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Summary. Explicit formulas for the quadratic mean value at s = 1 of the Dirichlet
L-functions associated with the set X−

f of the φ(f)/2 odd Dirichlet characters mod f are
known. They have been used to obtain explicit upper bounds for relative class numbers of
cyclotomic number fields. Here we present a generalization of these results: we show that
explicit formulas for quadratic mean values at s = 1 of Dirichlet L-functions associated
with subsets of X−

f can be obtained. As an application we use them to obtain explicit
upper bounds for relative class numbers of imaginary subfields of cyclotomic number fields.

1. Introduction. We refer the reader to [Was, Chapters 3, 4 and 11]
for more background details. Let f > 2 be an integer. Let Xf be the multi-
plicative group of the φ(f) Dirichlet characters mod f . Let X−f = {χ ∈ Xf ;

χ(−1) = −1} be the set of the φ(f)/2 odd Dirichlet characters mod f . If H
is a subgroup of the multiplicative group (Z/fZ)∗, we set

X−f (H) = {χ ∈ X−f ; χ/H = 1}.
Let L(s, χ) be the Dirichlet L-function associated with χ ∈ Xf . The mean
square value M(f,H) of L(1, χ) as χ ranges in X−f (H) is defined by

(1) M(f,H) :=
1

#X−f (H)

∑
χ∈X−

f (H)

|L(1, χ)|2.
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We have (see [Lou94, Proposition 1])

(2) L(1, χ) =
π

2f

f−1∑
a=1

χ(a) cot

(
πa

f

)
(χ ∈ X−f ).

Let K be an imaginary abelian number field of degree m = 2n and
prime conductor p ≥ 3, i.e. an imaginary subfield of the cyclotomic number
field Q(ζp) (Kronecker–Weber’s theorem). The Galois group Gal(Q(ζp)/Q) is
canonically isomorphic to the multiplicative cyclic group (Z/pZ)∗, and H :=
Gal(Q(ζp)/K) is a subgroup of (Z/pZ)∗ of index m and order (p − 1)/m.
Notice that K being imaginary, we have −1 6∈ H and the set

X−K := X−p (H) := {χ ∈ X−p ; χ/H = 1}
is of cardinality n. Let K+ be the maximal real subfield of K of degree
n fixed by the complex conjugation. The class number hK+ of K+ divides
the class number hK of K. The relative class number of K is defined by
h−K = hK/hK+ . Let wK be the number of complex roots of unity of K.
Let dK and dK+ be the absolute values of the discriminants of K and K+.
Hence, dK/dK+ = pn. Using the arithmetic-geometric mean inequality, we
have

(3) h−K =
wK

(2π)n

√
dK
dK+

∏
χ∈X−

K

L(1, χ) ≤ wK
(
pM(p,H)

4π2

)n/2
.

Up to now this approach has only been used for cyclotomic number fields,
i.e. with the choice H = {1}. Using (2) and the orthogonality relations for
characters we obtain (see [Wal])

(4) M(p, {1}) :=
2

p− 1

∑
χ∈X−

p

|L(1, χ)|2 =
π2

6

(
1− 1

p

)(
1− 2

p

)
(p ≥ 3).

Hence, for K = Q(ζp) the cyclotomic number field of prime conductor p ≥ 3
we have

(5) h−Q(ζp)
≤ 2p

(
pM(p, {1})

4π2

)(p−1)/4
≤ 2p

(
p

24

)(p−1)/4

(see also [Lou94], [Met]).
The aim of the present paper is to develop this approach for proper

imaginary subfields K of Q(ζp) of degree 2 ≤ 2n < p− 1. Since wK = 2 and
the mean square value of L(1, χ), χ ∈ X−p , is asymptotic to π2/6 by (4), we
might expect to have bounds close to

(6) M(p,H) ≤ π2/6 and h−K ≤ 2(p/24)n/2.

However, it is hopeless to expect such a universal mean square upper bound.
Indeed, it is likely that there are infinitely many imaginary abelian number
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fields of a given degree m = 2n and prime conductors p for which

M(p,H) =
1

n

∑
χ∈X−

K

|L(1, χ)|2 ≥
( ∏
χ∈X−

K

L(1, χ)
)2/n

� (log log p)2

(see e.g. [CK] and [MW]). Nevertheless, in Theorems 1 and 5, we manage
to prove (6) for some non-cyclotomic number fields:

Theorem 1. Let p ≡ 1 (mod 6) be a prime integer. Let K be the imagi-
nary subfield K of degree (p−1)/3 of the cyclotomic number field Q(ζp). Let
H be the only subgroup of order 3 of the multiplicative cyclic group (Z/pZ)∗.
Then #X−p (H) = (p − 1)/6 and we have the mean square value formula
(compare with (4))

(7) M(p,H) :=
6

p− 1

∑
χ∈X−

p (H)

|L(1, χ)|2 =
π2

6

(
1− 1

p

)
.

Hence, the expected bounds (6) hold true, i.e. M(p,H) ≤ π2/6 and we have
the upper bound (compare with (5))

(8) h−K ≤ 2(p/24)(p−1)/6.

2. Dedekind and Dedekind–Rademacher sums. For c ∈ Z and
d > 1 an integer such that gcd(c, d) = 1, the Dedekind sum is defined by

s(c, d) =
1

4d

d−1∑
n=1

cot

(
πn

d

)
cot

(
πnc

d

)
(see [Apo, Chapter 3, Exercise 11] or [RG, (26)]). It depends only on c mod d.
We also set s(c, 1) = 0 for c ∈ Z. Notice that s(−c, d) = −s(c, d) and that
s(c∗, d) = s(c, d) whenever cc∗ ≡ 1 (mod d) (make the change of variables
n 7→ nc in s(c∗, d)). Recall that

(9) s(1, d) =
(d− 1)(d− 2)

12d
(d ≥ 1)

(see e.g. [Lou94, Lemma (a)(i)]) and that we have a reciprocity law for
Dedekind sums (see e.g. [Apo, Theorem 3.7], [RG, (4)] or [Lou15, (7) and (9)])

(10) s(c, d) + s(d, c) =
c2 + d2 − 3cd+ 1

12cd
(c, d ≥ 1, gcd(c, d) = 1).

For b, c ∈ Z and d > 1 such that gcd(b, d) = gcd(c, d) = 1, the Dedekind–
Rademacher sum is defined by

s(b, c, d) =
1

4d

d−1∑
n=1

cot

(
πnb

d

)
cot

(
πnc

d

)
.
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We also set s(b, c, 1) = 0. Notice that s(c, d) = s(1, c, d) = s(c, 1, d) and
that s(b, c, d) = s(ab, ac, d) for any a ∈ Z with gcd(a, d) = 1. For b, c, d ≥ 1
and gcd(b, c) = gcd(c, d) = gcd(d, b) = 1 we have a reciprocity law for
Dedekind–Rademacher sums (see e.g. [Rad] or [BR])

(11) s(b, c, d) + s(d, b, c) + s(c, d, b) =
b2 + c2 + d2 − 3bcd

12bcd
.

3. A mean square value formula for L-functions. We have the
following mean square value formula:

(12) M(f, {1}) =
2

φ(f)

∑
χ∈X−

f

|L(1, χ)|2 =
π2

6

φ(f)

f

(∏
p|f

(
1 +

1

p

)
− 3

f

)

(see [Lou94, Th. 2 and 3], [Lou11, Prop. 5], [Qi] and [Lou14] for generaliza-
tions). Here we prove a general result which when applied with the trivial
subgroup H = {1} gives S{1}(δ) = 0 for any divisor δ of f and (12):

Theorem 2. Let H be a subgroup of order d of the multiplicative group
(Z/fZ)∗, f > 2. Assume that −1 6∈ H, which is the case if d is odd. Set

SH(δ) :=
∑

16=h∈H
s(h, δ).

Then #X−f (H) = φ(f)/(2d) and we have the mean square value formula

M(f,H) :=
2d

φ(f)

∑
χ∈X−

f (H)

|L(1, χ)|2

=
π2

6

φ(f)

f

(∏
p|f

(
1 +

1

p

)
− 3

f

)
+

2π2

f

∑
δ|f
δ 6=f

µ(δ)

δ
SH(f/δ).

Proof. Let H+ = 〈−1, H〉 be the subgroup of order 2d generated by −1
and H. For any abelian group G of order m its group of characters Ĝ is also
of order m and

1

m

∑
χ∈Ĝ

χ(g) =

{
1 if g = 1G,

0 otherwise.

Applying this to the quotient group G = (Z/fZ)∗/H of order φ(f)/d
for which Ĝ = {χ ∈ Xf ; χ/H = 1} and to the quotient group G+ :=

(Z/fZ)∗/H+ of order φ(f)/(2d) for which Ĝ+ = {χ ∈ Xf ; χ/H+ = 1},
we find that the set X−f (H), which is equal to Ĝ \ Ĝ+, is of cardinality
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φ(f)/(2d), and

2d

φ(f)

∑
χ∈X−

f (H)

χ(x) =


+1 if x ∈ H,

−1 if −x ∈ H,

0 otherwise.

Hence,

ε(a, b) :=
2d

φ(f)

∑
χ∈X−

f (H)

χ(a)χ(b)

=


+1 if gcd(a, f) = gcd(b, f) = 1 and a = bh with h ∈ H,

−1 if gcd(a, f) = gcd(b, f) = 1 and a = −bh with h ∈ H,

0 otherwise.

For c > 1 and d ∈ Z with gcd(c, d) = 1, set

s̃(c, d) :=
1

4d

d−1∑
n=1

gcd(n,d)=1

cot

(
πn

d

)
cot

(
πnc

d

)
=
∑
δ|d

µ(δ)

δ
s(c, d/δ),

by the Möbius inversion formula and the convention that s(c, 1) = 0 for
c ∈ Z. Using (2), we obtain

M(f,H) =
π2

4f2

f−1∑
a=1

f−1∑
b=1

ε(a, b) cot

(
πa

f

)
cot

(
πb

f

)

=
π2

2f2

∑
h∈H

f−1∑
b=1

gcd(b,f)=1

cot

(
πb

f

)
cot

(
πhb

f

)

=
2π2

f

∑
h∈H

s̃(h, f)

=
2π2

f

∑
h∈H

∑
δ|f

µ(δ)

δ
s(h, f/δ)

=
2π2

f

∑
δ|f

µ(δ)

δ
s(1, f/δ) +

2π2

f

∑
16=h∈H

∑
δ|f

µ(δ)

δ
s(h, f/δ).

Since s(h, 1) = 0 for any h, we can restrict δ | f to f 6= δ | f in the second
term of the last line. By (9) we have s(1, d) = (d − 3 + 2/d)/12 for d ≥ 1
and

2π2

f

∑
δ|f

µ(δ)

δ
s(1, f/δ) =

π2

6

(∑
δ|f

µ(δ)

δ2
− 3

f

∑
δ|f

µ(δ)

δ
+

2

f2

∑
δ|f

µ(δ)

)
.
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Finally, since
∑

δ|f µ(δ)/δ2 =
∏
p|f (1 − 1/p2),

∑
δ|f µ(δ)/δ =

∏
p|f (1 − 1/p)

and
∑

δ|f µ(δ) = 0, the desired result follows.

Corollary 3. Let d be an odd divisor of p − 1, where p ≥ 3 is an
odd prime number. Let H = 〈h0〉 be the only cyclic subgroup of (Z/pZ)∗ of
order d, where h0 is any element of order d in the multiplicative cyclic group
(Z/pZ)∗. Then #X−p (H) = (p− 1)/(2d) and we have the mean square value
formula

M(p,H) :=
2d

p− 1

∑
χ∈X−

p (H)

|L(1, χ)|2

=
π2

6

(
1 +

24
∑(d−1)/2

k=1 s(hk0, p)− 3

p
+

2

p2

)
.

Proof. Notice that δ = 1 is the only δ 6= p dividing p, and

SH(p) =
∑

16=h∈H
s(h, p) =

d−1∑
k=1

s(hk0, p) = 2

(d−1)/2∑
k=1

s(hk0, p),

using hd−k0 = h−k0 and s(c∗, p) = s(c, p) whenever cc∗ ≡ 1 (mod p).

4. Proof of Theorem 1. Let h0 of order 3 be a generator of H. Corol-
lary 3 applied with d = 3 gives

M(p,H) =
π2

6

(
1 +

24s(h0, p)− 3

p
+

2

p2

)
.

Then the lemma below gives the desired result (we thank Abdelmejid Bayad
for having sent us its present proof using Dedekind–Rademacher sums):

Lemma 4. Assume that f = a2 + ab + b2 > 3, where a ∈ Z, b ≥ 1 and
gcd(a, b) = 1. Then gcd(a, f) = gcd(b, f) = 1, h0 = a/b is of order 3 in the
multiplicative group (Z/fZ)∗ and

s(h0, f) = s(h20, f) =
f − 1

12f
.

Consequently, if p ≡ 1 (mod 6) is a prime integer then for any h ∈ (Z/pZ)∗

of order 3 in this group we have s(h, p) = p−1
12p .

Proof. Assume that a ≥ 1. Then f ≡ b2 (mod a) yields s(b, f, a) =
s(b, b2, a) = s(1, b, a) = s(b, a), and f ≡ a2 (mod b) gives s(f, a, b) =
s(a2, a, b) = s(a, 1, b) = s(a, b). The reciprocity law for Dedekind sums yields

s(b, f, a) + s(f, a, b) = s(b, a) + s(a, b) =
a2 + b2 − 3ab+ 1

12ab
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and the reciprocity for the Dedekind–Rademacher sums implies

s(a, b, f) + s(b, f, a) + s(f, a, b) =
a2 + b2 + f2 − 3abf

12abf
.

Hence, we finally obtain

s(h0, f) = s(a, b, f) =
a2 + b2 + f2 − 3abf

12abf
− a2 + b2 − 3ab+ 1

12ab

=
f − 1

12f
.

Now, assume that a ≤ −1. Then

s(b, f,−a) + s(f,−a, b) = s(b,−a) + s(−a, b) =
a2 + b2 + 3ab+ 1

−12ab

and

s(−a, b, f) + s(b, f,−a) + s(f,−a, b) =
a2 + b2 + f2 + 3abf

−12abf
.

Hence,

s(a, b, f) = −s(−a, b, f) = −
(
a2 + b2 + f2 + 3abf

−12abf
− a2 + b2 + 3ab+ 1

−12ab

)
and s(h0, f) = s(a, b, f) = f−1

12f .

Since h20 = h∗0, i.e. h20h0 = h30 ≡ 1 (mod f), we have s(h20, f) = s(h0, f).

Finally, let p ≡ 1 (mod 6) be a prime integer. Then p splits completely in
the imaginary quadratic number field L = Q(

√
−3). Since the class number

of L is equal to 1, there is an algebraic integer α = a+ b(1 +
√
−3)/2 in L,

a, b ∈ Z, such that p = NL/Q(α) = a2 + ab + b2. Clearly, gcd(a, b) = 1 and

we may assume that b ≥ 1. Then h0 = a/b and h20 are the only elements of
order 3 in the multiplicative cyclic group (Z/pZ)∗.

5. Some imaginary abelian number fields of conductor p ≡ 1
(mod 5) and degree (p − 1)/5. We conclude this paper by explaining
why it is probably hopeless to find a statement as neat as Theorem 1 for
subgroups H of (Z/pZ)∗ of odd order d greater than 3. Even for d = 5
and p ≡ 1 (mod 10) we could not find a generalization of Theorem 1, i.e.
a formula for M(p,H), where H is the only subgroup of order 5 of the
multiplicative group (Z/pZ)∗. These prime integers p ≡ 1 (mod 10) are the
prime integers that split completely in the cyclotomic number field Q(ζ5) of
class number one, therefore they are the prime integers p 6= 5 of the form

p = P (a, b, c, d) := NQ(ζ5)/Q(a− bζ5 − cζ25 − dζ35 ), a, b, c, d ∈ Z.
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The first problem is that we could not find a closed formula for an element
h0 of order 5. Even for the prime integers p 6= 5 of the form

p = NQ(ζ5)/Q(a− bζ5) = a4 + a3b+ a2b2 + ab3 + b4,

for which h0 = a/b is of order 5 in the multiplicative group (Z/pZ)∗, we
could not find a generalization of Lemma 4, i.e. closed formulas for s(a, b, f)
and s(a2, b2, f). At least, for b = 1, i.e. for the prime integers p 6= 5 of the
form p = NQ(ζ5)/Q(a− ζ5) = a4 + a3 + a2 + a+ 1 we have:

Theorem 5. Let p 6= 5 be a prime of the form

p = a4 + a3 + a2 + a+ 1,

e.g. (a, p) ∈ {(−2, 11), (2, 31), (−3, 61), (−5, 521), (7, 2801), (−10, 9091)}.
Then p ≡ 1 (mod 10). Let H be the only subgroup of order 5 of the multi-
plicative cyclic group (Z/pZ)∗ and let K be the imaginary subfield of degree
(p−1)/5 of the cyclotomic number field Q(ζp). Then #X−p (H) = (p−1)/10
and we have the mean square value formula (compare with (4) and (7))

(13) M(p,H) :=
10

p− 1

∑
χ∈X−

p (H)

|L(1, χ)|2 =
π2

6

(
1 +

2a(a+ 1)2 − 1

p

)
.

Hence, for a ≤ −2 the expected bounds (6) hold true, i.e. M(p,H) ≤ π2/6
and (compare with (5) and (8)) h−K ≤ 2(p/24)(p−1)/10.

Proof. Applying Corollary 3 with d = 5 and h0 = a, we have

M(p,H) =
π2

6

(
1 +

24(s(a, p) + s(a2, p))− 3

p
+

2

p2

)
.

By Lemma 6, the desired result follows.

Lemma 6. Let q ≥ 3 be an odd prime. For a ∈ Z, a 6= −1, 0, 1, set
f := (aq−1)/(a−1) = aq−1 +aq−2 + · · ·+a+1 > 1, an odd integer. Assume
that f 6= q. Then a is of order q in the multiplicative group (Z/fZ)∗, and

s(a, f) =
(f − 1)(f − a2 − 1)

12af
and s(a2, f) =

(f − 1)2 + a2(a2 − f)

12a2f
.

Proof. Using (10) we get

s(a, f) =
a2 + f2 − 3af + 1

12af
− s(f, a).

Using f ≡ 1 (mod a) and (9) we get s(f, a) = s(1, a) = (a− 1)(a− 2)/(12a)
The desired result for s(a, f) follows.

In the same way, a2 ≡ 1 (mod a+ 1) implies

s(a2, a+ 1) = s(1, a+ 1) =
a(a− 1)

12(a+ 1)
,
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and f ≡ a+ 1 (mod a2) and (10) yield

s(f, a2) = s(a+ 1, a2) =
(a+ 1)2 + a4 − 3(a+ 1)a2 + 1

12(a+ 1)a2
− s(a2, a+ 1),

s(f, a2) = −(a2 − 1)/(6a2) and

s(a2, f) =
a4 + f2 − 3a2f + 1

12a2f
− s(f, a2).

The desired result for s(a2, f) follows.

6. Conclusion: two open problems

1. For the cyclotomic fields of prime conductors we have the following
improvement on (5):

(14) h−Q(ζp)
≤ 2p(p/32)(p−1)/4

(see [Feng] and [Lou11]). It would be worth proving a similar improvement
on (8), i.e. proving that if K is an imaginary subfield of degree (p− 1)/3 of
the cyclotomic number field Q(ζp), where p ≡ 1 (mod 6), then

h−K ≤ 2(p/32)(p−1)/6.

2. As explained in Section 5, it seems hopeless for a given odd d > 3
to obtain an explicit formula for M(p,H) that woull hold true for all the
prime integers p ≡ 1 (mod 2d), where H is the only subgroup of order d of
the group (Z/pZ)∗. Nevertheless, it would be worth obtaining an asymptotic
M(p,H) = (π2/6)(1 + o(1)).
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