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On-line Packing Cubes into n Unit Cubes
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Summary. If n > 3 and d € {3,4} or if n > 1 and d > 5, then any sequence of d-
dimensional cubes of edge lengths not greater than 1 whose total volume does not exceed
(n+1)-27% can be on-line packed into n unit d-dimensional cubes.

1. Introduction. For i = 1,2,... let Q; = \;I, where \; € (0, 1] and
I = [0,1]%. We say that the cubes Qq,Q2,... can be packed (in parallel
way) into a domain D C R? if there are o; € R? such that | J(o; + Q;) € D
and o; + @; have pairwise disjoint interiors. By an on-line packing we mean
a packing in which the members of a sequence of cubes @Q); are revealed

one by one. First we only know A; but we do not know Ao, A3,.... We
choose the appropriate o7 and pack Q. For ¢ > 1, we learn \;y; only
when o1, ...,0; have been defined, i.e., we do not know what ;41 is before

we assign a position of ();, which cannot be changed afterwards. Surveys
of results concerning packings and on-line packings are given in [1, [5]
and [9].

Januszewski [7] proved that any sequence of squares of side lengths not
greater than 1 whose total area does not exceed %(n + 1) can be on-line
packed into n pairwise disjoint squares of sides of length 1 provided n > 3.
Note that it is an open question whether this holds for n = 2 and n = 1. For
n = 1, the following upper bounds of total area of squares of side lengths not

greater than 1 which can be on-line packed into the unit square were found:
5/16 [8], 1/3 [6], 11/32 [4], 3/8 [2] and 2/5 [3].
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We consider the problem of on-line packing of d-dimensional cubes into n
unit d-dimensional cubes. Let I; = 7;+ [0, 1]¢, where 7; € Re for j = 1,...,n
be pairwise disjoint cubes. Moreover, let J, =1; U---U I,.

Observe that n + 1 cubes (1/2 4+ €) - I (of total volume greater than
(n 4+ 1) - 279) cannot be packed into J,, for any € > 0. The reason is that
the interior of any cube (1/2 + €) - I packed into a unit cube I}, contains the
center of I.

The aim of this paper is to show that if either n > 3 and d € {3,4} or if
n > 1 and d > 5, then any sequence of d-dimensional cubes of edge lengths
not greater than 1 whose total volume does not exceed (n + 1) - 2% can be
on-line packed into n unit d-dimensional cubes.

2. Containers. In the main packing method some small cubes @; will
first be packed into special cubes P;, and then P; D ); will be packed into
Jn, by the method described in this section.

Let [ € {2,3}. For each positive integer p, by an (I, p)-cube we mean
the cube %I. Let w be a positive integer and let A be the union of (I, 1)-
cubes Ay, ..., Ay, with pairwise disjoint interiors. We call these cubes (,1)-
containers. For each positive integer ¢ any (I, ¢)-container can be dissected
into 2% congruent (I,q 4 1)-cubes also called (,q + 1)-containers. Let us
number all (I, 2)-containers contained in A (for k = 1,...,w) with integers
from (k—1)-2%41 to k-2%. Furthermore, for each g, all (I, q+ 1)-containers
contained in an (I, ¢)-container whose number is m are numbered with the
integers (m —1)-2¢ +1,...,m-2%

We present a method of the on-line packing of sequences of (I, p;)-cubes
into A.

We just pack every (I, p;)-cube of the sequence in the congruent (I, p;)-
container of A with the smallest possible number. By an empty (I,p;)-
container we mean an (l,p;)-container whose interior has an empty inter-
section with all cubes packed before. We stop the packing process if a suc-
cessive (I, p;)-cube in the sequence cannot be packed, i.e., if no empty (I, p;)-
container of A exists. We call this approach the method of the first fitting
container.

The following proposition says that the above method is extremely effi-
cient. The volume of A is denoted by |A]|.

PROPOSITION 2.1. Ewvery sequence of (I, p;)-cubes whose total volume is
smaller than or equal to |A| can be on-line packed in A by the method of the
first fitting container.

Proof. Assume that the total volume of the (I, p;)-cubes in the sequence
is not greater than |A| and that the packing procedure stops when we wish
to pack an (I, 7)-cube. Clearly the volume of this cube is (2/1)¢ - 27 Since



On-line Packing Cubes 187

every ([, p;)-cube has been packed in the first fitting container, we conclude
that there is no empty (I, u)-container for any u < r. Moreover, there are
at most 2% — 1 empty containers of every size (I, + 1), (I,7 4 2),... at this
time. Since a finite number of (I, p;)-cubes have been packed, the number of
those empty (I, p;)-containers is finite. Thus the sum of the volumes of the
empty (I, p;)-containers is smaller than

(2d _ 1)(2/l)d(2—d(r+1) + 9—d(r+2) 4. ) _ (2/l)d .g—dr

Consequently, the total volume of the (I,p;)-cubes packed up to now is
greater than |A| — (2/1)?-27%. Since we have just obtained an (I,r)-cube of
volume (2/1)% - 27 the total volume of the (I, p;)-cubes in the sequence is
greater than |A[, which is a contradiction. m

3. Packing algorithm. Let d > 3 and let (Q;) be a sequence of cubes
Q; = q;I, where ¢; € (0,1]. We consider the following types of cubes:

e Q; is very big if ¢; > 2/3,;

e Q;is bigif1/2 < ¢q; <2/3;

e other cubes are small; a small cube Q); is
- 2-small if ¢; € J;Z,(2/3 - 277, 277];
~3-small if ¢; € U;2, (27177, 2/3-277].

A unit cube I C J, is said to be empty if no cube has been packed into
it; a 2-cube if a 2-small cube has been packed into it; a 3-cube if a 3-small
cube has been packed into it; a v-cube if a very big cube has been packed
into it; and a b-cube if a big cube has been packed into it and no other cube
has been packed into it. However, if a 2-small cube has been packed into a
b-cube I, then I is no longer a b-cube: it becomes a 2-cube. Moreover, if a
3-small cube has been packed into a b-cube Ij, then Ij is no longer a b-cube:
it becomes a 3-cube.

In each of the unit cubes I, C J,, we select one of the vertices and denote
it by vg. Let F} be the cube of edge length 3/4 such that Fj is contained in
a 2-cube I and one of the vertices of F}, is a vertex vy of I,. We partition
any 2-cube I, into 4¢ (2,2)-containers. We order them so that the (2,2)-
containers contained in Iy \ Fj precede those contained in F. Let Gy be the
cube of edge length 2/3 such that Gy, is contained in a 3-cube I} and one of
the vertices of Gy, is vy. We partition any 3-cube I}, into 3¢ (3, 1)-containers.
We order them so that the (3, 1)-containers contained in I \ G} precede
those contained in Gy.

Packing very big cubes. If ); is very big, then we find the greatest
k€ {1,...,n} such that Ij is empty and pack Q; into I. Now I} is a v-cube.
No other cube will be packed into this v-cube.
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Packing big cubes. A big cube @Q; will be packed into I, C J, so that
one vertex of o; + Q; is vg. If Q1 is big, then we pack it into I;. Now [ is
a b-cube. Assume that ¢ > 1 and @; is big. If there is a 3-cube into which
Q; can be packed, then we pack @; into that cube. Now any (3, 1)-container
contained in G is non-empty and Ij is still a 3-cube. Otherwise, if there is
an empty unit cube of J,,, then we find the smallest k € {1,...,n} such that
I}, is empty and we pack Q); into it; now Iy is a b-cube. If there is no empty
unit cube I and if there is a 2-cube I into which @Q); can be packed, then
we pack @; into it. Now any (2, 2)-container contained in F} is non-empty
and I} is still a 2-cube.

Packing 2-small cubes. If Q; is 2-small, then we pack it into Iy. If
1/3 < q1 < 1/2, then we pack @7 so that one vertex of o1 + Q1 is a vertex
v # v1 of I and so that o1 + @)1 has a non-empty intersection with the
empty (2,2)-container with the smallest possible number (i.e., with number
1 when we pack Q7). If there is no vertex v # vy of I; at which @1 can be
packed, then we pack this cube at the vertex v1. The packed cube o1 + Q1
is contained in the union of 2¢ (2,2)-containers. Now these containers are
non-empty. If ¢; € U‘;‘;Q(2/3 279,277, then we find the smallest (2,p)-
container P} containing ()7 and we pack P;, and hence also ()1 C Pi, into
I; by the method of the first fitting container. Clearly, I7 is now a 2-cube.
Assume that ¢ > 1 and Q; is 2-small. If there is a 2-cube into which @; can
be packed, then we pack @); in the same way as Q1. Otherwise, if there is an
empty unit cube of J,, then we find the smallest k£ € {1,...,n} such that
I, is empty and pack @); into I in the same way as we packed @J1. Now I}
is a 2-cube. If there is no empty unit cube in J, and if there is a b-cube I}
into which @Q; can be packed, then we pack Q); into it. Now I} is a 2-cube
and any (2, 2)-container contained in F}, is non-empty.

Packing 3-small cubes. If @) is 3-small, then we find the smallest
(3, p)-container R; containing @)1 and we pack R;, and hence also Q1 C Ry,
into I; by the method of the first fitting container. Clearly, I; is now a
3-cube. Assume that ¢ > 1 and @); is 3-small. If there is a 3-cube into which
the smallest (3, p)-container R; containing @); can be packed, then we pack
R; (together with ;) into this 3-cube by the method of the first fitting
container. Otherwise, we find the smallest £ € {1,...,n} such that Ij is
either empty or a b-cube. We pack R; together with Q); into I} by the method
of the first fitting container. Now I is a 3-cube.

4. Efficiency of the packing algorithm

LEMMA 4.1. Assume that there is no big cube in a sequence. Denote by
ng the number of 2-cubes in J,. If a sequence of 2-small cubes cannot be
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on-line packed into 2-cubes by the method described in Section [3] then the
total volume of the cubes exceeds ns - (2/3).

Proof. Let (Q;) be a sequence of 2-small cubes as in the statement. De-
note by Q. the first cube from the sequence which cannot be packed into
2-cubes.

For every @); we find the smallest (2, p;)-cube P; containing ;. Since @,
cannot be packed into 2-cubes, we deduce by Proposition [2.1] that

z
Z ’PZ‘ > noy.
i=1
Moreover

2\ /2\% /1\¢ [/2\¢
|Qi’:qg><3.2pi) :<3> '<2pi> :<3> | Pil.

z 2 d z 2 d
;|Qi| > <3> ';|Pi| >n2<3> ..

LEMMA 4.2. Denote by ny the number of 2-cubes in J,. If a sequence
of 2-small cubes and big cubes cannot be on-line packed into 2-cubes by the
method described in Section [3, then the total volume of the cubes exceeds
(ng +1)-27%

Proof. Let (Q;) be a sequence of 2-small cubes and big cubes as in the
statement. Denote by @, the first cube from the sequence which cannot be
packed into 2-cubes.

If a big cube is packed into a 2-cube, then the total volume of the cubes
packed into this 2-cube is greater than (1/2)¢. Denote by m; the number of
big cubes packed into 2-cubes.

CASE 1: Q, is big. Obviously, ¢¢ > (1/2)%,

SUBCASE la: m; = 0. By Lemma the total volume of the cubes
packed into 2-cubes is greater than (ny — 1)(2/3)%. It is easy to verify that
(2/3)% > 2(1/2)4 for d > 3. If ng > 1, then

;!Qil > (ng — 1)<§>d+q§ >n2<;>d+ <;>d: (n2+1)<;>d‘

If ng = 1 and if there is a 2-small cube @), such that ¢, + g, > 1, then
@ +q? > (1 —q.)%+ ¢ Set ¢(q) = (1 — q)% + ¢%. The function o(q) has
a global minimum at gy = 1/2. Thus the total volume of the cubes packed
into a 2-cube is greater than

Thus

1

d
e(q:) — ¢ > ¢(q0) — ¢ = 2<2> —q¢Z.
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If no = 1 and if there is no 2-small cube @), such that ¢, + ¢q. > 1, then
the total volume of the cubes packed into the 2-cube is greater than (1 —
(2/3)%)(2/3)?. For d > 3 we have (1 — (2/3)%)(2/3)? > (1/2)?. Moreover
(1/2)4 > 2(1/2)¢ — ¢. Consequently, if ny = 1, then

d

: N .4 1

SUBCASE 1b: mp > 1. Denote by [ the smallest number such that a big
cube is packed into a 2-cube I;. Denote by Q,, the first 2-small cube packed
into I;. Note that ()., could not be packed into ny — my 2-cubes into which
no big cube is packed. By Lemma the total volume of the cubes packed
into those 2-cubes into which no big cube is packed plus the volume of @),
is greater than (ng —my)(2/3)%. Consequently,

z d d
;|Qi| > (ng—mb)<§> "‘mb(;) +q¢

1\? 1N\ /1\? 1\?
CASE 2: Q, is 2-small. Obviously, ¢¢ < (1/2)%.

SUBCASE 2a: mp = 0. By Lemma [£.1] we get
a 2\ ¢ 1\?
Qi >na( 5] >ma+1)(5)
i—1 3 2

SUBCASE 2b: my > 1. Denote by [ the greatest number such that a
big cube is packed into I;. Furthermore, denote by )., the big cube packed
into I;. If gy +q. > 1, then ¢ +¢¢ > (1 — ¢.)% + ¢¢ > 2(1/2)%. This implies
that the total volume of the cubes packed into I is greater than 2(1/2)% —¢Z.
If qu + g, < 1, then the total volume of the cubes packed into I; is greater

than (1_<i>d> (g)d+<;>d_qg>2<;>d—qﬁ.

The total volume of the cubes packed into my; — 1 other 2-cubes into which
big cubes are packed is greater than or equal to (my — 1)(1/2)¢. The total
volume of the cubes packed into those 2-cubes into which no big cube is
packed is greater than or equal to

vl ) w3 ()2
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Consequently,
& 1\? 1\? N,y
Z Qi > (n2 — mb)<2> + (me — 1)<2> + 2<2> —4:Tq:
i=1

— (na+ 1)<;>d. .

LEMMA 4.3. Denote by n3 the number of 3-cubes in J,. If a sequence
(Qi) of cubes containing both 3-small cubes and big cubes cannot be on-
line packed into 3-cubes by the method described in Section 3], then the total
volume of the cubes exceeds n3 - (3/4).

Proof. Let (Q;) be a sequence of cubes ¢;I, where ¢; € U;’;I(Z_l_j,
2/3.277]. Assume that they cannot be packed into 3-cubes by the method
presented in Section [3] Denote by @, the first cube from the sequence which
cannot be packed into 3-cubes. Furthermore, denote by [, the number of big
cubes packed into 3-cubes.

CASE 1: [ = 0 and Q. is 3-small. For every ); we find the smallest

(3, pi)-container R; containing ;. Since @), cannot be packed into 3-cubes,
we deduce by Proposition [2.1| that Y., |R;| > ng. Moreover

LN /3 d 5 \¢  /3\d
\Qi|:%d><2'2pi) :<4> '<3.2m> :<4) | Rl

z 3 d z 3 d
;|Qi| > <4> ';|Ri| >n3<4> :

CASE 2: [, = 0 and Q) is big. The total volume of the cubes packed into
3-cubes is greater than

a3 ()8 )
Consequently,

z AN N
;|Qi’>n3<4> —<2> +qz>n3<4>.

CASE 3: I > 1. The total volume of the cubes packed into 3-cubes is
greater than

o3 o= () ) - em

Thus
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Consequently,
d

z Nt . 3
EIIQZ“>TZ3<4> —qz+qzzn3<4> . m
1=

THEOREM 4.4. If n > 3, then any sequence of d-dimensional cubes of
edge lengths not greater than 1 whose total volume does not exceed (n+1)-27¢
can be on-line packed into J,.

Proof. Let n > 3 and let (Q;) be a sequence of d-dimensional cubes as
in the statement. We pack the cubes by the method described in Section
Contrary to the statement, suppose that it is impossible to pack @1, @2, . ..
into J, by this method. Let @), be the cube which stops the packing process

and let
¢=>_lail.
i=1

We show that this leads to the false inequality
¢>(n+1)-274

Denote by ns,ns, np, n, the number of 2-, 3-, b- and v-cubes respectively.
Obviously no + n3 + ny + n, = n. We consider four cases.

CASE 1: @, is big (1/2 < ¢, < 2/3).

SUBCASE la: ng > 1 and ng = 0. By Lemma [£.3| we get
¢ > 3d+ 1d+ 2d>( +1)1d+ 1d+ 2)*
ns| - ny| = ny | = = ny| = ny | =
3 4 b 9 v\ 3 n3 9 b 9 v\ 3
1 d
> D=1 .
> (1))
SUBCASE 1b: ng > 1 and n3 = 0. By Lemma [4.2] we get
d d d d
1 1 2 1
C>(n2+1)<2> +nb<2> +nv<3> >(n+1)<2>.

SUBCASE lc: ng > 1 and no > 1. The total volume of the cubes packed
into 3-cubes is greater than

of2)' o3 () ()’

The total volume of the cubes packed into 2-cubes is greater than (ny+1)(1/2)4
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— ¢?. Thus
2\ ¢ NN 1\* A
C>n3<3> +(n2+1)<2> _Qz+nb<2> +nu(3> +q;
1\ 4
Z(n+1)<2>.

SUBCASE 1d: n3 = 0 and ng = 0. Obviously ¢¢ > (1/2)¢. We get

¢ > nb<;>d+nv<§>d+qg > (nb+nu)<;>d+ (;)d = (n+ 1)<;>d.

CASE 2: Q. is very big (q. > 2/3). Obviously ¢? > (2/3)? > 2(1/2)%.
Note that if a very big cube @), cannot be packed into J,, then it is possible
that both one unit 2-cube and one unit 3-cube are almost empty (as in

Fig. .

Azy vy Tq Vg Az Un

JURRS) T4

2-cube I} 1 . 3-cube Iy 1 o 3-cube I, 1 .

Fig. 1. There is no empty cube into which a very big cube @, could be packed.

If ng > 1, then

ool () e )

If ng = 0, then
N ORO R RO REO)
> (n+1)<;)d_

CASE 3: @, is 2-small. Assume that nz > 1. Denote by [ the greatest
number such that a 3-small cube is packed into I;. If a big cube cannot be
packed into I;, then either a big cube is packed into I; and the total volume
of the cubes packed into I is greater than (1/2)¢, or no big cube is packed
into I; and the total volume of the cubes packed into I; is greater than
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(1—(2/3)4)(3/4)* > (1/2)%. This implies that if n, > 1 or if a big cube is
packed into a 2-cube, then, by the description of packing of big cubes, the
total volume of the cubes packed into 3-cubes is greater than

-of2)'+ (3 en(l)

SUBCASE 3a: no > 1 and no big cube is packed into 2-cubes. The total
volume of the cubes packed into 2-cubes is greater than ny(2/3)¢ — ¢2. If
np = 0, then it is possible that one unit 3-cube is almost empty. Consequently,

el e o o
(n+1) ( )

If ny > 1, then
1\ 1\ ? 9\ d

C>n2< ) _Qz+n3(2> +nb<§) +nv(§> +q?

1 1\ 1\

> (ng+1) B —i—(ng—i—nb—i—nv) 5 =(n+1) 5) -

SUBCASE 3b: a big cube is packed into a 2-cube. By Lemma [£.2) we get

1\ 1\ 1\ 2\ ¢ 1\
(= - - ) sm+n(z) .
>0 (y) wufz) on(z) () z00(3)

SUBCASE 3c: ng = 0. If ny, > 1 (see Fig. [2, where ny = n), then the total
volume of the cubes packed into b-cubes is greater then

(np — 1) (%)d + 2(%>d —ql=(ny+1) (%)d —qf.
Hence

¢> (nb—l—1)<%>d—qg+n3<%>d+nv(§>d+qg > (n—i—l)(%)d.

b4 v fza vy

Td—1 -

b-cube I 1 o b-cube I 1 o

Fig. 2. Q. is 2-small and np = n.
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If ny = 0, then

¢ > (ng — 1)(i>d+nv<§>d > (n - 1)<§>d > (n—i—l)(;)d.

CASE 4: @, is 3-small. This implies that n, = 0.

SUBCASE 4a: ng > 1. The total volume of the cubes packed into 3-
cubes is greater than nz(3/4)? — ¢2. It is easy to verify that if ng > 1, then
n3(3/4)% > (n3 +2)(1/2)? for d > 3. If ny > 1, then it is possible that one
unit 2-cube is almost empty. Thus

¢ > (ng — 1)(;)d+ (n3+2)<;>d+nv<§>d > (n+1)<;>d.

If ng =0, then

¢> (n3+2)(;>d+nv(§>d > (n—|—1)<;>d.

SUBCASE 4b: ng = 0. If no big cube is packed into 2-cubes, then

> (ng — 1)<§>d+nv<§>d= (n— 1)<§)d > (n+1)<;>d.

If a big cube is packed into 2-cubes and n, > 1, then

¢ > [(ng— 1) +1] <;>d+n<§>d > (n2+m+1)<;>d _ (n—i—l)(;)d.

If a big cube is packed into 2-cubes and n, = 0 (ny = n), then both a big
cube and a 2-small cube are packed into I,,. By Lemma [4.2| we get

¢ > [(na—1) +1](§)d+ (;)d: <n+1>(;)d. .

5. Packing algorithm for d > 5. Let d > 5 and let (Q;) be a sequence
of cubes ¢;I, where g; € (0, 1]. We consider the following types of cubes:

e ;is f-small if ¢; <1 — %\d/ﬁ;

e Q;is f-bigif g >1— ;2.

A unit cube I C J, is said to be empty if no cube has been packed into
it. A unit cube I C J,, is said to be an s-cube if an f-small cube has been
packed into it. A unit cube I C J, is said to be an [-cube if an f-big cube
has been packed into it.

We pack f-small cubes by the method described in [§]. If @1 is f-small,
then we pack it into I. Clearly, I; is now an s-cube. Assume that ¢ > 1 and
Q; is f-small. If there is an s-cube into which (); can be packed, then we
pack it into this s-cube. Otherwise, we find the smallest k& € {1,...,n} such
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that Ij is empty. We pack @; into I by the method described in [§]. Now
I, is an s-cube.

If Q; is f-big, then we find the greatest k € {1,...,n} such that I} is
empty and pack @Q; into I. Now I is an [-cube.

6. Efficiency of the packing algorithm for d > 5

LEMMA 6.1 (see [8]). If d > 5, then every sequence of d-dimensional
cubes of total volume at most 2(%)d can be on-line packed into the unit cube I.

LEMMA 6.2. Denote by ng the number of s-cubes in J,. If d > 5 and
if a sequence of f-small cubes cannot be on-line packed into s-cubes by the
method described in Section [0], then the total volume of the cubes exceeds
(ns +1)-274,

Proof. Let (Q;) be a sequence of f-small cubes as in the statement.
Denote by @, the first cube from the sequence which cannot be packed into
s-cubes.

CASE 1: nyg = 1. By Lemma we get

z d
Z|Q,~\>2<;> (ns+1) (1>
=1

d

CASE 2: ng > 2 and ¢, < 1/2. Obviously ¢ < ( We get

1
2
z d d
;|Qi| > ng <2<;) - qf) +q¢ = 2ns<;>
d
z(n#l)(i) ~

CASE 3: ng > 2 and g, > 1/2. Note that the total volume of the cubes
packed into any two s-cubes is greater than 2(1/2).

SUBCASE 3a: ng is even. We get

: ne (1\* N /1\¢ 1\¢
;|Qi’>2'2(2> +QZ>ns<2) +(2> :(ns+1)<2) .

SUBCASE 3b: ng is odd. The total volume of the cubes packed into an
s-cube I; with the greatest number j is greater than 2(1/2)? — ¢. The total
volume of the cubes packed into ng — 1 other s-cubes is greater than

ns; 1 .2<;>d: (e — 1)(;>d'
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Consequently,

;!Qil >(ns—1)<;>d+2<;>d_qg+qg:(ns+1)(;)d‘ .

THEOREM 6.3. Ifn > 1 and d > 5, then any sequence of d-dimensional
cubes of edge lengths not greater than 1 whose total volume does not exceed
(n+41)-27% can be on-line packed into J,,.

Proof. Let n > 1 and let (Q;) be a sequence of d-dimensional cubes as
in the statement. We pack the cubes by the method described in Section
Suppose that, contrary to the statement, it is impossible to pack @1, @2, . ..
into J, by this method. Let @), be the cube which stops the packing process

and let
¢=>_1Qil-
i=1

We show that this leads to the false inequality
(> (n+1)-27%

Denote by ns,n; the number of s- and [-cubes, respectively. Obviously we
have ng + n; = n. It is easy to verify that

d d
14 1
1—-v2 2| =
(1-572) »2(;)
for d > 5. This implies that the total volume of the cubes packed into [-cubes

is greater than n; - 2(1/2)%. We consider two cases.

CASE 1: Q, is f-small. By Lemma [6.2] we get

¢> (ns—i-l)(;)d—i—nl-?(;)d > (n+1)<;>d.

CASE 2: Q, is f-big. Obviously ¢¢ > 2(1/2)%. It is possible that one of
the s-cubes is almost empty.

SUBCASE 2a: n = 1. We get

¢>q! >2<;>d= (n+1)<;>d.

SUBCASE 2b: n > 2. By Lemma [6.2] we get

s (2 men(2) s oo (2) eo(2)
= (n+1)<)d. .

N =
DN | =
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