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On totally smooth subspaces of Banach spaces:
the Vlasov theorem revisited

by

Eve Oja (Tartu and Tallinn), Märt Põldvere (Tartu) and
Tauri Viil (Tartu)

Abstract. Let X be a Banach space and let Y be a closed subspace of X. We
establish new geometric characterizations for Y to be totally smooth in X, meaning that
every closed subspace of Y has Phelps’ property U in X. In particular, this gives a new
self-contained proof for a recent theorem of Liao and Wong, and an improved proof for a
theorem of Vlasov.

1. Introduction. Let X be a Banach space and let Y be a closed sub-
space ofX. By the Hahn–Banach theorem, every continuous linear functional
g ∈ Y ∗ has a norm-preserving extension f ∈ X∗. In general, such an exten-
sion is not unique. Following Phelps [Ph1], we say that Y has property U in
X if every g ∈ Y ∗ has a unique norm-preserving extension f ∈ X∗.

By the Taylor–Foguel theorem (see [T] and [F] or, e.g., [C, p. 265, Theo-
rem 5.9-2]), every subspace of X has property U if and only if the dual space
X∗ is strictly convex. A theorem of Vlasov [V], in turn, says that X∗ is
strictly convex if and only if the union of every unbounded nested sequence
of open balls in X is either the whole space X or an open half-space.

Definition 1.1 (see [BFLM]). A sequence Bn = B(xn, rn) of open balls
in X is nested and unbounded if Bn ⊂ Bn+1 for all n ∈ N and rn → ∞ as
n→∞.

Recently, Liao and Wong [LW] introduced the notion of a totally smooth
subspace, which was essentially considered already in 1977 by Sullivan [Su]
(see Remark 2.7).
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Definition 1.2 (see [LW]). A closed subspace Y of X is totally smooth
if every closed subspace of Y has property U in X.

They also described totally smooth subspaces as follows, generalizing the
Vlasov theorem.

Theorem 1.3 (see [LW]). Let X be a real Banach space and let Y be a
closed subspace of X. The following assertions are equivalent:

(a) Y is totally smooth.
(b) The union of every unbounded nested sequence of open balls in X

with centers in Y is either the whole space X or an open half-space.

Clearly, the special case of Theorem 1.3 when Y = X reduces to the
Vlasov theorem. The proof of Theorem 1.3 in [LW] is not self-contained: it
heavily relies on the Vlasov theorem.

The objective of this paper is to prove an omnibus theorem, Theo-
rem 2.1 below, giving equivalent conditions for a subspace Y of a Banach
space X to be totally smooth. These include conditions in terms of se-
quences of balls which are formally weaker than condition (b) of Theo-
rem 1.3. Among other things, our Theorem 2.1 gives Theorem 1.3 a new
self-contained proof which does not use the Vlasov theorem (and which
is valid for both real and complex spaces). Our proof refines some ideas
from the paper [OP1] by Oja and Põldvere which, in [OP1], led to a new
proof of the Vlasov theorem. The special case when Y = X of Theo-
rem 2.1, in its turn, provides a new proof to the Vlasov theorem which
represents a qualitative improvement of the argument in [OP1, proof of
Theorem 2]. (Concerning different proofs of the Vlasov theorem, see Re-
mark 2.6.)

Our notation is standard. We consider Banach spaces over the scalar field
K = R or K = C. In a Banach space X, we denote the open ball with center
x and radius r by B(x, r), the unit sphere by SX , and for a subset A of X,
its norm closure by A.

2. Omnibus characterization of total smoothness. Theorem 1.3 is
precisely (the real case of) the equivalence (a)⇔(d) below.

Theorem 2.1. Let Y be a closed subspace of a Banach space X. The
following assertions are equivalent:

(a) Y is totally smooth.
(b) For every sequence (yn) in SY , there exists at most one functional

f ∈ SX∗ satisfying the condition

(2.1) Re f(yn) −−−→
n→∞

‖f‖ = 1.
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(c) For every unbounded nested sequence of open balls Bn, n ∈ N, in X
with centers in Y , there exists at most one functional f ∈ SX∗ such
that Re f is bounded from above on

⋃∞
n=1Bn.

(d) For every unbounded nested sequence of open balls Bn, n ∈ N, in X
with centers in Y , the union

⋃∞
n=1Bn is either the whole space X or

an open half-space.
(e) For every unbounded nested sequence of open balls Bn = B(yn, rn),

n ∈ N, in X with yn ∈ Y satisfying, for some δ > 0,

‖yn‖ ≥ rn − δ for all n ∈ N,
the union

⋃∞
n=1Bn is an open half-space in X.

(f) For every sequence (yn) in Y satisfying, for some δ > 0,

(2.2) ‖y1‖ = ‖yn+1 − yn‖ = 1 and ‖yn‖ ≥ n− δ for all n ∈ N,
the union

⋃∞
n=1B(yn, n) is an open half-space in X.

(g) There is a constant δ > 0 such that, for every sequence (yn) in Y
satisfying (2.2), the union

⋃∞
n=1B(yn, n) is an open half-space in X.

The following lemma collects some simple facts about half-spaces and
unbounded nested sequences of balls used in the proof of Theorem 2.1.

Lemma 2.2. Let Bn = B(yn, rn), n ∈ N, be an unbounded nested se-
quence of open balls in a Banach space X, and let f ∈ X∗ \ {0}, α ∈ R, and
ε > 0. Set

B :=
∞⋃
n=1

Bn and A := {x ∈ X : Re f(x) < α}.

(a) If B ⊂ A, then

(2.3) Re f

(
y1 − yn
rn

)
−−−→
n→∞

‖f‖.

(b) B 6= X if and only if there are δ > 0 and N ∈ N such that

(2.4) ‖yn‖ ≥ rn − δ for all n ≥ N .

(c)
⋃∞

n=1B(yn, rn + ε) = {x ∈ X : d(x,B) < ε}.
(d) {x ∈ X : d(x,A) < ε} = {x ∈ X : Re f(x) < α+ ε‖f‖}.
Proof. (a) Assume that B ⊂ A. Then, for every n ∈ N,

Re f(yn) + rn‖f‖ = sup
x∈Bn

Re f(x) ≤ sup
x∈B

Re f(x) ≤ α.

Therefore, since y1 ∈ Bn,

‖f‖ − α

rn
+

Re f(y1)

rn
≤ Re f

(
y1 − yn
rn

)
≤ ‖f‖.

This implies (2.3), because rn →∞ as n→∞.
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(b) Suppose B 6= X. Then there exists an x ∈ X such that ‖x−yn‖ ≥ rn
for every n ∈ N, and therefore

‖yn‖ = ‖(yn − x) + x‖ ≥ ‖yn − x‖ − ‖x‖ ≥ rn − ‖x‖.
Conversely, suppose that there are δ > 0 and N ∈ N satisfying (2.4).

Since rn → ∞ as n → ∞, one has rm ≥ 2δ for some m ∈ N. Letting
n ≥ max{N,m}, it suffices to show that −ym /∈ Bn, i.e., ‖yn + ym‖ ≥ rn.
Since Bm ⊂ Bn and thus ‖yn − ym‖ ≤ rn − rm, it follows that

‖yn + ym‖ = ‖2yn − (yn − ym)‖ ≥ 2‖yn‖ − ‖yn − ym‖
≥ 2rn − 2δ − (rn − rm) = rn + rm − 2δ ≥ rn.

(c) Let x ∈
⋃∞

n=1B(yn, rn + ε), i.e., ‖x − yn‖ < rn + ε for some n ∈ N.
If x = yn, then d(x,B) = 0. Assume that x 6= yn. Since

θ :=
‖x− yn‖
rn + ε

< 1,

one has
z := yn + θrn

x− yn
‖x− yn‖

∈ B(yn, rn) ⊂ B.

And since
x = yn + θ(rn + ε)

x− yn
‖x− yn‖

,

it follows that ‖x− z‖ = θε < ε; hence d(x,B) < ε.
Conversely, let d(x,B) < ε. Then ‖x − z‖ < ε for some z ∈ B. Letting

m ∈ N be such that z ∈ B(ym, rm), one has

‖x− ym‖ ≤ ‖x− z‖+ ‖z − ym‖ < rm + ε;

therefore x ∈ B(ym, rm + ε) ⊂
⋃∞

n=1B(yn, rn + ε).
(d) If d(x,A) < ε, i.e., ‖x− z‖ < ε for some z ∈ A, then
Re f(x) = Re f(z) + Re f(x− z) ≤ Re f(z) + ‖f‖ ‖x− z‖ < α+ ε ‖f‖.
Conversely, let x∈X be such that Re f(x)<α+ε‖f‖. Now, if Re f(x)≤α,

then x ∈ A and thus d(x,A) = 0.
Suppose that α < Re f(x) < α+ ε ‖f‖; then

Re f(x) = α+ ε0 ‖f‖
for some ε0 ∈ (0, ε). It suffices to find a u ∈ X such that Re f(u) = α and
‖x− u‖ < ε, as in this case u ∈ A, and so d(x,A) = d(x,A) ≤ ‖x− u‖ < ε.

Choose x0 ∈ SX such that

β := Re f(x0) >
ε0
ε
‖f‖,

and set
u := x+

α− Re f(x)

β
x0.
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Then Re f(u) = α, and

‖x− u‖ = Re f(x)− α
β

=
ε0 ‖f‖
β

< ε.

The proof of the implication (g)⇒(a) of Theorem 2.1 uses the following
general lemma, inspired by an argument of Vlasov [V, pp. 37–38].

Lemma 2.3 (see [OP2, Lemma 1.3]). Let Z 6= {0} be a Banach space
and let h ∈ Z∗. For every ε > 0, there is a sequence (yn) in Z such that
‖y1‖ = ‖yn+1 − yn‖ = 1 and h(yn) ≥ (n− ε)‖h‖ for all n ∈ N.

Proof of Theorem 2.1. (a)⇒(b). As Y is totally smooth, Y has property
U and, by the Taylor–Foguel theorem, Y ∗ is strictly convex.

Let a sequence (yn) in SY and functionals f, g ∈ SX∗ be such that
Re f(yn),Re g(yn)→ 1 as n→∞. We need to show that f = g.

Since Re 1
2(f + g)(yn) → 1 as n → ∞, one has 1

2 f
∣∣
Y
+ 1

2 g
∣∣
Y
∈ SY ∗ ,

and thus f |Y = g|Y (because Y ∗ is strictly convex). Since f and g are
norm-preserving extensions of the functional h := f |Y = g|Y ∈ SY ∗ , one has
f = g (because Y has property U), as desired.

(b)⇒(c). Let Bn := B(yn, rn), where yn ∈ Y , n ∈ N, be an unbounded
nested sequence of open balls in X. Let f, g ∈ SX∗ be such that the real
parts Re f and Re g are bounded from above on B :=

⋃∞
n=1Bn, i.e.,

B ⊂ {x ∈ X : Re f(x) < α} and B ⊂ {x ∈ X : Re g(x) < β}

for some α, β ∈ R. We need to show that f = g.
By Lemma 2.2(a), setting zn := (y1 − yn)/rn, n ∈ N, one has

Re f(zn) −−−→
n→∞

‖f‖ = 1 and Re g(zn) −−−→
n→∞

‖g‖ = 1.

Since ‖zn‖ ≤ 1 for every n ∈ N (because ‖y1 − yn‖ ≤ rn by the inclusion
B1 ⊂ Bn), it follows that ‖zn‖ → 1 as n→∞, and thus

Re f

(
zn
‖zn‖

)
−−−→
n→∞

1 and Re g

(
zn
‖zn‖

)
−−−→
n→∞

1.

By assumption (b), one has f = g, as desired.
(c)⇒(d). Let Bn := B(yn, rn), where yn ∈ Y , n ∈ N, be an unbounded

nested sequence of open balls in X such that B :=
⋃∞

n=1Bn 6= X. Then,
since B is open, convex, and non-empty, as pointed out in [BFLM, beginning
of Section 2], B is an open half-space, and (d) holds.

(d)⇒(e) is immediate from Lemma 2.2(b).
(e)⇒(f) follows by taking rn = n in (e).
(f)⇒(g) is obvious.
(g)⇒(a). Let Z 6= {0} be a closed subspace of Y , let h ∈ SZ∗ , and let

H1 and H2 be norm-preserving extensions of h to X. We shall prove that if
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x ∈ SX and 0 < ε < δ, then

(2.5) |ReH1(x)− ReH2(x)| ≤ 4ε.

This clearly implies that H1 = H2, and (a) follows.
Thus, let x and ε be fixed as above. Let (yn) be a sequence from Z as in

Lemma 2.3. Then
‖yn‖ ≥ h(yn) ≥ n− ε ≥ n− δ,

hence (yn) satisfies (2.2), and
⋃∞

n=1B(yn, n) is an open half-space in X. By
Lemma 2.2(c),(d), also

(2.6) Bε :=
∞⋃
n=1

B(yn, n+ ε)

is an open half-space, say

(2.7) Bε = {u ∈ X : Re f(u) < α}

for some f ∈ SX∗ and α ∈ R. Observe that since 0 ∈ Bε, one must have
α > 0. But then

x+Bε = {u ∈ X : Re f(u) < Re f(x) + α},
x−Bε = {u ∈ X : Re f(u) > Re f(x)− α}.

From (2.7) and Lemma 2.2(a), we see that ‖f |Z‖ = ‖f‖. Hence f |Z 6= 0,
and therefore

{z ∈ Z : Re f(x)− α < Re f(z) < Re f(x) + α} 6= ∅,

meaning that

(2.8) Z ∩ (x+Bε) ∩ (x−Bε) 6= ∅.

This allows us to choose z ∈ Z such that ±(z − x) ∈ Bε. Recalling that
B(yn, n + ε) is a nested sequence of balls, we have an nε ∈ N such that
±(z − x) ∈ B(ynε , nε + ε). Now a rather standard reasoning follows: the
functionals Hi, i = 1, 2, satisfy

nε + ε > ‖ynε ± (z − x)‖ ≥ ReHi(ynε ± (z − x))
= Reh(ynε)± Re(h(z)−Hi(x)) ≥ nε − ε± Re(h(z)−Hi(x)),

giving |Reh(z)− ReHi(x)| ≤ 2ε, and (2.5) follows.

Remark 2.4. The following criterion for property U from [OP1] yields
a (non-self-contained) geometric proof of (g)⇒(a) of Theorem 2.1.

Theorem 2.5 (see [OP1, Theorem 1]). Let Y be a closed subspace of a
Banach space X. The following assertions are equivalent:

(a) Y has property U in X.
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(b) There is a constant δ > 0 such that whenever 0 < ε < δ, x ∈ SX ,
and a sequence (yn) of elements in Y satisfies (2.2), there are nε ∈ N
and y ∈ Y such that

‖± ynε + x− y‖ ≤ nε + ε.

Indeed, assume that (g) holds. Let Z be a closed subspace of Y , let
0 < ε < δ, let x ∈ SX , and let a sequence (yn) of elements in Z satisfy (2.2).
By Theorem 2.5, it suffices to show that

Z ∩
( ∞⋃

n=1

B(x+ yn, n+ ε)
)
∩
( ∞⋃

n=1

B(x− yn, n+ ε)
)
6= ∅,

which is equivalent to (2.8) where Bε is defined by (2.6). Condition (2.8) can
be obtained as in the proof of (g)⇒(a) above.

In the proof of Theorem 2.1, we preferred to present a self-contained
argument for (g)⇒(a).

Remark 2.6. Vlasov’s proof and the proof of a local version of his the-
orem (the description of rotund points of the closed unit ball of the dual
space in terms of sequences of nested balls) by Giles [G] relied, respectively,
on the equivalence of the strict convexity of the dual space to the smoothness
of every 2-dimensional quotient space of the original space, and on a local
version of this equivalence. In [BHLT] (by Bandyopadhyay, Huang, Lin, and
Troyanski), in [BHL], and in [BL], the description of rotund points was de-
veloped further: among other things, in [BHL, Theorem 3.6] a local version
of the Taylor–Foguel theorem in terms of rotund points was presented, and
in [BHLT, Theorem 6] and [BL, Theorem 2.1] a local version of the Vlasov
theorem was proved without using the Taylor–Foguel theorem (unlike the
proof of our Theorem 2.1 and the proof in [OP1]).

Remark 2.7. In [Su], Sullivan introduced a property of Banach spaces
in terms of nested sequences of balls which is stronger than the condition
from the Vlasov theorem, and which he called property V. Later, e.g., in [BR]
and [BL], this property was called the Vlasov property to avoid confusion
with Pełczyński’s property (V). In [Su, Theorem 5.4], it is proved that X has
the Vlasov property if and only if it has property U in its bidual X∗∗ and
the dual space X∗ is strictly convex (thus, the Vlasov property for X means
that, in our terms, X is totally smooth in X∗∗). Also (see [Su, Theorem 5.5]
with further references to [S], [Ph2], and [W]), for a separable space X, its
dual X∗ is separable if and only if X has an equivalent norm with the Vlasov
property.

Remark 2.8. In [HWW, Theorem III.4.6], it is shown that if X is an
M -ideal in its bidual X∗∗, then X has an equivalent norm whose dual norm
is strictly convex and under which X is still an M -ideal (we refer to the
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proof in [HWW] for further references). Thus, thanks to the Taylor–Foguel
theorem and the transitivity of property U , the space X is totally smooth
in its bidual.
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