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ODE for Lp norms

by

Jarno Talponen (Joensuu)

Abstract. In this paper we relate the geometry of Banach spaces to the theory of
differential equations, apparently in a new way. We will construct Banach function space
norms arising as weak solutions to ordinary differential equations (ODE) of the first order.
This provides as a special case a new way of defining varying exponent Lp spaces, different
from the Musielak–Orlicz type approach. We explain heuristically how the definition of
the norm by means of a particular ODE is justified. The resulting class of spaces includes
the classical Lp spaces as a special case. A noteworthy detail regarding our Lp(·) norms is
that they satisfy Hölder’s inequality (properly).

1. Introduction. In this paper we introduce a novel way of defining
function space norms by means of weak solutions to ordinary differential
equations (ODE). This provides a new perspective for looking at varying
exponent Lp spaces.

The classical Birnbaum–Orlicz norms were defined in the 1930’s, and
since then there have been various generalizations of these norms in several
directions. Notable examples of norms and spaces carry the names of Besov,
Lizorkin, Lorentz, Luxemburg, Musielak, Nakano, Orlicz, Triebel, Zygmund
(see e.g. [BO], [L], [BY], [Mu]). These norms have recently been applied to
other areas of mathematics as well as to some real-world problems (see e.g.
[DHR], [RR02]). Roughly speaking, these norms can be viewed as belonging
to a family of derivatives of the Minkowski functional. This kind of approach
leads to several varying exponent Lp(·) type constructions, e.g. for sequence
spaces, Lebesgue spaces, Hardy spaces and Sobolev spaces. There is a vast
literature on these topics (see [Ko], [LT], [NS] and [RR91] for samples and
further references). There are also other ways of looking at the varying
exponent Lp spaces, such as the Marcinkiewicz space (see [Mar]).
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Let us recall that the general Nakano or Musielak–Orlicz type norms are
defined as follows:

|||f ||| = inf
{
λ > 0:

�

Ω

φ(|f(t)|/λ, t) dm(t) ≤ 1
}
.

Here φ is a positive function satisfying suitable structural conditions. For
instance, φ(s, t) = sp(t), or ψ(s, t) = sp(t)/p(t), 1 ≤ p(·) < ∞, produces a
norm that can be seen as a varying exponent Lp norm. In the latter case
we use the name Nakano norm (cf. [JKL]); these norms turn out to be of
particular importance in this paper.

In contrast, the basic form of the norm that will be introduced here differs
considerably from the above-mentioned norms in the sense that it does not
arise as a derivation of the Minkowski functional, and it does not apply
any norming set of functionals either. In some cases the classes of spaces
introduced here do not coincide as sets with any of the classes mentioned
above for a given p : [0, 1]→ [1,∞) measurable. This is due to obstructions
that will become obvious shortly. However, roughly speaking, the norms
studied here are equivalent to Nakano norms (see Proposition 3.3).

The Musielak–Orlicz norms enjoy the attractive property of being rear-
rangement invariant in the sense that for a measure-preserving transformation
T : Ω→Ω such that ψ(|f(x)|, x) = ψ(|f ◦ T (x)|, T (x)) for a.e. x ∈ Ω we
have |||f ◦ T ||| = |||f |||. However, one may argue that the rearrangement in-
variance and the apparent simplicity of the definition of the norm come at
a cost. Namely, the definition of the norm is opaque in the sense that it
involves an infimum with an integral inequality having rather complicated
interdependencies at the binding surface of the feasible set. For instance, by
looking at the definition of the norm it is difficult to decide how adding 1∆,
∆ ( Ω measurable, m(∆) > 0, to f contributes to the norm, even if ∆ is
in some sense conveniently placed. Here 1∆ is the characteristic function of
the set ∆.

The ‘virtues and vices’ of the norms to be introduced are mirror images of
the ones mentioned above. The ODE-driven norms considered here, in com-
parison, will typically not be rearrangement invariant in the above sense,
and in particular they do not reduce isometrically to the above Nakano
norms (see an example after Proposition 3.3, cf. an example in [T]). On
the other hand, our norms will be ‘localized’ in the sense that one can an-
alyze the (infinitesimal) contribution of a single coordinate to the norm,
a built-in feature of the construction. To make a point, it is possible to com-
pute these norms by solving the defining ODE numerically for continuous
functions f and p. (It is, of course, also possible to compute the above infi-
mum numerically, but we stress that the methods needed to solve our first
order ODEs are linear in nature and elementary.) Thus, our approach to
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the definition of varying exponent Lp space norms is rather inductive than
global.

Next we will discuss the motivating ideas behind the ODE-driven norms.
The author [T] studied varying exponent `p(·) spaces formed in the following
näıve fashion. As usual, we denote by X⊕pY the direct sum of Banach spaces
X and Y with the norm given by

‖(x, y)‖pX⊕pY
= ‖x‖pX + ‖y‖pY, x ∈ X, y ∈ Y, 1 ≤ p <∞.

Let p : N → [1,∞) be a ‘varying exponent’. Define first a 2-dimensional
Banach space by R⊕p(1)R, then a 3-dimensional one (R⊕p(1)R)⊕p(2)R and
proceed recursively to obtain n-dimensional spaces

(. . . ((R⊕p(1) R)⊕p(2) R)⊕p(3) . . .)⊕p(n−1) R;

finally, by taking the inverse limit, this yields a space which can be written
formally as

. . . (. . . ((R⊕p(1) R)⊕p(2) R)⊕p(3) . . .)⊕p(n) R)⊕p(n+1) . . . .

This space is normed by taking a limit of seminorms corresponding to
the n-dimensional spaces above. The recursive construction of the spaces
can be regarded trivial at each step, but the end result may exhibit some
peculiar properties, depending on the selection of the sequence (p(n))n∈N
(see [T]). For instance, it provides an easy example of a separable Banach
space X with a 1-unconditional basis such that X contains all spaces `p,
1 ≤ p <∞, almost isometrically. In any case, this appears a rather natural
way of constructing Banach sequence spaces and seems to have been first
discovered by A. Sobczyk and J. W. Tukey (1) (see [S, p. 96], cf. Kalton et
al. [ACK, Ka]).

The main aim of this paper is to study a ‘continuous version’ of the above
class of sequence spaces `p(·), thus a space of suitable functions f : [0, 1]→ R,
instead of sequences. The idea is somewhat similar here: knowing the norm of
f up to a coordinate 0 < t < 1, i.e. ‖1[0,t]f‖, and knowing the value |f(t+)|, is
sufficient information to predict the accumulation of the norm right after t,
i.e. knowing ‖1[0,t+dt]f‖. For example, if f(r) = 0 for t < r < s, then
we should have ‖1[0,t]f‖ = ‖1[0,s]f‖, and if |f(t+)| > 0, then ‖1[0,t]f‖ <
‖1[0,s]f‖, and so on. This intuitive description of the accumulation of the
norm is captured by a suitable ODE in such a way that its weak solution,
ϕf : [0, 1]→ [0,∞), shall represent the norm as follows:

(1.1) ϕf (t) = ‖1[0,t]f‖,

(1) The author presented some of the ideas in this paper in the following function
space related meetings in 2014: Edwardsville, Albacete, Mekrijarvi; in 2015: Kitakyushu,
Delhi. The author is grateful to L. Maligranda for bringing the above historical account
to the author’s attention in Kitakyushu (see also [Mal]).
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so that in particular ϕf (0) = 0 and ϕf (1) = ‖f‖. Equation (1.1) neatly out-
lines the overall strategy implemented at the beginning of the paper. The
basic idea in accomplishing this and the heuristic motivation appear shortly
(see Section 1.2). Differential equations have been previously studied in con-
nection with varying exponent spaces and Sobolev spaces (see e.g. [DR]) but
apparently not in the same vein as they arise here.

The required mathematical machinery in this paper is classical, and there
is no apparent reason why this alternative approach could not have been
experimented with much earlier. Also, our approach does not lead to exces-
sively technical considerations, so hopefully it is accessible to a wide range
of analysts.

1.1. Preliminaries and auxiliary results. We will usually consider
the unit interval [0, 1] endowed with the Lebesgue measure m. Here almost
every (a.e.) means m-a.e., unless otherwise specified. Denote by L0 the space
of Lebesgue-to-Borel measurable functions on the unit interval. We denote
by `0(N) the vector space of sequences of real numbers with pointwise op-
erations. We refer to [CL], [FH+], [LT] and [Ru] for suitable background
information.

We will mainly study here varying exponent Lp spaces with ODE-de-
termined norm, denoted by Lp(·) and ‖ · ‖p(·), respectively. The author con-
siders these notations intuitive, even though in the literature the Nakano
spaces and norms sometimes bear such notations. Therefore, when Nakano
norms are considered, they will be explicitly specified and denoted by ||| · |||
to clearly distinguish them.

We will study Carathéodory’s weak formulation of ODEs, that is, in
the sense of Picard type integrals, where solutions are required to be only
absolutely continuous. This means that, given an ODE

ϕ(0) = x0, ϕ′(t) = Θ(ϕ(t), t) for a.e. t ∈ [0, 1],

we call ϕ a weak solution in the sense of Carathéodory if ϕ is absolutely
continuous, t 7→ Θ(ϕ(t), t) is measurable and

ϕ(T ) = x0 +

T�

0

Θ(ϕ(t), t) dt

for all T ∈ [0, 1], where the integral is the Lebesgue integral. In what follows,
we will refer to Carathéodory’s solutions simply as solutions.

Whenever we make a statement about a derivative we implicitly state
that it exists. We will write F ≤ G, involving elements of L0, if F (t) ≤ G(t)
for a.e. t ∈ [0, 1]. We denote the characteristic function or indicator function
of a set A by 1A defined by 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.



ODE for Lp norms 67

Lemma 1.1. Suppose that ϕ,ψ ∈ C[0, 1] are absolutely continuous such
that ϕ(0) ≤ ψ(0) and

ϕ(t) ≥ ψ(t) ⇒ ϕ′(t) ≤ ψ′(t) a.e.

Then ϕ ≤ ψ.

Proof. Observe that

ϕ′(t) ≤ (min(ϕ,ψ))′ for a.e. t ∈ [0, 1].

We will frequently calculate terms of the form (ap+bp)1/p where a, b ≥ 0
and 1 ≤ p <∞. We adopt from [T] the shorthand notation

a �p b = (ap + bp)1/p.

This defines a commutative semigroup on R+, in particular, the associativity

a �p (b �p c) = (a �p b) �p c

is useful.
The space `p(·) ⊂ `0, p : N→ [1,∞), consists of those elements (xn) such

that the following limit of a non-decreasing sequence exists and is finite:

lim
n→∞

(. . . (((|x1|�p(1) |x2|)�p(2) |x3|)�p(3) |x4|)�p(4) . . .�p(n−1) |xn|)�p(n) |xn+1|

and the above limit becomes the norm of the space (see [T]).

1.2. Arriving at the varying exponent Lp norm ODE. Let us
‘derive’ heuristically our basic differential equation for varying exponent Lp

norm. As mentioned in the introduction, we wish to extend the varying
exponent `p(·) norm in the sense of [T] to a continuous setting. Although
our motivation involves the above sequence spaces, we are only required to
look at simple structures X⊕pY one at a time due to the infinitesimal nature
of the enterprise.

We will assume a Platonist approach to developing the definition of the
varying exponent norms here. Thus we wish to find a function space norm
following the gist of `p(·) space norms. This leads to thought experiments
on the right behavior of the function t 7→ ‖1[0,t]f‖. In a sense, the resulting
ODE will be a very robust one, and this allows us to write arguments in this
paper in a concise fashion, not paying much attention to the general theory
of the ODEs involved.

Suppose that we have a varying exponent, i.e. a measurable function
p : [0, 1] → [1,∞), and f : [0, 1] → R is another measurable function, a
possible candidate to lie in the function space. We wish to arrange matters
in such a way that we have an absolutely continuous non-decreasing function
ϕf : [0, 1]→ [0,∞) such that

ϕf (t) = ‖1[0,t]f‖, 0 ≤ t ≤ 1,

so ϕf (0) = 0 and ϕf (1) = ‖f‖ <∞.
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For example, in the classical case of Lp spaces with a constant function
f = 1 and p = 1, 2,∞ we have

ϕf,1(t) = t, ϕf,2(t) =
√
t, ϕf,∞(t) = 1(0,1](t),

respectively. Here the p-norms are 1 but the profiles differ considerably. The
first two solutions are absolutely continuous and the last one is not even
continuous.

We will study Carathéodory’s weak formulation of ODEs. It is convenient
to work with absolutely continuous solutions, since this way we may apply to
the solutions such usual tools as Fatou’s lemma and Lebesgue’s convergence
theorems (sometimes implicitly). We are only interested in Banach lattice
norms, therefore ϕf is always non-decreasing here. In fact, we will require
a mildly modified version of Carathéodory’s weak formulation, tailor-made
to our setting.

We are aiming at a recursive-like formula for ϕf , in a similar spirit to [T],
so suppose that we have defined the function ϕf up to the interval [0, t0].
Then we are not interested in the values of f and p on [0, t0), a Markovian
type condition. Suppose, as a thought experiment, that f and p are constant
on an interval [t0, t0 +∆] where ∆ > 0. Then we should have

ϕ(t0 +∆) = (ϕ(t0)
p(t0) +∆|f(t0)|p(t0))1/p(t0),(1.2)

= ϕ(t0) �p(t0) ∆
1/p(t0)|f(t0)|

analogous to the `p(·) construction, and actually to the usual Lp norm for-
mula, since(t0+∆�

0

|f(s)|p dm(s)
)1/p

=
(t0�

0

|f(s)|p dm(s)
)1/p

�p

(t0+∆�
t0

|f(t0)|p dm(s)
)1/p

where the right-most term is ∆1/p(t0)|f(t0)|. Thus, by differentiating (1.2)
we find a natural candidate for the norm-determining differential equation:

(1.3)
d+

d∆
ϕ(t0 +∆)

∣∣∣∣
∆=0

=
|f(t0)|p(t0)

p(t0)
ϕ(t0)

1−p(t0).

Here d+

d∆ denotes the right-sided derivative and we set ∆ = 0, because we
are interested in ‘infinitesimal’ increments around t0. So, the above equation
is right if f and ϕ are constant on the interval [t0, t0 +∆], but the equation
does not concern the values of f , ϕ and p beyond t0.

In formulating the differential equation we do not require f or p to
be continuous anywhere, but motivated by Lusin’s theorem and related
considerations we will use the above formula in any case and aim to de-
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fine ϕ by

(1.4) ϕ(0) = 0, ϕ′(t) =
|f(t)|p(t)

p(t)
ϕ(t)1−p(t) for a.e. t ∈ [0, 1].

Looking at this ODE it becomes evident that if there is a solution ϕf cor-
responding to f , then there is also a solution ϕcf corresponding to cf for
any constant c ∈ R, and moreover the functional f 7→ ϕf (1) is positively
homogenous (up to uniqueness of solutions).

This formulation has the drawback that 01−p(t) is not defined. Also, it
has a trivial solution ϕ ≡ 0, regardless of the values of f , if we use the
convention 00 = 0 and p ≡ 1. Moreover, following this idea it is possible to
construct other degenerate solutions such that ϕ vanishes on [0, t] for any
0 < t < 1. The behavior of the solutions is difficult to anticipate in the case
where ϕ(t) is small and p(t) is large.

To fix these issues, we will consider stabilized solutions to the above
initial value problem. Namely, we will use initial values ϕ(0) = x0 > 0
and to correct the error incurred we let x0 ↘ 0. It turns out that the
corresponding unique solutions ϕx0 decreasingly converge pointwise to ϕ
which again satisfies the same ODE. So, this procedure yields a unique
solution ϕ which we will formulate, by a slight abuse of notation, as

(1.5) ϕ(0) = 0+, ϕ′(t) =
|f(t)|p(t)

p(t)
ϕ(t)1−p(t) for a.e. t ∈ [0, 1].

There is more to the above procedure than merely picking a maximal solu-
tion; it turns out that in many situations it is convenient to look at positive-
initial-value solutions first. By using Lebesgue’s monotone convergence the-
orem and Lemma 1.1 one easily verifies that if for each x0 > 0 there is ϕx0 ,
a solution to (1.4), except with initial value ϕx0(0) = x0, then there is ϕ,
a unique solution to (1.4), such that ϕx0 ↘ ϕ uniformly and ϕ′x0 ↗ ϕ′ in
L1 as x0 ↘ 0. This unique solution is referred to by (1.5). Moreover, if the
0+-initial value solution exists, then for each positive initial value x0 > 0 the
corresponding solution exists by suitable Picard iteration and Lemma 1.1.

We define the varying exponent class Lp(·) ⊂ L0 (ODE-determined) as
the set of those functions f ∈ L0 such that ϕf exists as an absolutely continu-
ous solution to (1.5) and ϕf (1) <∞. In many cases, but not always, the class
becomes a linear space. In such a case the norm can be defined as f 7→ ϕf (1).

Warning 1. Even if the class Lp(·) fails to be a linear space, we some-
times write ‖f‖Lp(·) = ‖f‖p(·) := ϕf (1) where ϕf is the solution to (1.5).

Warning 2. As explained above, the class Lp(·) and the mapping
f 7→ ‖f‖p(·) may differ from the Nakano space and the corresponding norm
which are often denoted by the same symbols in the literature.
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The above ODE is a separable one for a constant p(·) ≡ p, 1 ≤ p < ∞,

and solving it (see (2.3)) yields ϕf (1)p =
	1
0 |f(t)|p dt, compatible with the

classical definition of the Lp norm. If p(·) is locally bounded and |f(t)|p(t)
is locally integrable, then Picard iteration performed locally yields a unique
solution for each initial value ϕ(0) = a > 0, possibly with ϕ(s) → ∞ as
s↗ r for some 0 < r ≤ 1.

2. Constructions of ODE-determined Lp(·) spaces. In this section
we will study only spaces of the type Lp(·) with p : [0, 1]→ [1,∞) measurable.
Some of the unbounded functions p(·) actually produce a class of functions,
rather than a linear space (see Example 3.4). We will first restrict our con-
siderations to those Lp(·) classes which are Banach spaces (see Theorem 3.7
below). The norms of these spaces were described in the introductory part.

2.1. Transcending from discrete to continuous state. We will tra-
verse from varying exponent sequence spaces to such function spaces through
an intermediate notion which we call simple seminorm. Let us first define
a very simple seminorm by the formula

|f |p,µ =
(�
|f |p dµ

)1/p
where µ is a restricted Lebesgue measure with supp(µ) ⊂ [0, 1]. Let us con-
sider such measures µi with max supp(µi) ≤ min supp(µi+1), 1≤ i≤ n−1,
and ‘exponent constants’ pi ∈ [1,∞). Then we may define a composite semi-
norm as follows:

(2.1) ‖f‖(...(Lp1 (µ1)⊕r2L
p2 (µ2))⊕r3 ···⊕rn−1L

pn−1 (µn−1))⊕rnL
pn (µn)

:= (. . . (|f |p1,µ1 �r2 |f |p2,µ2) �r3 · · · �rn−1 |f |pn−1,µn−1) �rn |f |pn,µn
= (. . . (. . . ((|f |r2p1,µ1 + |f |r2p2,µ2)r3/r2 + |f |r3p3,µ3)r4/r3

+ · · ·+ |f |rn−1
pn−1,µn−1

)
rn

rn−1 + |f |rnpn,µn)1/rn

where max supp(µi) ≤ min supp(µi+1), ri+1 ≥ pi+1. We will frequently con-
sider simple seminorms

‖f‖N = ‖f‖(...(Lp1 (µ1)⊕r2L
p2 (µ2))⊕r3 ...)⊕rnL

pn (µn)

and denote this collection by N . Thus N is a name for a seminorm which
is recursively defined in (2.1). Let us say that a seminorm is of standard
form if ri+1 = pi+1 for all i ∈ {1, . . . , n − 1}. In this case we may, in a
sense, extend each element N of N to an Lp̃(·) norm by setting p̃N (t) = pi
for t ∈ supp(µi) and p̃N (t) = 1 otherwise (and this extension is unique).
If
⋃
i supp(µi) = [0, 1] then the corresponding standard form norm N ∈ N

satisfies ‖f‖N = ‖f‖p̃(·) by Lemma 2.1 below.
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Observe that the seminorms are decreasing in r’s and increasing in p’s.
Define point intervals [pt, rt] as follows: pt = pi+1 and rt = ri+1 on the
support of µi+1. We write N � p(·) whenever p(t) ∈ [pt, rt] for all t such
that the interval is defined.

We define a partial order on N by setting N � M if the following
conditions hold:

1. A partition given by the supports of the measures corresponding to
N is refined by the supports of the measures corresponding to M :

∀µN,i ∃µM,j
(i)
1

, . . . , µ
M,j

(i)
m

supp(µN,i) =
⋃

1≤k≤m
supp(µ

M,j
(i)
k

).

2. [pM,t, rM,t] ⊂ [pN,t, rN,t] for each t such that the left hand interval is
defined.

This leads to the definition of a varying exponent Lp norm in a natural way
as a limit from below.

Actually, to simplify considerations we will consider simple seminorms
of standard form. For these seminorms we define N ≤M if the union of the
supports of M includes that of N and moreover p̃N ≤ p̃M . This is again a
directed poset. We define N≤p(·) to be the collection of simple seminorms

N of standard form such that p̃N ≤ p(·). The sought-after norms can be
defined by applying one of the above orders, but here we will concentrate
on the latter.

Let us define a functional as follows:

(2.2) ρ(f) := lim sup
N

‖f‖N

where the lim sup is taken along N ∈ N≤p(·) such that p̃N → p in measure,
i.e.

ρ(f) = inf
K∈N≤p(·)

sup
N∈N≤p(·),K≤N

‖f‖N .

By thinking of the basic properties of lim sup and the simple seminorms,
we observe that the functions f ∈ L0 with ρ(f) < ∞ form a linear space

and ρ is a seminorm on it. We call this space L̃p(·) and it turns out that
this seminorm is in fact a norm when we identify functions in the usual way,
i.e. according to a.e. coincidence.

We will connect the above limiting process of seminorms to ODEs. In do-
ing this we are required to use initial values for the ODEs, and for seminorms
as well. Although this procedure, strictly speaking, destroys the seminorm
property, we may modify the composite seminorms in such a way that the
resulting functions have an initial value in a natural way. Namely, we begin
the recursive construction by using L1(δ0) ⊕1 L

p1(µ1) as the first term, in
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place of Lp1(µ1), where δ0 is the Dirac delta at 0. Then |f(0)| serves as the
‘initial value of the seminorm’.

Lemma 2.1. Let ρ(f) < ∞. Suppose that there are compact subsets
Ci ⊂ [0, 1], 1 ≤ i ≤ n, maxCi ≤ minCi+1 such that p|Ci ≡ pi ∈ [1,∞).
Assume additionally that f = 1⋃

i Ci
f and p|[0,1]\⋃i Ci

≡ 1. Then the map-

ping ϕ : [0, 1] → R given by ϕ(t) = ρ(1[0,t]f) is absolutely continuous and
satisfies

ϕ(0) = 0, ϕ′(t) =
|f(t)|p(t)

p(t)
ϕ(t)1−p(t) for a.e. t ∈ [0, 1].

Proof. First we observe the analogous fact on an interval with a constant
p by studying the following differential equation:

ϕ(a) = c, ϕ′(t) =
|f(t)|p

p
ϕ(t)1−p for a.e. t ∈ [a, b] ⊂ [0, 1].

We use the separability of the above differential equation and the abso-
lute continuity of ϕ to obtain

(2.3)

b�

a

pϕ′(t)ϕ(t)p−1 dt = ϕ(t)p|bt=a =

b�

a

|f(t)|p dt.

Indeed, we see immediately that ϕ defined in the formulation of the lemma is
absolutely continuous in this special case. The above calculation considered
in backward order also shows that in the constant p case, ϕ arises as a
solution to the above differential equation on that interval.

From this we obtain the analogous compact subset C ⊂ [0, 1] case by
passing to a function of the type 1Cf . It is clear that the resulting ϕ is
again absolutely continuous and the derivative is

ϕ′(t) =
|1C(t)f(t)|p

p
ϕ(t)1−p = 1C(t)

|f(t)|p

p
ϕ(t)1−p a.e.

This way we easily see that the simple seminorm accumulation functions

(2.4) t 7→ ‖1[0,t]f‖(...(Lp1 (µ1)⊕p2L
p2 (µ2))⊕p3 ...)⊕pnL

pn (µn)

can be seen as solutions to

ϕ(0) = 0, ϕ′(t) =
1⋃

i supp(µi)
(t)|f(t)|p(t)

p(t)
ϕ(t)1−p(t) for a.e. t ∈ [0, 1]

where p(t) = pi for t ∈ Ci = supp(µi) and ϕ′(t) = 0 for t ∈ [0, 1] \
⋃
iCi.

Indeed, for xi = maxCi in (2.4) we obtain an ODE

ϕ(xi) = ‖1[0,xi]f‖, ϕ′(t) =
|f(t)|p(t)

p(t)
ϕ(t)1−p(t) for a.e. t ∈ Ci+1

by induction. Note that the sup in the lim sup in (2.2) is actually attained
in this simple case with p(·) essentially piecewise constant on

⋃
iCi.
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Given a measurable function p : [0, 1]→ [1,∞), by Lusin’s theorem there
is for each ε > 0 a compact set C ⊂ [0, 1] with m([0, 1] \ C) < ε such that
p|C is continuous, thus uniformly continuous and bounded.

Thus we can find a sequence of compact subsets Cm ⊂ [0, 1] as above with
m(Cm) → 1, and by taking finite unions of such sets we may assume that
the sequence is increasing. Next we assume for technical reasons that all the
seminorms have a fixed positive initial value component, say x01{0} ∈ L1(δ0)
with x0 > 0. We may construct by a diagonal argument a sequence (Nn) of
simple seminorms of standard form (but with the added initial value) such
that p̃Nn → p in measure and for every f ∈ L∞ and m ∈ N we have

d

dt
‖1[0,t]∩Cm

f‖Nn =
|1Cm(t)f(t)|p̃Nn (t)

p̃Nn(t)
Nn(1[0,t]∩Cm

f)1−p̃Nn (t)

→ |1Cm(t)f(t)|p(t)

p(t)
lim sup
n→∞

Nn(1[0,t]∩Cm
f)1−p(t)

in measure (more precisely, in L0(Cm)) as n → ∞. Using the initial value
a ensures that Nn(1[0,t]∩Cm

f)1−p(t) is uniformly bounded on Cm and we

are also using the fact that |f(t)|p̃Nn (t) is uniformly bounded on Cm. Note
that these observations imply that lim supn→∞Nn(1[0,t]∩Cm

f) is absolutely

continuous. Thus, the above shows that limn→∞Nn(1[0,t]∩Cm
f) exists for

each t and is absolutely continuous on t. In the same vein, thinking of the
definition of ρ, still with the same initial value component in all the semi-
norms, we observe that ρ(1[0,t]∩Cm

f) = limn→∞Nn(1[0,t]∩Cm
f). In particu-

lar, t 7→ ρ(1[0,t]∩Cm
f) is absolutely continuous and

(2.5)
d

dt
ρ(1[0,t]∩Cm

f) =
|1Cm(t)f(t)|p(t)

p(t)
ρ(1[0,t]∩Cm

f)1−p(t)

exists a.e. on Cm. If we let x0 ↘ 0, the above terms increase and converge
to a value for a.e. t ∈ Cm, so that Lebesgue’s monotone convergence the-
orem yields a solution to the same ODE with initial value 0. According to
m(
⋃
mCm) = 1 and hence the positivity of (2.5) in a positive measure set,

ρ is a norm, instead of merely being a seminorm.

We will denote by L̃p(·) the normed space of functions f ∈ L0 with
ρ(f) <∞. We next collect and refine some findings obtained so far.

Proposition 2.2. Given a measurable function p : [0, 1] → [1,∞), the

class L̃p(·) is a Banach space with the usual pointwise linear operations and
the corresponding norm ρ defined above.

Proof. We have already established that L̃p(·) endowed with the func-
tional ‖ · ‖

L̃p(·) := ρ is a normed space. To prove completeness we will pass
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to an equivalent norm,

(2.6) sup
N∈N≤p(·)

‖f‖N .

Indeed, clearly supN ‖f‖N ≥ ρ(f) and by using Lemma 2.1 and Proposi-
tion 3.2 we get an opposite inequality with a multiplicative constant from
the latter result. Therefore these norms are equivalent, and it is clear that
(2.6) defines a complete norm on L̃p(·). Hence ρ is complete as well.

Theorem 2.3. Let f ∈ L0 and p : [0, 1] → [1,∞) measurable. The fol-
lowing conditions are equivalent:

(1) f ∈ Lp(·),
(2) f ∈ L̃p(·) and the mapping t 7→ ρ(1[0,t]f) is absolutely continuous.

Moreover, in both (equivalent) cases we have ϕf (1) = ρ(f).

Proof. Assume that f ∈ L0, ρ(f) < ∞ and t 7→ ρ(1[0,t]f) is absolutely
continuous, as in the second condition. To show the first condition, without
loss of generality we may assume that the sequence Cm considered previously
is such that p|Cm and f |Cm are continuous for every m. By a diagonal argu-
ment we may choose a sequence of simple seminorms Nn of standard form
such that Nn(1[0,t]f)→ ρ(1[0,t]f) uniformly on t and p̃Nn → p in measure as
n→∞. Thus

d

dt
Nn(1[0,t]f)→ |f(t)|p(t)

p(t)
ρ(1[0,t]f)1−p(t)

in L0(Cm) as n→∞. Using the assumed absolute continuity and the bound-
edness of f and p on Cm, we obtain

ρ(1[0,T ]f)− ρ(1[0,S]f) =

T�

S

d

dt
ρ(1[0,t]f) dt = sup

m

�

[S,T ]∩Cm

d

dt
ρ(1[0,t]f) dt

= sup
m

�

[S,T ]∩Cm

|f(t)|p(t)

p(t)
ρ(1[0,t]f)1−p(t) dt =

T�

S

|f(t)|p(t)

p(t)
ρ(1[0,t]f)1−p(t) dt.

Strictly speaking, we are also required to control the term ρ(1[0,t]f)1−p(t)

which need not be bounded. However, it can be made bounded by using a
positive initial value and then letting the initial value tend to zero, as before.
Now, ρ(1[0,t]f) is clearly the required solution to the norm-determining ODE.
The last part of the statement follows immediately.

The other direction becomes apparent later when we investigate estimates
for the norms by means of differential equations (see Proposition 3.2).

Remark 2.4. According to the previous result the functional f 7→ ϕf (1)
=: ‖f‖p(·) satisfies the triangle inequality.
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3. Inequalities. Given a measurable function p : [0, 1] → (1,∞) de-
fined a.e., we denote its pointwise Hölder conjugate by p∗ : [0, 1] → (1,∞)
(defined a.e.), that is,

1

p(t)
+

1

p∗(t)
= 1 for a.e. t ∈ [0, 1].

Proposition 3.1 (Hölder). Suppose that f ∈ Lp(·) and g ∈ Lp∗(·) with
1 < p(t) <∞ for a.e. t. Then they satisfy Hölder’s inequality:

1�

0

|f(t)g(t)| dt ≤ ‖f‖p(·)‖g‖q∗(·).

Although the function classes here need not be linear spaces, we still use
the norm notation above (instead of ϕf (1) etc.); this is to establish a clear
connection with the classical case.

Proof. By using the Hölder inequality for classical Lp and `p spaces, we
obtain by induction an analogous statement for spaces of the type

(. . . (Lp1(µ1)⊕p2 Lp2(µ2))⊕p3 . . .)⊕pn Lpn(µn)

considered above. That is, if we write µ(A) =
∑n

i=1 µi(A) and f, g ∈ L∞(µ),
we have �

|fg| dµ ≤ ‖f‖(...(Lp1 (µ1)⊕p2L
p2 (µ2))⊕p3 ...)⊕pnL

pn (µn)

· ‖g‖
(...(Lp∗1 (µ1)⊕p∗2

Lp∗2 (µ2))⊕p∗3
...)⊕p∗nL

p∗n (µn)
.

This inequality passes to the limit by an approximation argument sim-
ilar to a previous one. Namely, by Lusin’s theorem we pick an increasing
sequence of compact subset Cn ⊂ [0, 1], n ∈ N, such that p|Cn and q|Cn are
continuous. Note that by the compactness of the subset and the continuity of
the exponent we have 1 < mint∈Cn p(t) ≤ maxt∈Cn p(t) < ∞, and similarly
for q(·). Then, as in the proof of Theorem 2.3, for any sequence of simple
seminorms Nk of standard form with p̃Nk

→ p(·) in measure as k → ∞ we
have Nk(1Cmf)→ ‖1Cmf‖p(·) as k →∞. By essentially the same argument
we also see that if N∗k are the dual simple seminorms of standard form, ob-
tained by replacing all the exponents with their respective conjugates, then
p̃N∗

k
→ p∗(·) in measure as k →∞ and we have N∗k (1Cmg)→ ‖1Cmg‖p∗(·) as

k →∞. This shows that�

Cm

|fg| dt ≤ ‖1Cmf‖p(·)‖1Cmg‖p∗(·).

Letting m→∞ yields the claimed inequality for L∞ functions. Finally, by
approximating the given functions f ∈ Lp(·) and g ∈ Lp∗(·) with functions
of the form 1Df, 1Dg ∈ L∞ in measure and using the absolute continuity of
the solutions ϕf and ϕg we obtain the statement.
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Going back to simple seminorms of standard form, note that if p(·) ≡ p1
on [0, t0) and p(·) ≡ p2 on [t0, 1], and f ∈ Lp(·), then we have ‖f‖Lp(·) =
‖f‖Lp1 (µ1)⊕p2L

p2 (µ2) where supp(µ1) = [0, t0] and supp(µ2) = [t0, 1] (see

Lemma 2.1).

It is easy to see that if p2 = 1 then letting p1 ↗ ∞, t0 ↘ 0 we obtain
‖1‖p(·) ↗ 2. This is perhaps surprising, since always ‖1‖p = 1 in the constant
p case. We may also alter the above example as follows: letting ft0 ≡ 1/t0
on [0, t0) and ft0 ≡ 1 on [t0, 1] with p1 = 1 and p2 ↗∞ and t0 → 0+ yields
‖ft0‖p(·) → 1, whereas ‖ft0‖1 → 2.

We suspect that the above examples are characteristic in the sense that

1
2‖f‖1 ≤ ‖f‖p(·) ≤ 2‖f‖∞

always holds (so that constant 2 is the best possible according to the above
examples). We leave this open problem for future research.

In any case, the above inequalities hold with other constants in place
of 2. Namely, suppose that ϕf (t0) = ‖f‖∞. Then

ϕ(t0) = ‖f‖∞, ϕ′(t) =
|f(t)|p(t)

p(t)
ϕ(t)1−p(t) for a.e. t0 ≤ t ≤ 1

yields

ϕ′(t) ≤ ϕ(t) for a.e. t0 ≤ t ≤ 1.

Observe that ϕ(1) < y(1) where y is the solution to y′ = y with y(0) = ‖f‖∞,
that is, y(t) = ‖f‖∞et.

Let a ∈ (1, 2) be the solution to aa = e. Then bx/x is increasing in x ≥ 1
for all b > a.

Proposition 3.2. The following inequalities hold whenever defined:

(1) 1
1+a‖1p(·)≥pf‖p ≤ ‖1p(·)≥pf‖p(·),

(2) 1
1+ae‖1p1(·)≤p2(·)f‖p1(·) ≤ ‖1p1(·)≤p2(·)f‖p2(·),

(3) ‖f‖p(·) < e‖f‖∞.

Proof. The last inequality was already proved, and we will verify the
middle inequality which is the most complicated one.

Suppose that p1(·) ≤ p2(·) and f ∈ Lp1(·), with ‖f‖p1(·) = 1 + ae.

We wish to exclude the case where ϕp2(·),f (1) < 1, so suppose that
ϕp2(·),f (1) ≤ 1. Let [r, 1] be the maximal interval on which ϕp2(·),f (t)

≤ ϕp1(·),f (t) (and ϕp2(·),f (t) ≤ 1). Let A ⊂ [0, 1] be the set where |f(t)| > a.

On [r, 1] ∩A we have

|f(t)|p2(t)

p2(t)
ϕp2(·),f (t)1−p2(t) ≥ |f(t)|p1(t)

p1(t)
ϕp1(·),f (t)1−p1(t).
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Indeed, in this set we have

|f(t)|p2(t)

p2(t)
≥ |f(t)|p1(t)

p1(t)

and

ϕp2(·),f (t)1−p2(t) ≥ ϕp2(·),f (t)1−p1(t) ≥ ϕp1(·),f (t)1−p1(t).

Thus

ϕp1(·),f (1)− ϕp2(·),f (1)

=

1�

r

(
|f(t)|p1(t)

p1(t)
ϕp1(·),f (t)1−p1(t) − |f(t)|p2(t)

p2(t)
ϕp2(·),f (t)1−p2(t)

)
dt

=
�

[r,1]∩A

(
|f(t)|p1(t)

p1(t)
ϕp1(·),f (t)1−p1(t) − |f(t)|p2(t)

p2(t)
ϕp2(·),f (t)1−p2(t)

)
dt

+
�

[r,1]\A

(
|f(t)|p1(t)

p1(t)
ϕp1(·),f (t)1−p1(t) − |f(t)|p2(t)

p2(t)
ϕp2(·),f (t)1−p2(t)

)
dt

≤
�

[r,1]\A

(
|f(t)|p1(t)

p1(t)
ϕp1(·),f (t)1−p1(t) − |f(t)|p2(t)

p2(t)
ϕp2(·),f (t)1−p2(t)

)
dt

≤
�

[r,1]\A

|f(t)|p1(t)

p1(t)
ϕp1(·),f (t)1−p1(t) dt

≤ ‖1[r,1]\Af‖p1(·) ≤ ‖a1[r,1]\A‖p1(·) ≤ ‖a1[0,1]‖p1(·) ≤ e‖a1[0,1]‖∞ = ae.

Thus ϕp2(·),f (1) ≥ (1 + ae)− ae = 1.

The following fact connects the investigated varying exponent norm with
the Nakano Lp(·) norms

|||g|||p(·) := inf

{
λ > 0:

� 1

p(t)

(
|g(t)|
λ

)p(t)
dt ≤ 1

}
.

Proposition 3.3. Let p∈L0, p(·)≥ 1, and f ∈Lp(·) (ODE-determined).
Then

|||f |||p(·) ≤ ‖f‖p(·) ≤ 2|||f |||p(·).

Proof. To prove the left-hand estimate it suffices to check that if λ =
‖f‖p(·), then

(∗)
1�

0

1

p(t)

(
|f(t)|
λ

)p(t)
dt ≤ 1.



78 J. Talponen

So, suppose that 0 < ϕf (1) = λ; then

ϕ′f (t) ≥ |f(t)|p(t)

p(t)
λ1−p(t)

(with strict inequality in a set of positive measure if f 6= 0), so that

λ = ϕf (1) ≥
1�

0

|f(t)|p(t)

p(t)
λ1−p(t) dt =

1�

0

λ
1

p(t)

(
|f(t)|
λ

)p(t)
dt.

We will show that this yields (∗). We may restrict to the case |||f |||p(·) = 1
by the positive homogeneity of the norms. If ‖f‖p(·) ≤ 1 then we have the
claim, so assume that 0 < t0 < 1 is such that ϕf (t0) = 1. Then

ϕ′f (t) ≤ |f(t)|p(t)

p(t)
for a.e. t ∈ [t0, 1].

Thus

ϕf (1) ≤ 1 +

1�

t0

|f(t)|p(t)

p(t)
dt ≤ 1 +

1�

0

|f(t)|p(t)

p(t)
dt = 1 + |||f |||p(·) = 2.

Thus the above Nakano norms are equivalent to the ODE-driven norms
considered here. However, these norms do not coincide in general. For ex-
ample, if p1(·) is 1 on [0, 1/2) and 2 on [1/2, 1] and p2(·) is defined in the
opposite way, then |||f |||p1(·) = |||f |||p2(·) in the case of Nakano norms (or
Musielak–Orlicz norms) for any f with f(s) = f(1/2 + s) for 0 ≤ s < 1/2.
The same rearrangement invariance condition does not hold for our ‖ · ‖p(·)-
norms. Indeed, for the constant function 1 we have

‖1‖p1(·) =

√(
1

2

)2

+
1

2
=

√
3

2
≈ 0.866 < 1.207 ≈ 1√

2
+

1

2
= ‖1‖p2(·).

We can use the above ideas to construct counterexamples as well.

Example 3.4. Let p : [0, 1] → [1,∞) be a measurable function defined
by

1

p(t)

(
2

3

)1−p(t)
=

1

t− 1/2

if t ∈ (1/2, 1], and p(t) = 1 on [0, 1/2]. Then the constant function f = 1 is

not in Lp(·).

Assuming the contrary, clearly ϕf (1/2) would be 1/2. Suppose that t0 >
1/2 is such that ϕf (t) ≤ 2/3 for 1/2 ≤ t ≤ t0. Then we would have

2

3
− 1

2
≥ ϕf (t0)− ϕf

(
1

2

)
=

t0�

1/2

ϕ′f (t) dt ≥
t0�

1/2

1

t− 1/2
dt =∞,
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contradicting the assumption that f was in the class, that is, had an abso-
lutely continuous solution ϕf . However, if we allow initial values ϕf (0) =
x0 ≥ 1/2, then we have nice corresponding solutions.

Also note that 1[0,1/2]+1[0,1] ∈ Lp(·). This means that in general the Lp(·)

class need not be an ideal in the sense of Banach lattice theory, i.e. g ∈ Lp(·),
f ∈ L0, |f | ≤ g, does not imply f ∈ Lp(·).

In the above example, we have (1[0,1/2] + 1[0,1]), 1[0,1/2] ∈ Lp(·) and

(1[0,1/2] + 1[0,1]) − 1[0,1/2] = 1[0,1] /∈ Lp(·). This shows that for some p(·)
the class Lp(·) fails to be a linear space. This example is a manifestation of
the principle that the higher the value of ϕ, the more stable the differential
equation becomes, ceteris paribus.

3.1. The essentially bounded exponent case. Let us take a look
at the nice case where p := ess supt p(t) < ∞, as it turns out that the
corresponding spaces have less pathological properties.

We have observed previously that Lp(·) classes need not have the ideal
property in general. However, in the case p < ∞ the conditions g ∈ Lp(·),
|f | ≤ g do imply that also f ∈ Lp(·). This follows immediately from the
following observation.

Proposition 3.5. Suppose that p < ∞, g ∈ Lp(·), |f | ≤ |g|, and 0 <

x0 < 1 is a given initial value. Then f ∈ Lp(·) and

|ϕ′f,x0 | ≤ |ϕ
′
g,x0 |

(
x0

ϕg,x0(1)

)1−p
.

Proof. Consider a simple seminorm N applied to f , g and with the
above initial value: φ(t) = ‖1[0,t]f‖N and ψ(t) = ‖1[0,t]g‖N . Clearly φ ≤ ψ.
Denote by p(·) the corresponding piecewise constant exponent. According
to Lemma 2.1 we may differentiate φ and ψ a.e. We obtain

φ′(t) =
|f(t)|p(t)

p(t)
φ(t)1−p(t), ψ′(t) =

|g(t)|p(t)

p(t)
ψ(t)1−p(t),

so

φ′(t)

ψ′(t)
≤
(
φ(t)

ψ(t)

)1−p(t)
≤
(
φ(t)

ψ(t)

)1−p
≤
(

x0
ψ(1)

)1−p
.

The existence of the solution for f follows from Theorem 3.7 below.

In particular we remain within the class if we restrict supports.

Proposition 3.6. Let p < ∞, f ∈ Lp(·) and An ⊂ [0, 1] a sequence of
measurable subsets such that m(An) → 0 as n → ∞. Then ‖1Anf‖p(·) → 0
as n→∞.
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Proof. Fix ε > 0. We claim that given an initial value x0 = ε > 0, there
is n0 ∈ N such that

(3.1) ϕ1Anf,x0
(1) < 2ε, n ≥ n0.

This clearly yields the statement of the lemma.

The absolute continuity of the solution ϕf,x0 implies that
�

An

ϕ′f,x0(t) dt→ 0, n→∞.

This observation together with Proposition 3.5 yields (3.1).

Then L∞ ⊂ Lp(·) is dense by the triangle inequality. For a general mea-
surable exponent p : [0, 1]→ [1,∞) we define a natural Banach subspace

L
p(·)
0 :=

⋃
n∈N
{1p(·)≤nf : f ∈ L̃p(·)} ⊂ L̃p(·).

Theorem 3.7. For a general measurable exponent p(·) the above Banach

space satisfies L
p(·)
0 ⊂ Lp(·). In particular, in the case p < ∞, we have

Lp(·) = L̃p(·), and consequently Lp(·) is a Banach space.

Proof. First we will verify the latter part of the statement, so assume
that p <∞. Let f ∈ L̃p(·). Similarly to the above, let Di ⊂ [0, 1], i ∈ N, be
measurable compact subsets such that both f |Di and p|Di are continuous
and m(Di)→ 1 as i→∞. Set

ψi(t) := ‖1[0,t]∩Di
f‖

L̃p(·)

where we consider the functions with a common initial value 0 < x0 < 1.
We find that each ψi is absolutely continuous and

ψ′i =
|1Dif |p(t)

p(t)
ψi(t)

1−p(t) a.e.

Note that

ψi(t)↗ ψ(t) := ‖1[0,t]f‖L̃p(·)

for t ∈ [0, 1] as i→∞ by the absolute continuity of simple seminorms.

Using the positivity of the initial value x0 and p < ∞, by studying the
derivatives ψ′i we obtain

(3.2) ψ(1)1−p
t�

r

|f(s)|p(s)

p(s)
ds ≤ ψ(t)− ψ(r) ≤ x1−p0

t�

r

|f(s)|p(s)

p(s)
ds.

We conclude that ψ is absolutely continuous and |f |p(·)/p(·) ∈ L1.

According to Dini’s theorem, ψi → ψ converges uniformly on [0, 1]. More-
over, by again using the positivity of the initial value and p < ∞ we get
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ψi(t)
1−p(t) → ψ(t)1−p(t) in L∞-norm as i→∞. Thus

ψ′i →
|f |p(t)

p(t)
ψ1−p(t)

in L1, and hence

ψ(T ) = x0 +

T�

0

|f(t)|p(t)

p(t)
ψ(t)1−p(t) dt, T ∈ [0, 1].

This shows that ψ is a solution witnessing that f ∈ Lp(·), since x0 was
arbitrary.

To verify the first part of the statement, fix f ∈ Lp(·)0 ; we aim to show
that f ∈ Lp(·), i.e. there is a solution ϕf . Let fn = 1p(·)≤nf for n ∈ N. Clearly
fn ↗ f a.e. as n→∞. As above, it follows from the triangle inequality that
ϕfn ↗ φ uniformly for a suitable φ. We consider all the solutions with a
common positive initial value x0 > 0.

For each k ∈ N and ε > 0 there exist by Egorov’s theorem a set D ⊂
{t ∈ [0, 1] : p(t) ≤ k} such that m({t ∈ [0, 1] : p(t) ≤ k} \D) < ε and

|fn(t)|p(t)

p(t)
ϕfn(t)1−p(t) → |f(t)|p(t)

p(t)
φ(t)1−p(t)

uniformly on D as n→∞. Thus
�

D

|fn(t)|p(t)

p(t)
ϕfn(t)1−p(t) dt→

�

D

|f(t)|p(t)

p(t)
φ(t)1−p(t) dt.

Since ε was arbitrary, Proposition 3.6 yields
�

p(t)≤k

|fn(t)|p(t)

p(t)
ϕfn(t)1−p(t) dt→

�

p(t)≤k

|f(t)|p(t)

p(t)
φ(t)1−p(t) dt

for each k ∈ N. Since ‖f − 1p(·)≤n f‖L̃p(·) → 0, we see that

lim
k→∞

�

p(t)≥k

|f(t)|p(t)

p(t)
dt = 0.

Hence
T�

0

|fn(t)|p(t)

p(t)
ϕfn(t)1−p(t) dt→

T�

0

|f(t)|p(t)

p(t)
φ(t)1−p(t) dt, T ∈ [0, 1].

Taking into account that ϕfn → φ uniformly, we see that

φ(T ) = x0 +

T�

0

|f(t)|p(t)

p(t)
φ(t)1−p(t) dt, T ∈ [0, 1].

The above argument (recall (3.2)) yields the following fact.



82 J. Talponen

Proposition 3.8. If p <∞, then f ∈ L0 is in Lp(·) if and only if
1�

0

|f(t)|p(t)

p(t)
dt <∞.

The Lp(·) space construction here can be generalized to a multidimen-
sional setting Lp(·)(Ω) with domains Ω ⊂ Rn, n > 1. There appear to be
several ways to accomplish this. For example, in some cases Ω can be conve-
niently decomposed into level sets of p(·); then taking the Lp norms relative
to each level set and using the approach here to aggregate the Lp norms
yields an Lp(·)(Ω) norm. We leave this for future research.
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