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A short self-contained proof of the Commutation Theorem

by

Pham Le Hung (Wellington)

Abstract. Let G be a locally compact group. We give a self-contained elementary
proof of the relation λ(G)′′ = ρ(G)′ between the left and right regular representations
of G.

Let G be a locally compact group. Denote by λ : G → U(L2(G)) the
left regular representation of G, and by ρ : G→ U(L2(G)) the right regular
representation of G. The Commutation Theorem states:

Theorem 1. λ(G)′′ = ρ(G)′.

By the von Neumann double commutant theorem, λ(G)′′ and ρ(G)′′ are
the weak∗-closed subalgebras of B(L2(G)) generated by λ(G) and ρ(G), re-
spectively; recall that the former is the group von Neumann algebra VN (G)
of G. Thus the Commutation Theorem says that these two von Neumann
algebras are commutants of each other.

This theorem was first proved by Murray and von Neumann [5, Lem-
ma 5.3.3] for discrete groups, by Segal [6] for unimodular groups, and fi-
nally by Dixmier [2] for general locally compact groups using the theory of
quasi-Hilbert algebras. The aim of this short note is to give a self-contained
elementary proof of Theorem 1. (For such a proof in the case of unimodular
groups, see the recent book [1].)

As the aim is to give an elementary self-contained proof of Theorem 1,
I would like to stress that all we need (besides some basic concepts from func-
tional analysis, and the von Neumann double commutant theorem, which is
only used in discussion of the immediate consequence of Theorem 1 above)
is basic facts about integration theory on locally compact groups as can be
found in any textbook on abstract harmonic analysis (such as [4, Chapter 2]).
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We shall even take care of distinguishing between a function and its equiv-
alence class, and use convolution product only in the situation where the
resulting product is an everywhere defined continuous function (see Lemma 2
below).

Let us now fix some more notation. A (left) Haar measure on G is fixed;
the integral of a function f with respect to the Haar measure is written as	
f(x) dx =

	
f . Let us denote by ∆ the modular function of the group G.

For any complex function f on G, we write f̃(x) := f(x−1).

Denote by C(G) the algebra of all the complex-valued continuous func-
tions defined on G, by Cb(G) the subalgebra consisting of those that are
bounded, and by Cc(G) those with compact support. Denote by B(G) the
collection of all complex-valued Borel functions on G. Given any f ∈ B(G),
its equivalence class is

[f ] := {g ∈ B(G) : g = f a.e. on G},
where a.e. means a.e. with respect to the Haar measure on G. We shall
always distinguish between a function f and its equivalence class [f ].

For 1 ≤ p <∞, define as usual the spaces L p(G) and Lp(G) relative to
the Haar measure; the former is a seminormed space of functions and the
latter is a normed space (in fact, a Banach space) of equivalence classes of
functions.

As we differentiate between functions and their equivalence classes, we
have to differentiate between convolution products of functions and of equiv-
alence classes of functions. But in fact, we shall only use the convolution
product in one of the following situations.

Lemma 2.

(i) If f, g ∈ L 2(G), then f ∗ g̃ is an everywhere defined bounded con-
tinuous function on G with its uniform norm satisfying

|f ∗ g̃|G ≤ ‖f‖2‖g‖2.
(ii) If f ∈ Cc(G) and g ∈ L 2(G), then f ∗ g is an everywhere defined

(possibly unbounded) continuous function in L 2(G) such that

‖f ∗ g‖2 ≤ ‖f‖1‖g‖2.
(iii) If f ∈ L 2(G) and g ∈ Cc(G), then f ∗ g is an everywhere defined

bounded continuous function in L 2(G) such that

‖f ∗ g‖2 ≤ Cg‖g‖1‖f‖2,
where Cg := sup{∆(y)−1/2 : y ∈ supp g}.

In particular, there will be no problems of measurability or of functions
only defined a.e. in the discussion below.
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Proof of Lemma 2. Most of the conclusions are standard. Statement (i)
is a consequence of Cauchy–Schwarz–Hölder’s inequality.

The inequality in (ii) can be found in, say, [4, Proposition 2.39]. For the
continuity, notice that for f ∈ Cc(G) and g ∈ L 2(G),

(̃f ∗ g)(x) =
�
f(y)g(y−1x−1) dy =

�
g̃(xy)f̃(y−1) dy

= ∆(x)1/2
�
g̃(xy)∆(xy)−1/2 · f̃(y−1)∆(y−1)−1/2 dy

= ∆(x)1/2
(
(g̃∆−1/2) ∗ (f̃∆−1/2)

)
(x).

Since g̃∆−1/2 ∈ L 2(G) while f̃∆−1/2 ∈ Cc(G) ⊆ L̃ 2(G), the continuity of
f ∗ g in (ii) then follows from that of (i).

Most of (iii) could also be found in [4, Proposition 2.39], but it could
also be deduced from (i) and (ii) as follows. Suppose that f ∈ L 2(G) and

g ∈ Cc(G). Then, first of all, g = (̃g̃) and g̃ ∈ Cc(G) ⊆ L 2(G), and so

f ∗ g = f ∗ (̃g̃) is an everywhere defined bounded continuous function on G
by (i). Next, using the previous calculation,

‖f ∗ g‖22 =
�
|(f ∗ g)(x)|2 dx =

�
|(̃f ∗ g)(x)|2∆(x)−1 dx

=
� ∣∣((g̃∆−1/2) ∗ (f̃∆−1/2)

)
(x)
∣∣2 dx

= ‖(g̃∆−1/2) ∗ (f̃∆−1/2)‖22 ≤ ‖g̃∆−1/2‖21‖f̃∆−1/2‖22.

This gives the inequality in (iii) because

‖g̃∆−1/2‖1 =
�
|g̃(x)∆(x)−1/2| dx =

�
|g(x−1)|∆(x−1)1/2 dx

=
�
|g(x)|∆(x)1/2∆(x)−1 dx ≤ Cg‖g‖1,

while ‖f̃∆−1/2‖2 = ‖f‖2.

Lemma 3. Let f, g ∈ L 2(G), and let h ∈ Cc(G). Then

|(f ∗ h) ∗ g̃|G ≤ Ch‖h‖1‖f‖2‖g‖2, |f ∗ (h ∗ g̃)|G ≤ Ch̃
‖h̃‖1‖f‖2‖g‖2,

where Ch and C
h̃

are as defined above.

Proof. For the first inequality,

|(f ∗ h) ∗ g̃|G ≤ ‖f ∗ h‖2‖g‖2 ≤ Ch‖f‖2‖h‖1‖g‖2.

The second one is proved similarly, using in addition the following:

(̃h ∗ g̃)(x) =
�
h(y)g̃(y−1x−1) dy =

�
g(xy)h̃(y−1) dy = (g ∗ h̃)(x).

Note that g ∗ h̃ is an everywhere defined (bounded continuous) function
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in L 2(G), and so

f ∗ (h ∗ g̃) = f ∗ (̃g ∗ h̃)

is an everywhere defined bounded continuous function on G.

Corollary 4. Let f, g ∈ L 2(G), and let h ∈ Cc(G). Then

(f ∗ h) ∗ g̃ = f ∗ (h ∗ g̃) everywhere on G.

Proof. Note from the preceding discussion that we are comparing two
everywhere defined continuous functions. The statement follows from the
special case where in addition f, g ∈ Cc(G) and the usual approximation
using the previous lemma.

We can now give our proof of the Commutation Theorem:

Proof of Theorem 1. It is easy to see that ρ(G) ⊆ λ(G)′, and so
λ(G)′′ ⊆ ρ(G)′. It remains to prove the reverse inclusion. A simple argu-
ment (e.g. approximating integrals by finite sums) shows that (1)

ρ(G)′ ⊆ {S ∈ B(L2(G)) : S([f ∗ g]) = (S[f ]) ∗ [g] for all f, g ∈ Cc(G)},
λ(G)′ ⊆ {T ∈ B(L2(G)) : T ([f ∗ g]) = [f ] ∗ (T [g]) for all f, g ∈ Cc(G)}.

We need to show that ST = TS whenever T ∈ λ(G)′ and S ∈ ρ(G)′.
Indeed, for such T and S, we have

‖(S[f ]) ∗ [h]‖2 ≤ ‖S‖ ‖[f ∗ h]‖2 ≤ ‖S‖ ‖f‖1‖h‖2 (f, h ∈ Cc(G)).

For each neighbourhood V of e, let kV ∈ Cc(G)+ be such that kV = k̃V is
supported in V and

	
kV = 1. Then we see that

‖(S[kV ]) ∗ [h]‖2 ≤ ‖S‖ ‖[h]‖2 (h ∈ Cc(G)).

It follows that there exists AV ∈ B(L2(G)) of norm ≤ ‖S‖ such that

AV [h] = (S[kV ]) ∗ [h] = S([kV ∗ h]) (h ∈ Cc(G));

consequently, AV converges strongly to S as V → {e}.
Similarly, since T ∗ ∈ λ(G)′, we have

‖[h] ∗ (T ∗[g])‖2 ≤ ‖T‖ ‖[h ∗ g]‖2 ≤ Cg‖g‖1‖T‖ ‖h‖2 (g, h ∈ Cc(G)),

where Cg is the constant depending on g defined earlier. So there exists
BV ∈ B(L2(G)) such that

BV [h] = [h] ∗ (T ∗[kV ]) = T ∗([h ∗ kV ]) (h ∈ Cc(G)),

and

lim sup
V→{e}

‖BV ‖ ≤ ‖T‖,

(1) An argument using the standard approximate identity of L1(G) will show the
reverse inclusion of the two relations below; however, we shall not need that.
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and so BV converges strongly to T ∗ as V → {e}. We deduce that CV := B∗V
converges (operator-)weakly to T as V → {e}.

Fix fV , gV ∈ L 2(G) such that

[fV ] = S[kV ] and [gV ] = T ∗[kV ].

Then

AV [h] = [fV ∗ h] and BV [h] = [h ∗ gV ] (h ∈ Cc(G)).(1)

For h ∈ L 2(G) and h1 ∈ Cc(G), we see that

〈CV [h] | [h1]〉 = 〈[h] | BV [h1]〉 =
�
h(x)(h1 ∗ gV )(x) dx

=
� �
h(x)h1(y)gV (y−1x) dy dx =

� �
h(x)h1(y)gV (y−1x) dx dy

=
� �
h(x)g̃V (x−1y)h1(y) dx dy =

�
(h ∗ g̃V )(y)h1(y) dy,

where the fourth equality follows from the Fubini theorem, whose hypothesis
is easily checked to be satisfied. The last equality then shows that the every-
where defined (bounded) continuous function h∗ g̃V must belong to L 2(G).
Hence,

〈CV [h] | [h1]〉 = 〈[h ∗ g̃V ] | [h1]〉,
and so

CV [h] = [h ∗ g̃V ] (h ∈ L 2(G)).(2)

We remark that it is crucial for the argument below that in constructing gV ,
we start with T ∗ instead of working directly with T .

Let U, V be neighbourhoods of e, and let h ∈ Cc(G). By (1) and (2), we
see that

CUAV [h] = CU [fV ∗ h] = [(fV ∗ h) ∗ g̃U ].(3)

On the other hand, we have

CU [h] = [h ∗ g̃U ];

but g := h ∗ g̃U belongs to L 2(G) but not to Cc(G), and so we cannot
apply (1) yet. However, both g and g̃ are still in L 2(G): the former represents

CU [h], while for the latter, we see that g̃ = gU ∗ h̃, and gU ∈ L 2(G) while

h̃ ∈ Cc(G), and so gU ∗ h̃ ∈ L 2(G) by Lemma 2(iii). Thus, there exist
gn ∈ Cc(G) such that gn → g and g̃n → g̃, both in L 2(G) [say, by noting
that g ∈ L 2(G,µ) where dµ(x) = (1 + ∆(x)−1) dx, and then choosing
gn ∈ Cc(G) such that gn → g in L 2(G,µ)]. Thus, for φ ∈ Cc(G), we see that

〈AV [g] | [φ]〉 = lim
n
〈AV [gn] | [φ]〉 = lim

n
〈[fV ∗ gn] | [φ]〉

= lim
n

�
(fV ∗ gn)φ =

�
(fV ∗ g)φ;
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the last equality is because g̃n → g̃ in L 2(G), and so

fV ∗ gn = fV ∗ ˜̃gn → fV ∗ ˜̃g = fV ∗ g in Cb(G)

with respect to the uniform norm (by Lemma 2(i)). Since this is true for
every φ ∈ Cc(G), we see first that fV ∗ g ∈ L 2(G) and second that

AV [g] = [fV ∗ g].

But this gives

AV (CU [h]) = AV [g] = [fV ∗ g] = [fV ∗ (h ∗ g̃U )].

This, (3), and Corollary 4 then give CUAV = AV CU . Passing to the limit
as V → {e} and then as U → {e}, we conclude that TS = ST .
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[2] J. Dixmier, Algèbres quasi-unitaires, Comment. Math. Helv. 26 (1952), 275–322.
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