + it)] dt).

Combining (4.2)) and (4.6)—(4.9)), we obtain

T
T-1 1 (m) T
(4.10) Z (Rep—o0) < pp log<T_1 S L (0 + )] dt>
F(p)=0 1
USREPSUf,m
1<Im p<T 20
T-1 g
+ log + O(logT).
T G Pliog e 0008 T)

First, we consider the mean square of Lgcm)(s) for Res > 1. We calculate
as follows:
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T
@11y (|Z{ (o +it)? at
1
_ i A1)z (n2)(log ny)™ (log o)™ f m)"tdt
ni,na=1 (nan)U max{ni,n2} 2

_ 1y 3 PP logny?

n20
n=1

m

1 2 A p(n)ny TN (n2)ny T (log ny )™ (log na)
2 (n1n2)? log(n1/n2)

i

ni,na2=1
n17#ng
oo —imax{ni,nz} —imax{ni,n2} m m
_1 S Ap(n)n, Ag(n2)ny (log 1)™ (log n2)
U (n1ng)” log(nl/m)
n17#ng

By the same discussion for U, (x) with
(@nys Bny) = (Ap(na)ny ™ (log )™, Ay (ng)ny ™ (log na)™) - or
gy ™ (log )™, Ap(na)ny "™ "2 (l0g o) ™)
in [3, p. 348, Lemma 6], we find that the second and third terms on the
right-hand side of are O(1) uniformly for o > 1. Hence, for o > 1,
T

@12) (1LY (o + it dt = Z'Af n;fg”) +0(1).
1

Next the mean square of Lgcm)(s) for 1/2 < Res <1 is obtained as follows:

LEMMA 4.1 ([I5, Theorem 1.3]). For any m € Z>¢ and T > 0, we have

T
413)  (IZ{ (o +it)|? at
1

(T— 1) i |)\f(n)|2(logn)2m + O(TQ(IfU)(IOgTPm)’ 1/2 <o<1,

‘ n20
= 0 2 1 2m
-1y MBI o ogryzn), =,
n=1

Using Rankin’s result mentioned in Introduction and the fact that

OSO (log u)*™ du — (2m)!n}72" o (lognys)i (20 — 1)
i (20- _ 1)2m+1 j! ’

ng 7=0
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which is obtained by induction and integration by parts, we find that the
series in the main term of (4.13)) is approximated as

i Ay (n)[*(log )™

(4.14) —

n=1

:—Ogo(“i“)m) S D) du

ng ng<n<u
C(logng)*™ T (logu)?™ T (logu)®™
Z*T+Cf57d“+o SW‘Z“
f ny ny
2m)InsC 1 1
::( )QUf ! %n+1_%()( %n)
n (20 —1) (20 — 1)

as 0 — 1/2 4+ 0. From (4.10)—(4.14)), the following approximate formula is
obtained:

(4.15) > (Rep-o)

F(p)=0,
o0<Rep<ofm
1<Im p<T
2m+1)(T —-1) 1 T-1 (2m)!nyCy
< 1 1 O(logT
= i 51T ar 8T (n)Pllognyyzn 08T
( 2 — 1 2m—+1 loe T 2m
log(1+0<( 7 )T2U§Og ) >>, 1/2<0<1,
T -1 2% — 1 2m—+1 1 T2m+2
+ log<1+0<(0 ) (og T) >), oc=1,
47 T
2% — 1 2m~+1
log<1+0<(0)>>, o> 1.
L T

Finally, we shall give an upper bound of Ny, (c,T). Since Ny, (0, T) is
decreasing with respect to o, it follows that

(4.16) Nf,m(O',T) :Nf,m(O',T)—Nﬁm(U,l)—i-C

Ofm
1
< \ (Npm(u, T) = Np o (u, 1)) du + C,
o—o1
where we set 01 = 1/2 + (0 — 1/2)/2. Note that ¢ — 01 = (6 — 1/2)/2, so
201 —1 = 0 — 1/2. Since the number of zeros of F,(s) is equal to that of

L;m) (s), it follows that
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9f,m

(4.17) S (nym(uvT) _Nf,m(ual)) du

o1

9fm Rep

= S g ldu = g S 1du
o1 F(p)=0 F(p)=0 o1
u<Rep<ofm 01<Rep<ofm
1<Im<T 1<Im p<T
= E (Rep —o1).
F(p)=0
c1<Rep<c¢m
1<Im p<T

Combining (4.15)—(4.17) we obtain (1.10) and (1.9). Hence the proof of

Theorem [1.3]is complete.
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