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Abstract. Given T ⊂ R and a metric space M , we introduce a nondecreasing se-
quence {νn} of pseudometrics on MT (the set of all functions from T into M), called the
joint modulus of variation. We prove that if two sequences {fj} and {gj} of functions
from MT are such that {fj} is pointwise precompact, {gj} is pointwise convergent, and
lim supj→∞ νn(fj , gj) = o(n) as n → ∞, then {fj} admits a pointwise convergent sub-
sequence whose limit is a conditionally regulated function. We illustrate the sharpness
of this result by examples (in particular, the assumption on the lim sup is necessary for
uniformly convergent sequences {fj} and {gj}, and ‘almost necessary’ when they converge
pointwise) and show that most of the known Helly-type pointwise selection theorems are
its particular cases.

1. Introduction. The purpose of this paper is to present a new suf-
ficient condition (which is almost necessary) on a pointwise precompact
sequence {fj} ≡ {fj}∞j=1 of functions fj mapping a subset T of the real
line R into a metric space (M,d), under which the sequence admits a
pointwise convergent subsequence. The historically first result in this di-
rection is the classical Helly Selection Principle, in which the assumptions
are as follows: T = [a, b] is a closed interval, M = R, and {fj} is uni-
formly bounded and consists of monotone functions ([29], [31, II.8.9–10], [40,
VIII.4.2], and [10, Theorem 1.3] for T ⊂ R arbitrary). Since a real function
on T of bounded (Jordan) variation is the difference of two nondecreas-
ing bounded functions, Helly’s theorem extends to uniformly bounded se-
quences of functions whose Jordan variations are uniformly bounded. Fur-
ther generalizations of the latter pointwise selection principle are concerned
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with replacement of Jordan variation by more general notions of varia-
tion [2, 3, 6–10, 15, 16, 22, 25, 26, 33, 34, 39, 42, 44]. In all these papers, the
pointwise limit of the extracted subsequence of {fj} is a function of bounded
generalized variation (in the corresponding sense), and so it is a regulated
function (with finite one-sided limits at all points of the domain). Note that
pointwise selection principles (or sequential compactness in the topology of
pointwise convergence) and regulated functions are of importance in real
analysis [28, 31, 40], stochastic analysis and generalized integration [38],
optimization [1, 37], set-valued analysis [2, 10, 19, 20, 30], and other fields.

A unified approach to the diverse selection principles mentioned above
was proposed in [11, 12]. It is based on the notion of modulus of variation
of a function introduced in [4, 5] (see also [28, 11.3.7]) and does not refer to
the uniform boundedness of variations of any kind, and so can be applied to
sequences of non-regulated functions. However, the pointwise limit of the ex-
tracted subsequence of {fj} is again a regulated function. In order to clarify
this situation and expand the amount of sequences having pointwise con-
vergent subsequences, we define the notion of the joint modulus of variation
for metric space valued functions: this is a certain sequence {νn} of pseu-
dometrics on the product set MT (of all functions from T into M). Making
use of {νn}, we obtain a powerful pointwise selection principle (Theorem 1
in Section 2). Setting gj = c for all j ∈ N, where c : T → M is a constant
function, we get the selection principle from [11], which already contains all
selection principles alluded to above as particular cases. In contrast to results
from [11, 12], the pointwise limit f from Theorem 1 may not be regulated in
general—this depends on the limit function g, namely, since νn(f, g) = o(n),
the function f is only conditionally regulated with respect to g (for short,
g-regulated). In particular, if g = c, then f is regulated in the usual sense.

Finally, we point out that by following the ideas of [13], Theorem 1 may
be extended to sequences of functions with values in a uniform space M .

The paper is organized as follows. In Section 2, we present necessary def-
initions and our main result, Theorem 1. In Section 3, we establish essential
properties of the joint modulus of variation, which are needed in the proof
of Theorem 1 in Section 5. Section 4 is devoted to the study of g-regulated
(and in particular regulated) functions. In the final Section 6, we extend the
Helly-type selection theorems of [25] and [22, 33] by exploiting Theorem 1.

2. Main result. Let ∅ 6= T ⊂ R, let (M,d) be a metric space with
metric d, and let MT denote the set of all functions f : T →M . The letter c
stands for a constant function c : T →M .

The joint oscillation of two functions f, g ∈MT is the quantity

|(f, g)(T )| = sup
{
|(f, g)({s, t})| : s, t ∈ T

}
∈ [0,∞],
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where

(2.1) |(f, g)({s, t})| = sup
z∈M

∣∣d(f(s), z) + d(g(t), z)− d(f(t), z)− d(g(s), z)
∣∣

is the joint increment of f and g on the two-point set {s, t} ⊂ T , for which
the following two inequalities hold:

|(f, g)({s, t})| ≤ d(f(s), f(t)) + d(g(s), g(t)),(2.2)

|(f, g)({s, t})| ≤ d(f(s), g(s)) + d(f(t), g(t)).(2.3)

Since |(f, c)({s, t})| = d(f(s), f(t)) (= the increment of f on {s, t} ⊂ T ) is
independent of c, the quantity |f(T )| = |(f, c)(T )| is the usual oscillation of
f on T , also known as the diameter of the image f(T ) = {f(t) : t ∈ T} ⊂M .
Clearly, by (2.2), |(f, g)(T )| ≤ |f(T )|+ |g(T )|.

We denote by B(T ;M) = {f ∈ MT : |f(T )| < ∞} the family of all
bounded functions on T equipped with the uniform metric d∞ given by

d∞(f, g) = sup
t∈T

d(f(t), g(t)) for f, g ∈ B(T ;M)

(d∞ is an extended metric on MT , i.e., may assume the value ∞). We have

d∞(f, g) ≤ d(f(s), g(s)) + |f(T )|+ |g(T )| for all s ∈ T
and, by (2.3), |(f, g)(T )| ≤ 2d∞(f, g).

If n ∈ N, we write {Ii}ni=1 ≺ T to denote a collection of n two-point
subsets Ii = {si, ti} of T (i = 1, . . . , n) such that s1 < t1 ≤ s2 < t2 ≤
· · · ≤ sn−1 < tn−1 ≤ sn < tn (so that the intervals [s1, t1], . . . , [sn, tn] with
end-points in T are non-overlapping). We say that a collection {Ii}ni=1 ≺ T
with Ii = {si, ti} is a partition of T if (setting t0 = s1) si = ti−1 for all
i = 1, . . . , n, which is written as {ti}ni=0 ≺ T .

The joint modulus of variation of f, g ∈MT is the sequence {νn(f, g)}∞n=1

⊂ [0,∞] defined by

(2.4) νn(f, g) = sup
{ n∑
i=1

|(f, g)(Ii)| : {Ii}ni=1 ≺ T
}

for all n ∈ N,

where |(f, g)(Ii)| = |(f, g)({si, ti})| is the quantity from (2.1) if Ii = {si, ti}
(for finite T with #(T ) ≥ 2, we make use of (2.4) for n ≤ #(T )− 1, and set
νn(f, g) = ν#(T )−1(f, g) for all n > #(T )− 1).

Note that, given f, g ∈MT , we have ν1(f, g) = |(f, g)(T )| and

(2.5) ν1(f, g) ≤ νn(f, g) ≤ nν1(f, g) for all n ∈ N.

Further properties of the joint modulus of variation are presented in Sec-
tion 3.

For a sequence {fj} ⊂ MT and f ∈ MT , we write: (a) fj → f on T
to denote the pointwise (or everywhere) convergence of {fj} to f (that is,
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limj→∞ d(fj(t), f(t)) = 0 for all t ∈ T ); (b) fj ⇒ f on T to denote the uni-
form convergence of {fj} to f , meaning, as usual, that limj→∞ d∞(fj , f) = 0.
Uniform convergence implies pointwise convergence, but not vice versa. Re-
call that a sequence {fj} ⊂ MT is said to be pointwise precompact on T if
the closure in M of the set {fj(t) : j ∈ N} is compact for all t ∈ T .

Making use of E. Landau’s notation, given a sequence {µn}∞n=1 ⊂ R, we
write µn = o(n) when limn→∞ µn/n = 0.

Our main result, a pointwise selection principle for metric space valued
functions in terms of the joint modulus of variation, is as follows.

Theorem 1. Let ∅ 6= T ⊂ R and (M,d) be a metric space. Suppose
{fj}, {gj} ⊂MT are two sequences of functions such that

(a) {fj} is pointwise precompact on T ,
(b) {gj} is pointwise convergent on T to a function g ∈MT ,

and

(2.6) µn ≡ lim sup
j→∞

νn(fj , gj) = o(n).

Then there is a subsequence of {fj} which converges pointwise on T to a
function f ∈MT such that νn(f, g) ≤ µn for all n ∈ N.

This theorem will be proved in Section 5. Now, a few remarks are in
order. Given f ∈MT and a constant function c : T →M , the quantity

(2.7) νn(f) ≡ νn(f, c) = sup
{ n∑
i=1

d(f(si), f(ti)) : {Ii}ni=1 ≺ T
}

(with Ii = {si, ti}) is independent of c, and the sequence {νn(f)}∞n=1 ⊂
[0,∞] is known as the modulus of variation of f in the sense of Chanturiya
[4, 5, 11–13, 28]. It characterizes regulated (or proper) functions on T =
[a, b] as follows. We say that f : [a, b] → M is regulated and write f ∈
Reg([a, b];M) if d(f(s), f(t)) → 0 as s, t → τ − 0 for every a < τ ≤ b, and
d(f(s), f(t))→ 0 as s, t→ τ ′ + 0 for every a ≤ τ ′ < b (and so, by Cauchy’s
criterion, the one-sided limits f(τ − 0), f(τ ′ + 0) ∈ M exist provided M is
complete). We have

(2.8) Reg([a, b];M) = {f ∈M [a,b] : νn(f) = o(n)}

(more general characterizations for dense subsets T of [a, b] can be found
in [12, 13]). A certain relationship between characterizations of regulated
functions and pointwise selection principles is exhibited in [18].

3. The joint modulus of variation. We begin by studying the joint
increment (2.1), whose properties are gathered in the following lemma.
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Lemma 1. Given f, g, h ∈MT and s, t ∈ T , we have:

(a) |(f, f)({s, t})| = 0;
(b) |(f, g)({s, t})| = |(g, f)({s, t})|;
(c) |(f, g)({s, t})| ≤ |(f, h)({s, t})|+ |(h, g)({s, t})|;
(d) d(f(s), f(t)) ≤ d(g(s), g(t)) + |(f, g)({s, t})|;
(e) d(f(t), g(t)) ≤ d(f(s), g(s)) + |(f, g)({s, t})|.

Proof. Properties (a)–(c), showing that (f, g) 7→ |(f, g)({s, t})| is a pseu-
dometric on MT , are straightforward. To establish (d) and (e), take into
account the equality d(x, y) = maxz∈M |d(x, z)− d(y, z)|.

Remark 1. (a) If |(f, g)({s, t})| = 0, then (d), (e), and (b) imply
d(f(s), f(t)) = d(g(s), g(t)) and d(f(t), g(t)) = d(f(s), g(s)). In addition
to Lemma 1, the function (s, t) 7→ |(f, g)({s, t})| is a pseudometric on T .

(b) If F (z) denotes the absolute value under the supremum sign in (2.1),
then F : M → [0,∞) and |F (z)− F (z0)| ≤ 4d(z, z0) for all z, z0 ∈M .

(c) By Lemma 1(d), |f(T )| ≤ |g(T )|+ |(f, g)(T )| = |g(T )|+ ν1(f, g). So,∣∣|f(T )| − |g(T )|
∣∣ ≤ |(f, g)(T )| ≤ |f(T )|+ |g(T )|, f, g ∈ B(T ;M).

Moreover, it follows from Lemma 1(e) that

d∞(f, g) ≤ d(f(s), g(s)) + |(f, g)(T )| ≤ 3d∞(f, g) for all s ∈ T.

(d) Suppose the triple (M,d,+) is a metric semigroup [10, Section 4], i.e.,
(M,d) is a metric space, (M,+) is an Abelian semigroup with addition +,
and d(x, y) = d(x + z, y + z) for all x, y, z ∈ M . Then the joint increment
(2.1) may be alternatively replaced by

(3.1) |(f, g)({s, t})| = d(f(s) + g(t), f(t) + g(s)).

The joint modulus of variation (2.4) involving (3.1) was employed in [17].
Furthermore, if (M, ‖ · ‖) is a normed linear space (over R or C), we may set

(3.2) |(f, g)({s, t})| = ‖f(s)+g(t)−f(t)−g(s)‖ = ‖(f−g)(s)−(f−g)(t)‖.
Quantities (3.1) and (3.2) have the same properties as (2.1): see (2.2), (2.3),
Lemma 1 and Remark 1(a). In the following, we make use of the more general
quantity (2.1).

If f, g ∈ MT , n ∈ N and ∅ 6= E ⊂ T , we set νn(f, g;E) = νn(f |E , g|E),
where f |E ∈ ME is the restriction of f to E. Accordingly, νn(f, g) =
νn(f, g;T ).

The following properties of the joint modulus of variation are immedi-
ate. The sequence {νn(f, g)}∞n=1 is nondecreasing, νn+m(f, g) ≤ νn(f, g) +
νm(f, g) for all n,m ∈ N, and νn(f, g;E) ≤ νn(f, g;T ) provided n ∈ N and
E ⊂ T . It follows from (2.4) and Lemma 1(a)–(c) that, for every n ∈ N,
the function (f, g) 7→ νn(f, g) is a pseudometric on MT (possibly assuming
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infinite values), and in particular (cf. (2.4) and (2.7))

(3.3) νn(f, g) ≤ νn(f) + νn(g) and νn(f) ≤ νn(g) + νn(f, g)

for all n ∈ N and f, g ∈MT . Furthermore, if f, g ∈ B(T ;M), then, by (2.5),
the sequence {νn(f, g)/n}∞n=1 is bounded in [0,∞).

Essential properties of the joint modulus of variation are presented in

Lemma 2. Given n ∈ N, f, g ∈MT , and ∅ 6= E ⊂ T , we have:

(a) |(f, g)({s, t})| + νn(f, g;E−s ) ≤ νn+1(f, g;E−t ) for all s, t ∈ E with
s ≤ t, where E−τ = (−∞, τ ] ∩ E for τ ∈ E;

(b) νn+1(f, g;E) ≤ νn(f, g;E) + νn+1(f, g;E)/(n+ 1);
(c) if {fj}, {gj} ⊂ MT are such that fj → f and gj → g on E, then

νn(f, g;E) ≤ lim infj→∞ νn(fj , gj ;E);

(d) if {fj}, {gj} ⊂ MT are such that fj ⇒ f and gj ⇒ g on E, then
νn(f, g;E) = limj→∞ νn(fj , gj ;E).

Proof. (a) We may assume that s < t. Let {Ii}ni=1 ≺ E−s . Setting I0 =
{s, t}, we find {Ii}ni=0 ≺ E

−
t , and so

|(f, g)(I0)|+
n∑
i=1

|(f, g)(Ii)| ≤ νn+1(f, g;E−t ).

The inequality in (a) follows by taking the supremum over all {Ii}ni=1 ≺ E−s .

(b) We may assume that νn+1(f, g;E) is finite, and apply the idea from
[5, Lemma]. Given ε > 0, there is {Ii}n+1

i=1 ≺ E (depending on ε) such that

n+1∑
i=1

|(f, g)(Ii)| ≤ νn+1(f, g;E) ≤
n+1∑
i=1

|(f, g)(Ii)|+ ε.

If we set a0 = min1≤i≤n+1 |(f, g)(Ii)|, the left-hand inequality implies
(n+ 1)a0 ≤ νn+1(f, g;E). The right-hand inequality gives

νn+1(f, g;E) ≤ νn(f, g;E) + a0 + ε,

from which our inequality follows due to the arbitrariness of ε > 0.

(c) First, we note that, given j ∈ N and s, t ∈ T , we have∣∣|(fj , gj)({s, t})| − |(f, g)({s, t})|
∣∣ ≤ d(fj(s), f(s)) + d(fj(t), f(t))(3.4)

+ d(gj(s), g(s)) + d(gj(t), g(t)).

In fact, Lemma 1(c) and inequality (2.3) imply

|(fj , gj)({s, t})| ≤ |(fj , f)({s, t})|+ |(f, g)({s, t})|+ |(g, gj)({s, t})|(3.5)

≤ d(fj(s), f(s)) + d(fj(t), f(t)) + |(f, g)({s, t})|
+ d(g(s), gj(s)) + d(g(t), gj(t)).

Exchanging fj and f as well as gj and g, we obtain (3.4).
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From the pointwise convergence of {fj} and {gj} and (3.4), we find

lim
j→∞

|(fj , gj)({s, t})| = |(f, g)({s, t})| for all s, t ∈ E.

By definition (2.4), given {Ii}ni=1 ≺ E, we have
n∑
i=1

|(fj , gj)(Ii)| ≤ νn(fj , gj ;E) for all j ∈ N.

Hence, by taking lim inf as j →∞,

(3.6)
n∑
i=1

|(f, g)(Ii)| ≤ lim inf
j→∞

νn(fj , gj ;E).

Since {Ii}ni=1 ≺ E is arbitrary, it remains to take into account (2.4).
(d) It follows from (3.5) that, for any s, t ∈ E and j ∈ N,

|(fj , gj)({s, t})| ≤ 2 sup
τ∈E

d(fj(τ), f(τ)) + |(f, g)({s, t}) + 2 sup
τ∈E

d(gj(τ), g(τ)),

and so definition (2.4) implies

νn(fj , gj ;E) ≤ 2n sup
τ∈E

d(fj(τ), f(τ)) + νn(f, g;E)(3.7)

+ 2n sup
τ∈E

d(gj(τ), g(τ))

for all j ∈ N. Hence

lim sup
j→∞

νn(fj , gj ;E) ≤ νn(f, g;E).

Now, (d) is a consequence of Lemma 2(c).

Remark 2. If the value ν1(f, g;E) = |(f, g)(E)| (see (2.5)) is finite
for an E ⊂ T (e.g., when f, g ∈ B(E;M)), inequality in Lemma 2(b) is
equivalent to

νn+1(f, g;E)

n+ 1
≤ νn(f, g;E)

n
.

Thus, the limit limn→∞ νn(f, g;E)/n always exists in [0,∞). This also fol-
lows from the subadditivity property νn+m(f, g;E)≤νn(f, g;E)+νm(f, g;E)
mentioned on p. 41.

4. Conditionally regulated functions. Since νn = νn(·, ·) is an (ex-
tended) pseudometric on MT , we may introduce an equivalence relation ∼
on MT as follows: given f, g ∈MT , we set

f ∼ g if and only if νn(f, g) = o(n).

The equivalence class R(g) = {f ∈ MT : f ∼ g} of a function g ∈ MT is
called the regularity class of g, and any representative f ∈ R(g) is called
a conditionally regulated or, more precisely, a g-regulated function. This
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terminology is justified by (2.8): in the framework of the product set M [a,b],
we have Reg([a, b];M) = R(c) for any constant function c : [a, b]→M .

Note that, in Theorem 1, the condition ‘νn(f, g) ≤ µn for all n ∈ N’
means that f ∈ R(g), and so the class R(g) is worth studying in more
detail.

Theorem 2. Given g ∈MT , we have:

(a) g ∈ B(T ;M) if and only if R(g) ⊂ B(T ;M);
(b) R(g) is closed with respect to uniform convergence, but not with respect

to pointwise convergence in general;
(c) if (M,d) is a complete metric space, then so is (R(g), d∞).

Proof. (a) The sufficiency is clear, because g ∈ R(g). Now, suppose that
g ∈ B(T ;M), so that, by (2.7), ν1(g) = |(g, c)(T )| = |g(T )| < ∞. Given
f ∈ R(g), νn(f, g) = o(n), and so νn0(f, g) ≤ n0 for some n0 ∈ N. It follows
from (3.3) and (2.5) that

|f(T )| = ν1(f) ≤ ν1(g) + ν1(f, g) ≤ |g(T )|+ νn0(f, g) ≤ |g(T )|+ n0 <∞,
which implies f ∈ B(T ;M).

(b) We have to show that if {fj} ⊂ R(g) and fj ⇒ f on T with f ∈MT ,
then f ∈ R(g). We will prove a little more: if {fj}, {gj} ⊂ MT , fj ∈ R(gj)
for all j ∈ N, and fj ⇒ f and gj ⇒ g on T with f, g ∈ MT , then f ∈ R(g)
(the previous assertion follows if gj = g for all j ∈ N). In fact, exchanging
fj and f , and gj and g, in (3.7), we get

νn(f, g)

n
≤ 2d∞(f, fj) +

νn(fj , gj)

n
+ 2d∞(g, gj), n, j ∈ N.

By the uniform convergence of {fj} and {gj}, given ε > 0, there is j0 =
j0(ε) ∈ N such that d∞(f, fj0) ≤ ε and d∞(g, gj0) ≤ ε. Since fj0 is in R(gj0),
we have νn(fj0 , gj0) = o(n), and so there exists n0 = n0(ε) ∈ N such that
νn(fj0 , gj0)/n ≤ ε for all n ≥ n0. The estimate above with j = j0 implies
νn(f, g)/n ≤ 5ε, n ≥ n0, which means that νn(f, g) = o(n) and f ∈ R(g).

As for pointwise convergence, consider a sequence of real step functions
converging pointwise to the Dirichlet function (= the characteristic function
of the rationals Q) on T = [0, 1] (see [11, Examples 4, 5] and Example 2(a)
in Section 5).

(c) First, we show that d∞(f, f ′) <∞ for all f, f ′ ∈ R(g). In fact, since
f ∼ f ′, we have νn(f, f ′) = o(n), and so νn0(f, f ′) ≤ n0 for some n0 ∈ N.
Given s ∈ T , it follows from Remark 1(c) and (2.5) that

d∞(f, f ′) ≤ d(f(s), f ′(s)) + ν1(f, f
′) ≤ d(f(s), f ′(s)) + νn0(f, f ′) <∞.

The metric axioms for d∞ on R(g) are verified in a standard way.
In order to prove that R(g) is complete, suppose {fj} ⊂ R(g) is a Cauchy

sequence, i.e., d∞(fj , fk)→ 0 as j, k →∞. Since d(fj(t), fk(t)) ≤ d∞(fj , fk)
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for all t ∈ T and (M,d) is complete, there exists f ∈MT such that fj → f
on T . Noting that fj → fj and fk → f on T as k → ∞ (and arguing as in
(3.6)), we get

d∞(fj , f) ≤ lim inf
k→∞

d∞(fj , fk) = lim
k→∞

d∞(fj , fk) <∞ for all j ∈ N.

Since {fj} is d∞-Cauchy, we find

lim sup
j→∞

d∞(fj , f) ≤ lim
j→∞

lim
k→∞

d∞(fj , fk) = 0.

Thus, limj→∞ d∞(fj , f) = 0, and so fj ⇒ f on T . Now (b) implies that
f ∈ R(g).

A traditionally important class of regulated functions is the space of
functions of bounded Jordan variation, BV(T ;M), which is introduced by
means of the joint modulus of variation as follows.

Since the sequence {νn(f, g)}∞n=1 is nondecreasing for all f, g ∈MT , the
quantity (finite or not) V (f, g) = limn→∞ νn(f, g) = supn∈N νn(f, g) is called
the joint variation of f and g on T . The value V (f) ≡ V (f, c) is independent
of the constant function c : T → M and is the usual Jordan variation of f
on T :

V (f) = sup
{ n∑
i=1

d(f(ti), f(ti−1)) : n ∈ N and {ti}ni=0 ≺ T
}
,

the supremum being taken over all partitions {ti}ni=0 of T (cf. Section 2). The
set BV(T ;M) = {f ∈ MT : V (f) <∞} is contained in B(T ;M) ∩ R(c) (in
fact, |f(T )| = ν1(f) ≤ V (f) and νn(f, c)/n ≤ V (f)/n for all f ∈ BV(T ;M)).

The following notion of ε-variation Vε(f), due to Fraňková [25, Sec-
tion 3], provides an alternative characterization (cf. (2.8)) of regulated func-
tions: given f ∈MT and ε > 0, set

(4.1) Vε(f) = inf{V (g) : g ∈ BV(T ;M) and d∞(f, g) ≤ ε}
(inf ∅ =∞). It was shown in [25, Proposition 3.4] (for T = [a, b]) that

(4.2) Reg([a, b];M) = {f ∈M [a,b] : Vε(f) <∞ for all ε > 0}
(although in [25] it is assumed that M = RN , the proof carries over to any
metric space M , cf. [11, Lemma 3]).

The notion of ε-variation will be needed in Section 6.

Example 1. Given x, y ∈M with x 6= y, let f = Dx,y : T = [0, 1]→M
be the Dirichlet-type function of the form

(4.3) Dx,y(t) =

{
x if t ∈ [0, 1] is rational,

y if t ∈ [0, 1] is irrational.

Clearly, f /∈ Reg([0, 1];M). Moreover (cf. (4.2)),

(4.4) Vε(f) =∞ if 0 < ε < d(x, y)/2, Vε(f) = 0 if ε ≥ d(x, y).
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To see this, first note that, given g ∈ M [0,1], the inequality d∞(f, g) ≤ ε is
equivalent to the following two conditions:

(4.5) d(x, g(s)) ≤ ε ∀s ∈ [0, 1] ∩Q, d(y, g(t)) ≤ ε ∀t ∈ [0, 1] \Q.
Suppose 0 < ε < d(x, y)/2. To show that d∞(f, g) ≤ ε implies V (g) =∞,

we let n ∈ N, and let {ti}2ni=0 ≺ [0, 1] be a partition of [0, 1] such that the
points {t2i}ni=0 are rational and the points {t2i−1}ni=1 are irrational. By the
triangle inequality for d and (4.5), we get

V (g) ≥
2n∑
i=1

d(g(ti), g(ti−1)) ≥
n∑
i=1

d(g(t2i), g(t2i−1))

≥
n∑
i=1

(
d(x, y)− d(x, g(t2i))− d(g(t2i−1), y)

)
≥ n

(
d(x, y)− 2ε

)
.

If ε ≥ d(x, y), we set g(t) = x (or g(t) = y) for all t ∈ [0, 1], so that (4.5)
is satisfied and V (g) = 0. Thus, Vε(f) = 0.

The second assertion in (4.4) can be refined, provided

(4.6) d(x, y)/2 = max{d(x, z0), d(y, z0)} for some z0 ∈M.

In fact, we may set g(t) = z0 for all t ∈ [0, 1], so that (4.5) holds whenever
d(x, y)/2 ≤ ε, and V (g) = 0. This implies Vε(f) = 0 for all ε ≥ d(x, y)/2.

A few remarks concerning condition (4.6) are in order. Since

d(x, y) ≤ d(x, z) + d(z, y) ≤ 2 max{d(x, z), d(y, z)} for all z ∈M,

condition (4.6) is a certain form of ‘convexity’ of M (which is not restrictive
for our purposes). For instance, if (M, ‖ · ‖) is a normed linear space with
d(x, y) = ‖x− y‖, we may set z0 = (x+ y)/2. More generally, by Menger’s
Theorem ([36], [27, Example 2.7]), if a metric space (M,d) is complete and
metrically convex (i.e., given x, y ∈M with x 6= y, there is z ∈M such that
x 6= z 6= y and d(x, y) = d(x, z) + d(z, y)), then, for any x, y ∈ M , there
is an isometry ϕ : [0, d(x, y)] → M such that ϕ(0) = x and ϕ(d(x, y)) = y.
In this case, we set z0 = ϕ(d(x, y)/2). More examples of metrically convex
metric spaces can be found in [21, 24].

Finally, if M = {x, y}, then condition (4.6) is not satisfied, and we have
Vε(f) =∞ for all 0 < ε < d(x, y), which is a consequence of (4.5).

5. Proof of the main result

Proof of Theorem 1. With no loss of generality we may assume that
T is uncountable; otherwise, by assumption (a) and the standard Cantor
diagonal procedure, we extract a pointwise convergent subsequence of {fj}
and apply Lemma 2(c). Note that µn is finite for all n ∈ N: in fact, µn ≤ n
whenever n ≥ n0 for some n0 ∈ N, and since n 7→ νn(fj , gj) is nondecreasing
for all j ∈ N, we have µn ≤ µn0 ≤ n0 for all 1 ≤ n < n0.
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For clarity we divide the rest of the proof into four steps.

Step 1. Let us show that there is a subsequence of {j}∞j=1, again denoted
by {j}, and a nondecreasing sequence {αn}∞n=1 ⊂ [0,∞) such that

(5.1) lim
j→∞

νn(fj , gj) = αn ≤ µn for all n ∈ N.

We set α1 = µ1. The definition (2.6) of µ1 implies that there is an in-
creasing sequence {J1(j)}∞j=1 ⊂ N (i.e., a subsequence of {j}∞j=1) such that
ν1(fJ1(j), gJ1(j)) → α1 as j → ∞. Setting α2 = lim supj→∞ ν2(fJ1(j), gJ1(j)),
we find α2 ≤ µ2, and there is a subsequence {J2(j)}∞j=1 of {J1(j)}∞j=1

such that ν2(fJ2(j), gJ2(j)) → α2 as j → ∞. Inductively, if n ≥ 3 and
a subsequence {Jn−1(j)}∞j=1 of {j}∞j=1 is already chosen, we define αn =
lim supj→∞ νn(fJn−1(j), gJn−1(j)), so that αn ≤ µn. Now, we pick a sub-
sequence {Jn(j)}∞j=1 of {Jn−1(j)}∞j=1 such that νn(fJn(j), gJn(j)) → αn as
j → ∞. Noting that {Jj(j)}∞j=n is a subsequence of {Jn(j)}∞j=1 (for all
n ∈ N) and denoting the diagonal sequences {fJj(j)}∞j=1 and {gJj(j)}∞j=1

again by {fj} and {gj}, respectively, we obtain (5.1).
In the following, the set of all nondecreasing bounded functions mapping

T into R+ = [0,∞) is denoted by Mon(T ;R+).

Step 2. In this step, we prove that there are subsequences of {fj} and
{gj} from (5.1), again denoted by {fj} and {gj}, respectively, and a sequence
of functions {βn}∞n=1 ⊂ Mon(T ;R+) such that

(5.2) lim
j→∞

νn(fj , gj ;T
−
t ) = βn(t) for all n ∈ N and t ∈ T,

where T−t = {s ∈ T : s ≤ t} for t ∈ T .
Note that, for each n ∈ N, the function t 7→ νn(fj , gj ;T

−
t ) is nondecreas-

ing on T , and νn(fj , gj ;T
−
t ) ≤ νn(fj , gj) for all t ∈ T and n ∈ N. By (5.1),

there is a sequence {Cn}∞n=1 ⊂ R+ such that νn(fj , gj) ≤ Cn for all n, j ∈ N.
In what follows, we apply the diagonal procedure once again.

The sequence {t 7→ν1(fj , gj ;T
−
t )}∞j=1⊂Mon(T ;R+) is uniformly bounded

by C1, and so, by Helly’s Selection Principle, there are an increasing se-
quence {K1(j)}∞j=1 ⊂ N (i.e., a subsequence of {j}∞j=1) and a function

β1 ∈ Mon(T ;R+) such that ν1(fK1(j), gK1(j);T
−
t ) → β1(t) as j → ∞ for

all t ∈ T . The sequence {t 7→ ν2(fK1(j), gK1(j);T
−
t )}∞j=1 ⊂ Mon(T ;R+) is

uniformly bounded on T by C2, and so, again by Helly’s Theorem, there are
a subsequence {K2(j)}∞j=1 of {K1(j)}∞j=1 and a function β2 ∈ Mon(T ;R+)

such that ν2(fK2(j), gK2(j);T
−
t ) → β2(t) as j → ∞ for all t ∈ T . Induc-

tively, if n ≥ 3 and a subsequence {Kn−1(j)}∞j=1 of {j}∞j=1 and a func-

tion βn−1 ∈ Mon(T ;R+) are already chosen, we apply the Helly Theo-
rem to the sequence of functions {t 7→ νn(fKn−1(j), gKn−1(j);T

−
t )}∞j=1 ⊂

Mon(T ;R+), which is uniformly bounded on T by Cn: there are a subse-
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quence {Kn(j)}∞j=1 of {Kn−1(j)}∞j=1 and a function βn ∈ Mon(T ;R+) such

that νn(fKn(j), gKn(j);T
−
t )→ βn(t) as j →∞ for all t ∈ T . Since {Kj(j)}∞j=n

is a subsequence of {Kn(j)}∞j=1 (for all n ∈ N), the diagonal sequences
{fKj(j)}∞j=1 and {gKj(j)}∞j=1, again denoted by {fj} and {gj}, respectively,
satisfy condition (5.2).

Step 3. Let Q be an at most countable dense subset of T . Note that Q
contains all isolated (= nonlimit) points of T (i.e., points t ∈ T such that
the intervals (t − δ, t) and (t, t + δ) lie in R \ T for some δ > 0). The set
Qn ⊂ T of discontinuity points of the nondecreasing function βn is at most
countable. Setting S = Q∪

⋃∞
n=1Qn, we find that S is an at most countable

dense subset of T and

(5.3) βn is continuous at all points of T \ S for all n ∈ N.

Since the set {fj(t) : j ∈ N} is precompact in M for all t ∈ T , and S ⊂ T is
at most countable, we may assume (applying the diagonal procedure again
and passing to a subsequence of {fj} if necessary) that, given s ∈ S, there
is a point f(s) ∈M such that d(fj(s), f(s))→ 0 as j →∞. In this way, we
obtain a function f : S →M .

Step 4. Now, we show that, for every t ∈ T \S, the sequence {fj(t)}∞j=1

converges in M . For this, we prove that this sequence is Cauchy in M , i.e.,
d(fj(t), fk(t))→ 0 as j, k →∞. Fix ε > 0. By assumption (2.6), µn/n→ 0
as n→∞, so we choose n = n(ε) ∈ N such that

µn+1

n+ 1
≤ ε.

By property (5.1), there is j1 = j1(ε, n) ∈ N such that

νn+1(fj , gj) ≤ αn+1 + ε ≤ µn+1 + ε for all j ≥ j1.

The definition of the set S and (5.3) imply that t is a limit point for T and,
at the same time, a point of continuity of the function βn. By the density
of S in T , there is s = s(ε, n, t) ∈ S such that

|βn(t)− βn(s)| ≤ ε.

It follows from (5.2) that there is j2 = j2(ε, n, t, s) ∈ N such that

|νn(fj , gj ;T
−
t )− βn(t)| ≤ ε and |νn(fj , gj ;T

−
s )− βn(s)| ≤ ε ∀j ≥ j2.

Assuming that s < t (for t < s the argument is similar) and applying
Lemma 2(a), (b), we get, for all j ≥ max{j1, j2},
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|(fj , gj)({s, t})| ≤ νn+1(fj , gj ;T
−
t )− νn(fj , gj ;T

−
s )

≤ νn+1(fj , gj ;T
−
t )− νn(fj , gj ;T

−
t )

+ |νn(fj , gj ;T
−
t )− βn(t)|+ |βn(t)− βn(s)|

+ |βn(s)− νn(fj , gj ;T
−
s )|

≤ νn+1(fj , gj ;T
−
t )

n+ 1
+ ε+ ε+ ε

≤ νn+1(fj , gj)

n+ 1
+ 3ε ≤ µn+1

n+ 1
+

ε

n+ 1
+ 3ε ≤ 5ε.

Being convergent (see (b)), the sequences {fj(s)}∞j=1, {gj(s)}∞j=1 and
{gj(t)}∞j=1 are Cauchy in M , and so there is j3 = j3(ε, s, t) ∈ N such that,
for all j, k ≥ j3, we have

d(fj(s), fk(s)) ≤ ε, d(gj(s), gk(s)) ≤ ε, and d(gj(t), gk(t)) ≤ ε.
By (2.3), we get

|(gj , gk)({s, t})| ≤ d(gj(s), gk(s)) + d(gj(t), gk(t)) ≤ 2ε ∀j, k ≥ j3.
Setting j4 = max{j1, j2, j3} and applying Lemma 1(e), (c), (b), we find

d(fj(t), fk(t)) ≤ d(fj(s), fk(s)) + |(fj , fk)({s, t})|
≤ d(fj(s), fk(s)) + |(fj , gj)({s, t})|+ |(gj , gk)({s, t})|

+ |(gk, fk)({s, t})|
≤ ε+ 5ε+ 2ε+ 5ε = 13ε for all j, k ≥ j4.

Since j4 depends only on ε (and t), this proves that {fj(t)}∞j=1 is a Cauchy
sequence in M , which together with assumption (a) establishes its conver-
gence in M to an element denoted by f(t) ∈M .

Here and at the end of Step 3, we have shown that the function f : T =
S ∪ (T \ S)→M is a pointwise limit on T of a subsequence {fjk}∞k=1 of the
original sequence {fj}∞j=1. Since gjk → g pointwise on T as k →∞ as well,
we conclude from Lemma 2(c) that

νn(f, g) ≤ lim inf
k→∞

νn(fjk , gjk) ≤ lim sup
j→∞

νn(fj , gj) = µn ∀n ∈ N,

and so νn(f, g) = o(n), or f ∈ R(g). This completes the proof of Theo-
rem 1.

Remark 3. (a) Condition (b) in Theorem 1 may be replaced by the fol-
lowing one: {gj(t)}∞j=1 is a Cauchy sequence in M for every t ∈ T . However,
if (M,d) is not complete, we may no longer infer the property νn(f, g) ≤ µn,
n ∈ N, of the pointwise limit f (as there may be no g).

(b) Condition (2.6) is necessary for the uniformly convergent sequences
{fj} and {gj}: in fact, if fj ⇒ f and gj ⇒ g on T , and νn(f, g) = o(n), then
it follows from Lemma 2(d) that limj→∞ νn(fj , gj) = νn(f, g) = o(n).
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(c) Condition (2.6) is ‘almost necessary’ in the following sense. Suppose
T ⊂ R is a measurable set with Lebesgue measure L(T ) <∞, {fj}, {gj} ⊂
MT are two sequences of measurable functions which converge pointwise
(or almost everywhere) on T to functions f, g ∈ MT , respectively, such
that νn(f, g) = o(n). By Egorov’s Theorem, given ε > 0, there exists a
measurable set Eε ⊂ T such that L(T \Eε) ≤ ε, fj ⇒ f and gj ⇒ g on Eε.
So, as in the previous remark (b), we have

lim
j→∞

νn(fj , gj ;Eε) = νn(f, g;Eε) ≤ νn(f, g) = o(n).

Example 2. (a) Condition (2.6) is not necessary for pointwise conver-
gence even if gj = c for all j ∈ N. To see this, let T = [0, 1] and x, y ∈M with
x 6= y. Given j ∈ N, define fj : T →M by: fj(t) = x if j!t is an integer, and
fj(t) = y otherwise, t ∈ [0, 1]. The pointwise precompact sequence {fj} ⊂
MT consists of bounded regulated functions (in fact, νn(fj , c) = o(n), and
so fj ∈ Reg([0, 1];M) = R(c) for all j ∈ N). It converges pointwise on T to
the Dirichlet-type function Dx,y from (4.3). Note that νn(Dx,y, c) = nd(x, y),
and so Dx,y /∈ R(c). Since the usual Jordan variation V (fj) of fj on T = [0, 1]
is equal to 2 · j!d(x, y), we find

νn(fj , c) = d(x, y)

{
n if n < 2 · j!,
2 · j! if n ≥ 2 · j!,

n, j ∈ N.

Thus, limj→∞ νn(fj , c) = d(x, y) · n, i.e., condition (2.6) does not hold.
(b) Under the assumptions of Theorem 1, condition (2.6) does not in

general imply lim supj→∞ νn(fj , g) = o(n). To see this, let gj = fj be as
in example (a) above, so that g = Dx,y. Given n, j ∈ N, choose a collec-
tion {Ii}ni=1 ≺ (0, 1/j!) with Ii = {si, ti} such that si is rational and ti is
irrational for all i = 1, . . . , n. Noting that, by (2.1),

|(fj , g)({si, ti})| = sup
z∈M
|d(y, z)− d(x, z)| = d(y, x),

we get

νn(fj , g) ≥
n∑
i=1

|(fj , g)(Ii)| = nd(y, x) for all n, j ∈ N.

(c) The choice of an appropriate sequence {gj} is essential in Theorem 1.
Let {xj}, {yj} ⊂ M be two sequences which converge in M to x, y ∈ M ,
respectively, with x 6= y. Define fj : T = [0, 1] → M by fj = Dxj ,yj , j ∈ N
(cf. (4.3)). Clearly, {fj} converges uniformly on T toDx,y (so {fj} is pointwise
precompact on T ), and νn(fj , c) = nd(xj , yj) for all n, j ∈ N. Since

|d(xj , yj)− d(x, y)| ≤ d(xj , x) + d(yj , y)→ 0 as j →∞,
we find limj→∞ νn(fj , c) = nd(x, y), condition (2.6) is not satisfied, and
Theorem 1 is inapplicable with gj = c, j ∈ N.
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On the other hand, set gj = Dx,y for all j ∈ N. Given {s, t} ⊂ T , we
have, by (2.3),

|(fj , gj)({s, t})| ≤ d(fj(s), gj(s)) + d(fj(t), gj(t)) ≤ 2εj ,

where εj = max{d(xj , x), d(yj , y)} → 0 as j →∞. This implies νn(fj , gj) ≤
2nεj , and so (2.6) is fulfilled.

(d) The following question is natural: Is condition (2.6) invariant un-
der equivalent metrics on M? (Recall that two metrics d and d′ on M are
equivalent if, given {xj} ⊂ M and x ∈ M , the assertions d(xj , x) → 0 and
d′(xj , x)→ 0 are equivalent.) We answer this question in the negative by con-
structing an appropriate example. Let d be an unbounded metric on a set M ,
that is, supx,y∈M d(x, y) =∞ (e.g., M = R and d(x, y) = |x− y|). Since this
is equivalent to supy∈M d(x, y) =∞ for all x ∈M , fix x0 ∈M and pick a se-
quence {yj} ⊂M such that d(x0, yj)→∞ as j →∞ (e.g., ifM = R, we may
set x0 = 0 and yj = j). Given j ∈ N, define fj : T = [0, 1] → M as follows:
fj(t) = yj if t = 1/(j+ 1), and fj(t) = x0 otherwise, t ∈ [0, 1]. The sequence
{fj} ⊂MT converges pointwise on T to the constant function f(t) = x0 for
all t ∈ [0, 1]. Clearly (cf. (2.7)), ν1(fj) = d(x0, yj) and νn(fj) = 2d(x0, yj)
for all n ≥ 2. Thus, condition (2.6) does not hold even if gj = c for all j ∈ N.

On the other hand, the function d′ given by d′(x, y) = d(x,y)
1+d(x,y) , x, y ∈M ,

is a metric on M , which is equivalent to d. Calculating the quantity (2.7)
with respect to d′, we find

ν1(fj) =
d(x0, yj)

1 + d(x0, yj)
and νn(fj) =

2d(x0, yj)

1 + d(x0, yj)
for all n ≥ 2.

It follows that limj→∞ νn(fj , c) is equal to 1 if n = 1 and equal to 2 for
n ≥ 2, and so condition (2.6) is satisfied.

(e) Furthermore, condition (2.6) may not hold for any equivalent metric
on M under which the sequence {fj} ⊂ MT is pointwise convergent on T
(with all gj = c). In order to see this, we let T = [0, 2π] and M = R, and de-
fine {fj} ⊂ R[0,2π] by (see [11, Example 4]) fj(t) = sin(j2t) if 0 ≤ t < 2π/j,
and fj(t) = 0 if 2π/j ≤ t ≤ 2π, j ∈ N. Clearly, {fj} is pointwise convergent
on [0, 2π] to the constant function f ≡ 0 with respect to the usual metric
(x, y) 7→ |x − y| on R as well as any metric d on R equivalent to it. Given
j, k ∈ N, we set

sj,k =
1

j2

(
−3π

2
+ 2πk

)
and tj,k =

1

j2

(
−π

2
+ 2πk

)
,

so that fj(sj,k) = 1 and fj(tj,k) = −1. Moreover, we have 0 < sj,1 < tj,1 <
sj,2 < tj,2 < · · · < sj,j < tj,j < 2π/j for all j ∈ N. Taking into account (2.7),
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we find, for all j ≥ n,

νn(fj) = νn(fj , c) ≥
n∑
k=1

d
(
fj(sj,k), fj(tj,k)

)
= nd(1,−1).

Hence lim supj→∞ νn(fj) ≥ nd(1,−1), and so (2.6) is not fulfilled.

6. Extensions of known selection theorems. In this section, we
consider extensions of two selection theorems from [25] and [22, 33]. The
other selection theorems from the references in the Introduction were shown
to be particular cases of [11–13] (see Remark 5).

Since νn(fj , gj)/n ≤ V (fj , gj)/n, instead of condition (2.6) in Theorem 1
we may assume that lim supj→∞ V (fj , gj) <∞ or supj∈N V (fj , gj) <∞; in
both cases the resulting pointwise limit f of a subsequence of {fj} satisfies
the regularity condition of the form V (f, g) <∞.

Making use of the notion of ε-variation (Section 4), we get the following

Theorem 3. Given ∅ 6= T ⊂ R and a metric space (M,d), let {fj} ⊂
MT be a pointwise precompact sequence of functions such that

(6.1) lim sup
j→∞

Vε(fj) <∞ for all ε > 0.

Then there is a subsequence {fjk} of {fj} which converges pointwise on T
to a regulated function f ∈ R(c).

Proof. Taking into account Theorem 1, it suffices to verify that (6.1)
implies lim supj→∞ νn(fj , c) = o(n), which is (2.6) with gj = c for all j ∈N.
In fact, by (6.1), for every ε > 0 there are j0 = j0(ε) ∈ N and C(ε) > 0
such that Vε(fj) ≤ C(ε) for all j ≥ j0. Definition (4.1) yields the existence of
gj ∈ BV(T ;M) such that d∞(fj , gj) ≤ ε and V (gj) ≤ Vε(fj)+1/j ≤ C(ε)+1
for all j ≥ j0. By (3.7) (where we replace gj and g by c, and f by gj),

νn(fj , c)

n
≤ 2d∞(fj , gj) +

νn(gj , c)

n
≤ 2ε+

V (gj)

n
≤ 2ε+

C(ε) + 1

n
for all j ≥ j0 and n ∈ N. Consequently,

1

n
lim sup
j→∞

νn(fj , c) ≤
1

n
sup
j≥j0

νn(fj , c) ≤ 2ε+
C(ε) + 1

n
∀ε > 0, n ∈ N.

This implies that the left-hand side tends to zero as n → ∞: given η > 0,
we set ε = η/4 and choose n0 = n0(η) ∈ N such that (C(ε) + 1)/n0 ≤ η/2,
which yields 2ε+ (C(ε) + 1)/n ≤ η for all n ≥ n0.

Remark 4. (a) If M = RN in Theorem 3, we may infer that Vε(f) does
not exceed the lim sup from (6.1): in fact, it follows from [25, Proposition 3.6]
that Vε(f) ≤ lim infk→∞ Vε(fjk) for all ε > 0.

(b) It is worth mentioning that when the sequence {fj} from Theorem 3
belongs to the Skorokhod space D = D([a, b];RN ) of càdlàg functions (i.e.,



Joint modulus of variation and selection principles 53

functions continuous from the right and having limits from the left at each
point of (a, b]), the subsequence extracted via Theorem 3 (and [25, Theo-
rem 3.8]) is convergent in some nonmetrizable topology (the so-called topol-
ogy S) on D. For more details on the topology S we refer to [32].

(c) Theorem 3 extends Theorem 3.8 from [25], which has been established
for T = [a, b] and M = RN under the assumption that supj∈N Vε(fj) <∞ for
every ε > 0. The last assumption on the uniform boundedness of ε-variations
is more restrictive than condition (6.1), as the following example shows.

Example 3. Let {xj} and {yj} be two sequences from M such that
xj 6= yj for all j ∈ M and, for some x ∈ M , xj → x and yj → x in M as
j → ∞. We set fj = Dxj ,yj , j ∈ N, and f(t) = x for all t ∈ T = [0, 1]. The

sequence {fj} ⊂MT converges uniformly on T to the constant function f :

d∞(fj , f) = max{d(xj , x), d(yj , x)} → 0 as j →∞.
Given ε > 0, there is j0 = j0(ε) ∈ N such that d(xj , yj) ≤ ε for all j ≥ j0,
and so, by (4.4), Vε(fj) = 0 for all j ≥ j0, which implies condition (6.1):

lim sup
j→∞

Vε(fj) ≤ sup
j≥j0

Vε(fj) = 0.

On the other hand, if k ∈ N is fixed and 0 < ε < d(xk, yk)/2, then (4.4)
gives Vε(fk) =∞, and so, supj∈N Vε(fj) =∞.

Now, we are going to present an extension of a Helly-type selection the-
orem from [33, Section 4, Theorem 1] and [22, Theorem 2].

Let κ : [0, 1] → [0, 1] be a continuous, increasing and concave function
such that κ(0) = 0, κ(1) = 1, and κ(τ)/τ → ∞ as τ → +0 (e.g., κ(τ) =
τ(1− log τ), κ(τ) = τα with 0 < α < 1, or κ(τ) = 1/

(
1− 1

2 log τ
)
, see [34]).

Let T = [a, b] be a closed interval in R, a < b. We set |T | = b− a, and if
{ti}ni=0 ≺ [a, b] is a partition of T (i.e., a = t0 < t1 < · · · < tn−1 < tn = b),
we also set Ii = {ti−1, ti} and |Ii| = ti − ti−1, i = 1, . . . , n.

The joint κ-variation of functions f, g ∈MT = M [a,b] is defined by

Vκ(f, g) = sup
{ n∑
i=1

|(f, g)(Ii)|
/ n∑
i=1

κ(|Ii|/|T |) : n ∈ N and {ti}ni=0 ≺ [a, b]
}
,

where |(f, g)(Ii)| = |(f, g)({ti−1, ti})| is given by (2.1).
Since |(f, c)(Ii)| = d(f(ti−1), f(ti)) is independent of a constant function

c : [a, b] → M , the quantity Vκ(f) ≡ Vκ(f, c) is the Korenblum κ-variation
of f ∈M [a,b], introduced in [33, p. 191] and [34, Section 5] for M = R.

The following theorem is a generalization of [22, Theorem 2], estab-
lished for real functions of bounded κ-variation under the assumption that
supj∈N Vκ(fj) < ∞ and used in the proof of the decomposition of any

f ∈ R[a,b] with Vκ(f) < ∞ into the difference of two real κ-decreasing
functions.
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Theorem 4. Under the assumptions of Theorem 1, suppose that con-
dition (2.6) is replaced by lim supj→∞ Vκ(fj , gj) < ∞. Then there is a sub-
sequence of {fj} which converges pointwise on T = [a, b] to a function
f ∈ R(g) such that Vκ(f, g) <∞.

Proof. In order to show that (2.6) is satisfied, let n ∈ N, {Ii}ni=1 ≺ [a, b]
with Ii = {si, ti}, and set I ′i = {ti, si+1} and |I ′i| = si+1− ti, i = 1, . . . , n−1.
By the definition of Vκ(fj , gj) and the concavity of κ, we have

n∑
i=1

|(fj , gj)(Ii)| ≤ |(fj , gj)({a, s1})|+
n∑
i=1

|(fj , gj)(Ii)|

+
n−1∑
i=1

|(fj , gj)(I ′i)|+ |(fj , gj)({tn, b})|

≤
[
κ

(
s1 − a
|T |

)
+

n∑
i=1

κ

(
|Ii|
|T |

)
+
n−1∑
i=1

κ

(
|I ′i|
|T |

)
+ κ

(
b− tn
|T |

)]
Vκ(fj , gj)

≤ (2n+ 1)κ

(
1

(2n+ 1)(b− a)

[
(s1 − a) +

n∑
i=1

(ti − si)

+
n−1∑
i=1

(si+1 − ti) + (b− tn)

])
Vκ(fj , gj)

≤ (2n+ 1)κ

(
1

2n+ 1

)
Vκ(fj , gj).

Thus,

νn(fj , gj)

n
≤
(

2 +
1

n

)
κ

(
1

2n+ 1

)
Vκ(fj , gj) for all j, n ∈ N,

and so (2.6) is satisfied.

Let f ∈ R(g) be the pointwise limit of a subsequence {fjm} of {fj}.
Arguing as in the proof of Lemma 2(c), we get

Vκ(f, g) ≤ lim inf
m→∞

Vκ(fjm , gjm) ≤ lim sup
j→∞

Vκ(fj , gj) <∞.

Remark 5. Since Theorem 1 is an extension of results from [11, 12],
it also contains as particular cases all pointwise selection principles based
on various notions of generalized variation. These principles may be further
generalized in the spirit of Theorem 4, by replacing the increment |f(Ii)| =
d(f(si), f(ti)) applied in [11–13] by the joint increment |(f, g)(Ii)| from (2.1).

Finally, it is worth mentioning that the joint modulus of variation (2.4),
defined by means of (2.1), plays an important role in the extension of a
result from [17] to metric space valued functions:
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Theorem 5. Given ∅ 6= T ⊂ R and a metric space (M,d), let {fj} ⊂
MT be a pointwise precompact sequence of functions such that

lim
N→∞

sup
j,k≥N

νn(fj , fk) = o(n).

Then there is a subsequence of {fj} which converges pointwise on T .

Taking into account Lemmas 1 and 2, the proof of this theorem follows
the same lines as in [17, Theorem 1] (where (M,d,+) is a metric semi-
group and νn(fj , fk) is defined via (3.1)), and so it is omitted. Note that
the limit of a pointwise convergent subsequence of {fj} in Theorem 5 may
be a nonregulated function. For more details, examples and relations with
previously known ‘regular’ and ‘irregular’ versions of pointwise selection
principles from [23, 41, 43] we refer to [14, Section 5.2], [17, 18, 35].

Acknowledgements. The authors are grateful to the unknown referee
for several useful suggestions including the question in Example 2(d) and
reference [32].
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