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THE MOMENTLESS THEORY OF ONE-SHEET
HYPERBOLOIDAL SHELLS

This paper presents a method of statical calculations of a shell
having the form of a one-sheet hyperboloid. Shells of that kind are used
in industrial building, e. g. as cooling towers in electric power stations,
foundries, ete. It is assumed that the shell works in the so called moment-
less state, ¢. e. that the internal forces lie in a plane that is tangent
to the middle surface of the shell. The determination of the momentless
State of stress-resultants in a hyperboloidal shell has been the subject
of numerous works, e. ¢. [3], [5], [9]. In all of them either the solutions
of the equilibrium equations are obtained by the expansion of the re-
quired stress-resultants in Fourier series, or numerical methods are used
Providing approximate solutions. The method of expansion in Fourier
series requires the agsumption that the functions in question have axial
Symmetry. In practical applications of that method only the first few
terms of the expansions are used, and it is very seldom that an exact
estimate of the error can be given.

In the method here presented it is not necessary to assume axial
(or any other) symmetry of the functions under consideration. Exact
Solutions are obtained by means of quadratures even in those cases in
which the method of expansion in Fourier series fails (an elliptic hyper-
boloid).

Besides, in the general case a certain hypothesis concerning the
manner of co-action between the shell and its edge has been assumed.
That hypothesis enables us to find the general and exact solution of
@ problem which has so far been open.

I wish to express my gratitude to Professor Dr S. Drobot for his su-
ggestion that I should write this paper and for his valuable remarks.

§ 1. Geometry of the middle surface of hyperboloidal shell.
The equation of the middle surface of a shell is usually expressed in
geographical coordinates (meridians and parallels), which are convenient
in applications but complicate unnecessarily the solution of the equi-
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librium equations. It is well known [10], that for ruled shells the solutions
of the equilibrium equations can be obtained by quadratures if we take
asymptotic lines as the curvilinear coordinates system on the middle
surface. In this paper, for calculation reasons and also in view of the
boundary econditions, we have adopted parallels of latitude and one
family of asymptotic lines as the curvilinear coordinates system. The
equilibrium equations are shown to separate also in this case and it is
possible to obtain their general solutions by means
of quadratures.

A one-sheet hyperboloid given by the equation

mz y2 zz
PR

is presented parametrically by the equations:

x = a(cosu+vsinu),

(1) Yy = b(sinu—vcosu),
2 = ¢v.
Fig. 1
The parametric lines w» = const are straight
lines of one family of generators, and the lines v — const are parallels

of latitude. For the shell given in Fig. 1 the parameters change in
the intervals

H—1

?
¢

[
0 << u < 2n, — — v <
¢

where H is the height of the shell and I the height of the part of the shell
above the neck ellipse.
The vector equation of the middle surface is

r = a(cosu-+tvsinu)i+ b(sinu—vcosw)j-i- cvk.

. §2. Equilibrium equations of the momentless theory. We adopt
the general equilibrium equations written in the following form [1], [8]:

L S,,—}—{111}T1—1—2{112}S—}—{212}T2+ 9'227'15]/“_!]12%1) —0,
g

(2) T34 Sy (B2 2 {2} 8 | (2 T+ EulLl;;gﬂ’.‘P — 0,
g

by T 4261, 8 4 by, %+ (1, % ry)P =0,
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where

911, G12y §os — coefficients of the first quadratic form of the surface,
9 = g1,0325— (g12)? — discriminant of the first quadratic form,

(), 121, 121, ... — Christoffel symbols,

P — external load of the shell per unit of middle surface area,

8,1, 1% 8,, 8,, T, Th — required stress-resultants and their derivative
with respect to parameters » and v.

In practice, instead of 7%, T2, § we use physical stress-resultants Ty, T,
and § and we have

(3) T — ]/:‘LT =1/,
J11 (5D

Equations (2) for a hyperboloidal shell give

1 G
4y 7% sv+ﬁ(cz-’3ﬂl_ 2a2b2)1’1+1(02 Ju. 2a2b%) S+X(u,v)=0,
2g \  Ou g ou

2b2 2 2b2
(5) TE 48— (14 o) T 4 oS+ Y (u,v) =0,
(6) T = ! [254}@—-2(% v)]
T 1to? abe e

X, Y and Z are functions dependent on the external load of the shell

(1) X = 922"“‘/;’]1—2"°EP, ¥ = @%;gﬁ—‘i P, 7 —(r,xr,)P.
g g

On eliminating the unknown 7" from equations (4) and (5) we obtain

(8) 2S.u+(1—|~v2)ST,+2vS+ ®(u,v) =0,

b
8, -T2 ¥ — “1/3 Z =0,

vy

Where

1 VA 1 0
D(u,v) = (1%—02)X+a_bca(l;i }_FZ_I;EI_/;_,((;?__QB«_—ZMI)ZU)Z.
a

ou

The first equation of (8) is a partial differential equation of the first
order with respect to 8. Having the solution of the first equation we can
Solve the second equation by direct integration.
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§ 3. Solutions of equilibrium equations. We shall first deal with
the solution of the equation

(9) 28,4 (1+ 08,1+ 208+ & (u, v) = 0.

This equation is solved by the method of characteristics. The integral
curves of the system of ordinary differential equations

diu dv as

2 1402 208+ D(u,v)

are the characteristics of equation (9). Integrating this system of equa-
tions we obtain the equations of the characteristics:

u = 2aretgv+ «a,

g ! f@ garctgot 2aretgl, i Y

= — — u—2arctgv+ 2arctg L

i) 1-—{-/02/' ( = oY 1+U2 t

0

where a = u,— 2arctgv, and » are arbitrary constants. The character-
istics are defined here as the intersection lines of two families of surfaces.
These lines must be used to form an integration surface which for » = v,

passes through the given curve n = n(u,). Hence

v
1
(10) S = — f@(u—2arctg@-+~2arctgt, t)dt-+
1+vzvo
143
- e n{u—2arctgv--2arctgo,).

This is a solution of equation (9), satisfying the boundary condition

S(u, v) = n(u).

The first equation of (8) gives

1492 1
Su:"‘( ) S)y”g®(”r”)7

whence, on substituting S, in the second equation of (8), we obtain
v
(11) T2 =} [ [¥(n, )— B(u—2arctgo+ 2arctgl, )]di+
K

+ 14;”’" [ 2arctgo-t 2arctgee) — 1y (1) |+ p(n)
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where

2ab
Wi, v) = O(u,v)—2Y+ g

cVy
and yp(u) is an arbitrary function.
With given external loads solutions (10), (11) and (6) define the
Stresses in the shell, those solutions containing two arbitrary funetions,
7 and y. We shall determine those functions from the boundary conditions.

§ 4. Change of the curvilinear system. Since in statical ecalcula-
tions it is more convenient to use an orthogonal curvilinear coordinates
System consisting of meridians and parallels of latitude, let us transform
our solutions into that system.

We use the following formulae for the change of system

p = u—arctgv, v =0,

Equations (1) will then assume the form

€T = al/1+vchS(p,
(12) y = bV1-vsing,
z = cv.

This is a parametrie representation of a hyperboloid where the para-
Metric lines ¢ = const and v = const are respectively meridians and
Parallels of latitude,

:_ll, T12=T21=_i’ T22=T—i
Vg Vg Vg

are contravariant components of the tensor (7%%). Let 7°F denote the
Contravariant components of the tensor

.1711

(T*)

in the new system; the physical stresses in that system will then be ex-
Pressed by

T} e, §=vire, 1= L,
g
Where g,,, 7,, and 71, 722 are the components of the covariant and the
Contravariant metric tensor in the new system.
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On applying well-known transformation formulae and using the
equality (¢, ») = ¢g{(u, v), we obtain the following relations between the
physical stresses in the shell with reference to a curvilinear coordinates
system consisting of meridians and parallels and the solutions of the
system of equilibrium equations (10), (11) and (6):

— 1
§=8- T*,
142
T /gll 2 1
13 T. — el Tl_ . o 172
e ' ]/ gzz[ 1—H)28+(1+7)2)2 ]’

2 — ‘l/922 112
g1

Fi = (142?)(a’sin?p+ b*cos?e), Gas =

where
»2

1-+ 2

(a?cos?e - b2sin?p) |- ¢2.
Equations (13), on substituting in them solutions (6), {10) and (11), give
1 v
(14)  S(p,v) = — ———v[f[@((p—arctgv+2arctgt, )+
1+ 9?%) lv

+ ¥ (p+arctge, t)]di— (1-+07) [n(p— arctgo - 2arctgo,) --

+n<¢+aretgv)1+2w(<,v+arctgv>}

(15) Ty, ) :%]/ggz{f[&” (p+arctgv, t)— @ (p—arctgv -+

+ 2arctgt, )] dt - (1 0}) [n(p—arctgr 4 2arctgv,) -

—n(qo+arctgv>]+2w(qo+aretgv)},

(16)  Ti(g,v) =

1 _g—;[ 1 9'11 = ]/7
1+@‘4]/ Joz L1H02 ¥ 7, Tt abe Zips o) |-

They are the general solutions of the equilibrium equations of a hype1-
boloidal shell in geographical coordinates.
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§ 5. Solutions of the equilibrium equations with a free upper
edge of the shell. The upper edge of the shell is free if the stresses oc-
curring on that edge are equal to zero, 7. e. for v = v,

~ _ l
Slp,ve) = 0  and  Ty(p,v) =0 (v = ——).
e
From these conditions we shall determine arbitrary functions » and w
occurring in the solutions of the equilibrium equations. The stresses
on the upper edge of the shell are obtained by substituting v = v, in
solutions (14) and (15), and we have

§(‘Pa Vy) = 'T[((P‘l*&l”ctg’vo)_w((p,+a}rctgv0) — 9,
To(g, vo) = p(p T aretgoy) = 0.

Hence functions » and p must be identically equal to zero. Consequently
formulae (14), (15) and (16) give

(17) S = (14_ f[(b @ — arctgu 4 2aretgt, )+
v?)

P (p+ arctgo, 1)]dt,

o 1
= g22 f[![’ ¢+ arctgv, t)— ® (¢ — arctgv -+ 2arctgt, t)]dt,

_ SR TP R B . )
(19) 7, = e [%} I gt iz].
1-}- 02 Joo L1+ 07 Jo2 abe
These formulae define the stress-resultants in a shell in the form of
a one-sheet elliptical hyperboloid (the methods used so far have per-

mitted the determination of stress-resultants in a hyperboloidal shell
of revolution only).

§ 6. Cooling tower in the form of a one-sheet hyperboloid of
revolution loaded with its own weight. We shall now deal with the
application of the results obtained to statical ecalculations of cooling
towers in the form a one-sheet hyperboloid of revolution. The stress
occurring in the ghell will be obtained from a superposition of the stresses
resulting from the loading of the shell with its own weight and with the
wind under the assumption that the upper edge of the shell is free and
the stresses resulting from the loading of the upper edge of the shell with
a circular ring.

A parametric representation of a one-sheet hyperboloid of revo-
lution will be obtained by assuming b = @ in equations (1). The coeffi-
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cients and the discriminant of the metric form of that surface are
Ju = a*(14+0%), gy, = —a% g, = a+ ¢ g = a*[c*+ (a®+ c2)2?].

The loading of a hyperboloidal shell with its own weight corresponds to
the vertical load

(20) P — Pk,

where P is the specific weight of the shell per unit of the middle surface
area. We assume that the weight P of the shell varies only with height,
i. e. that it is only a function of parameter v. With load (20) the com-
ponents of external load (7) are

2 2 n 1 2
x="Cp, y_%OE . s ewp
Vg Vg
The functions @(u,v) and ¥(u, v) are found from the formulae
1 O(I/EJ"Z) azov
— 2 . — 7
(21) D(u,v) = (1422 X+ e F™ cl/g )
1 a(Vgz 2
(22) P(u,v) = (1405 X—2¥} — - Ve7) + Y%,
ac ou cVyg

Hence, introducing additional symbols,
C g iam—e
a
we obtain
P o aP —
D(u,v) = aTI/A%L e2v?,  Y(u,v)= — e VAL g2p,

Substituting these functions and the component of the load Z in for-
mulae (17), (18) and (19), we obtain

5 —o,
(23 7, W Btew fPl/l2—|— 22
)
_ 1
v =T, p.
PENpERS 2

These formulae give the stress-resultants in the shell under consideration
provided the vertical load P(v) is given. That load ean of course be
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assumed without any restrictions according to the construction con-
ditions. For illustration we shall give three detailed examples of the
application of formulae (23). .

In the first example we shall assume that the weight of the shell
per unit of the middle surface area is constant: then P = const and for-
mulae (23) give

S =0,
— CLPI/E—Q+ g2p? I e
To— — T T T Va2 SoIn(at 4 VAR 22 |y
: 24(1-+v?) [‘ e Il Ve )}m
- 1 _ alP
Tl = — V.
A2 22 A

In the second example, which is applicable in cooling towers, we
assume that the wall thickness varies with the height and has its
maximum value at the base of the tower. In particular it is assumed that
the thickness of the wall of the tower is a linear function of the height;
then

h = ho(mv-+n),

where m = pc/H, n = ul/H-+1, h, is the wall thickness at the top of
the tower and the dimensionless coefficient u = Ah/h, is the ratio of
the increasing Ak of the wall thickness at the base of the tower to the
wall thickness at the top of the tower. ' :

To the above change in the thickness of the wall of the tower cor-
responds the following variable load of the shell:

(24a) P(v) = Py(mv+n),

where P = yh, is the weight of the shell per unit of the middle surface
area on the upper edge of the shell (y — constant speecific weight of the
material of the tower). In this case formulae (23) on substituting load
(24a) give

S =0,
_ aP, Vit e2p2 PE: L
T2 = ;{(1_{,1)2) {[mt2+(%n—7n)t— :;m] ]/;12+ e?{? +
A? — 1\
+(m+%n>—1n(et+VAZ+eztz)} ,
€ g
- 1 .. aP '
T, = T,— el (mo-+n)v.
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In the third example we assume that the weight of the shell varies
in the following way :

(24D) Pv) = 1—;‘11/12+ 22,

Under this load we obtain from formulae (23) particularly simple ex-
pressions for the stress-resultants. The above load can be realised if we
assume that the wall thickness of the tower varies according to the
formula '

he
h = —A-gl/iqu e292,

This corresponds to the increment of the wall thickness towards the
base of the tower, while the difference between the wall thickness at the
top of the tower and the thickness of the neck circle is usually so small
that it can be neglected in practical applications.

ExAMPLE. For a tower with dimensions (Fig. 1) H = 52.20 m,
! = 8.10 m, neck circle radius @ = 11.90 m and base radius rg = 20.95 m,
the wall thickness of the tower assumes the values:

at the top of the tower & = 1.03h,,

on the neck circle h = hy,

at the base of the tower /4 = 1.85h,.

From the load assumed above and from formulae (23) it follows
that

S =0,
T o CLP() ]/A-2+ 82,02 [Azt—|> -1<82t3]'v

2 A1 02) 3 vy ?
_ 1 P —_—

) O ViR g,

- Az+82@2T2 22

§ 7. Cooling tower loaded with the wind. In statical calculations
of cooling towers we usually apply the following experimental formula
for the distribution of the wind load (4], [5], [9]:

(25) W = w(w,cosp+ w,c0820+ w,).

The angle ¢ appearing in this formula is reckoned along a parallel of
latitude from the meridian plane determined by the direction of the
wind. The coefficient w is the basic load per 1 m? of a plane perpendicular
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to the direction of the wind and the coefficients Wy, @y, s depend on the
roughness of the shell.

We assume that the wind pressure is perpendicular to the middle
surface of the shell ([5], [9]) and we take the plane 0z as the meridian
Plane determined by the direction of the wind. If % is a unit vector normal
to the central surface, then the wind load per unit of middle surface
area is

With the accepted parametrisation (1) we find the following dependence
of angle ¢ on the parameters u and v:

@ = u—arctgv.

Since in the case of tall buildings the variability of wind pressure accord-
Ing to height must also be taken into consideration, we assume that the
coefficient w is a linear function of the height (as has been accepted in
the standards):

(26) w = wy(mv—+n),

Where m = —ve/H, n = v(H — )JH+ 1, w, i3 the load per 1 m? of a plane
berpendicular to the direction of the wind at the base of the tower and
the dimensionless coefficient » = Aw/w, is the ratio of the increasing
4w of basic load w at the top of the tower to basic load w, at the base
of the tower. The formula for the wind load distribution then assumes
the form

(27) W= Wo(Mv+n)[w,cos(u— arctgr) 4 W2 CO82 (U — aretgv) - w,],
and the external load components are expressed as
X=0, Y=0, Z=_Vgw.

Funetions @ (u, v) and ¥(u, v) are determined from formulae (21) and (22)
Whenece '

?

ow
D(u,v) = %[va— (A2 4 e202) 7/“—],

W, v) = — %[vw+(az+eevz) OW].

(L
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Formulae (17) and (18) after integration and formula (19) after substi-
tuting the load component Z give

~ aw, [ Av+B 20v4-D(1—v?)

A(1-}2?) “1 V1L 2 S o 1402

_— awol/12+ g2 p? A —Bv
N A(L+0?) [

§in 2(p] ,

— o8 2¢ | a)aE] ,

T, = m T,— f—l— V24 e202(mo4-n) (0, CO8@ -+ 0,C082¢ - w,),

where

A= e{[mB+ i) i@ )W e—mln (e VI e
B = 2{[tm(P4 1)+ itV 1 dndn(t+V1+2)) 7,
C = [(4e2— 1) (3mt3 4 fnt2) —nln(1412) — 2m(t—arctgi) 1y, ,
D = [2e2(nt+ Fme— Intd—tmt') —mIn (14 2)— 2narctgtly,
B = [imt*+ dnt2],,.

If we assume that basic pressure w is constant along the whole height
of the shell w = w,, then m = 0, » = 1, and the coefficients occurring
in formulae (28) are the following:

A = k(- 1)V 117, B = 12[tV1+ e+t -Vite)l,
¢ = }(ae2—1)p—In(1+-2)]2, D= 3[e(3t—1")—arctgtly,
B = e,

§8. Effect of a circular ring connected monolithically with
the upper edge of a hyperboloidal shell upon the stress-resultants
in the shell. The solutions of the equilibrium equations in the preceding
sections have been obtained under the assumption that the upper edge
of the shell is free. Usually the upper edge of the shell ends in a cir-
cular ring, owing to which the boundary conditions for the system of
equilibrium equations undergo a change. The object of our further con-
siderations will be the determination of the boundary conditions for the
system of equilibrium equations in the case of the ring being connected
monolithically with the shell, which in turn will allow us to calculate
the effect of the ring upon the stresses in the shell.
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We shall conduct those calculations with reference to a curvilinear
coordinates system consisting of meridians and parallels of latitude.
We assume that the axis of the circular ring is given by the vector equation

J L2 l
R(p) = aV1+2}(cosgi+singj)+ 2k (1;0 = ,E)_

The unit vectors tangent to the parametric lines of the central surface (12)
on the upper edge of the shell, ¢. e. for v = v,, are

Ty sing i+ cosgj

— = —SIng1l @
VE ’

r, 1 ( @ o av, . - h)
2 = 08¢ i+ ———=singj+ck
VG VG \V14+4 V1do ’
where
a’ vl
E = a2(1+9}), G=1+®g+62.

In our further considerations we shall use a movable orthogonal system
whose versors are

e, =e Xk, e =k.

B, = g
1 “/E,

The vector equilibrium equation of the circular ring has the form

(see [2], [7])

' dN —
(29) — —VEq=0,
dog

Where N is the internal force in the ring and ¢ is the external load per
unit of the ring exis arc. The force N and the external load q are decom-
Posed into components in the movable system:

N = N,e;+Nye, +Nze;, ¢ =€ 281 ¢3€5.
Writing in full form the equation (29) and using the relations

de, de, - deg
= —e, —t=e, =0
@
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we obtain the following system of differential equations:

AN,

d(p +N2 = VEQI’
dN -

(30) d(; — N, =VEq,,
dN —

TlJ = VEg,

As the external load of the ring we take the reactions of the stresses-
resultants occurring on the upper edge on the shell

Se,, T,
1 —
Ve

and also the load of its own weight and the horizontal wind load
Qe,, —We,.
Here @ is the specific weight of the ring per unit of the ring axis arc and
W = pw{w,Cosp-+ wyc082¢ 1 m,)

is the wind load per unit of the ring axis arc (p — the height of the ring).
Equations (30), on substituting the external load components, are
the following:

aN,

(31) G- T = VES,
_ dN, , a*v, — p?
; — — N, = —T,—VE
do ve °

Since the ring is carried by the shell, we have
(34) N,=0.

For a monolythic connection of the ring with the shell we assume [6]
that the mean stress component in the direction

ry

VG
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is equal to the tangent stress occuring in the same direction on the edge
of the shell:

N r,
Q ye
where 2 is the area of intersection of the ring by a plane perpendicular
to the ring axis. This equation when written in full will assume the form

S
=I’

- 2 . c
(3.)) ——:—_?Az‘i—ﬁl\szxs, X = 7.

In equations (31), (32), (33), (34) and (35) we have as unknowns three
components of the internal force of the ring N,, N,, N, and the unknown
stress-resultants S and 7', on the upper edge of the shell. Equations (33)
and (34) imply

_ Ve
(36) Ty=——Q.

On substituting relations (36) in equation (32) and eliminating from
equations (31), (32) and (33) the unknowns N, and N, we obtain for S
the following differential equation of the second order with constant
coefficients:

azs azv, \ - azv, ) )
+ = pw —=(w,;singp-+ 2w,sin2¢).
e

The general solution of this equation has the form

20 v w0,

avy+ 321/

S = C,coskp-C,sinky — pw (wl sing + = sin 2(p),

b = ]/ L @
e’
and €, and C, are arbitrary constants. On account of the nature of the

load of the ring, S must be an odd periodic function with period 2=,
which under the assumption that & is not an integer implies

where

01:0220-

In the case of a monolithical connection of the upper edge of a hyper-
boloidal shell with a circular ring loaded with its own weight and the

Zastosowania Matematyki V. 14
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wind, the following conditions must be satisfied on the upper edge of the
shell :

2a%v4 0,
S(p, vy) = —pw (a)lslnqp—{“ e sm2(p)
Ay, 3xl/G
(37) E
_ G
Tolpy mo) = ———@Q.

Let S,, T, T, denote the stresses in the shell resulting from non-
homogeneous (i. e. from non-zero) boundary conditions; then it follows
from solutions (14) (15) and (16) on assuming zero loads of the shell that

S, = 1+v° tgw | 2arctgu,) |+ t
, (1+17‘) [7(g—arctgv | 2arctgv,) 1+ n (g —r—_(xrc gv)]—
1
— 173 p(p-+arctgy),

[7(@g—arctgv -+ 2arctgn,) — (¢ | arctgv)]+-

|
j

i} :1uueﬁfr*w3
1-+9? 2
+ (gt arctgr);,

_ 1 _
Tpp = e
12 _+_ 62/02

27 -

Hence, imposing boundary conditions (37), we obtain the following
formulae for the additional stress-resultants in the shell caused by the
ring:

. 140, |
= —p 1_{_”2(w1S1n<pCOS/)’+AwZSIHQtpCOS.‘Zﬁ),
I Ay
(38) T, = T+ 21/22+52v2 Ppw(w;cos@sinf -+ Aw,cos2¢sin2p) —
1 Q]
Wil
_ 1 —

T,

T =
where

200,14 o
3y VAL &0 Lo V1t o

f = arctgv—arctgv,, A =
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If we disregard the wind load of the ring, formulae (38) imply

V(14 02) (A2 &%)
- Al4e2 Y7

_ 1 1407
Typ=——>o Y = 9.
" A(14-92) ]/;{2+ ezsz

The components N,, N, of the internal force in the ring are determined
from equations (32), (35) and (36). Equations (30) may also be used to
calculate the internal force in the thrust ring at the base of the tower.

TZT -
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BEZMOMENTOWA THORIA POWLOK
0 KSZTAXLCIE HIPERBOLOIDY JEDNOPOWLOKOWEJ

STRESZCZENIE

Wyznaczenie bezmomentowego stanu naprezofi w powloce hiperboloidalnej
bylo przedmiotom wielu prac. W pracach tych uzyskuje sie rozwigzamia réwnan
réwnowagi przez rozwinigeia szukanych napieé w szeregi Fouriera; spotyka sie réw-
niez rozwigzania prayblizone otrzymane metodami numeryeznymi. Zwykle réwnania
powierzchni frodkowej powloki hiperboloidalnej przyjmuje sie we wspéhrzednych
geograficznyeh (poludniki i réwnolezniki), ktére sa wygodne w zastosowaniach,
natomiast niepotrzebnie komplikuja rozwiazanie réwnan réwnowagi. W pracy tej
ze wrgledow rachunkowych, a takze z uwagi na warunki brzegowe, za siatke wspol-
rzednych przyjeto jedna rodzine linii asymptotycznych i réwnolezniki. Okazujo sie
z6 i w tym przypadku réwnania réwnowagi soparuja si¢ i mozna otrzymaé przez
kwadratury ogélne rozwigzania tych réwnaii. W - praey niniejszej przedstawiono
dokladne rozwigzania réwnan réwnowagi powloki hiperboloidalnej za pomoca kwa-
dratur, przy czym uzyskano rozwiazania w takich przypadkach, w ktéryeh metoda
rozwini¢é w szereg Fouriera zawodzi (hiperboloida eliptyczna). Z uwagi na zastoso-
wania, rozwiazania te przetransformowano na wspéhzedne geograficzne i podano
rozwigzanie zadania brzegowego przy zalozeniu, zZe gérny brzeg powloki jest swo-
bodny. Otrzymane wyniki zastosowano do obliczen statycznych wiez chlodniczych
w ksztalcie jednopowlokowej hiperboloidy obrotowej, obeiazonych ciezarem wla-
snym 1 wiatrem. Miedzy innymi podane wzory na naprezenia panujace w wiezach
chiodniczyeh przy liniowej zmianie grubosei Scianki wiezy i liniowym wzrogcie parcia
podstawowego wiatru wraz z wysokodeig (jak przyjeto w normach).

Oprodez tego w pracy tej przyjeto pewna hipoteze o sposobie wspélpracy po-
wloki z jej brzegiem. Hipoteza ta pozwolila na wyznaczenie warunkéw brzegowych
dla ukladu réwnan réwnowagi, przy monolitycznym polaczeniu goérnego brzegu
powloki z pierscieniem kolowym. Warunki te, po nalozeniu ich na rozwigzania ogdlne,
pozwolily na obliczenie wpltywu na naprezenia w powloce pierSeienia kolowego obeia-
Zonego ciezarem wlasnym i wiatrem.

I' BOPOX (Bponguas)

BE3ZMOMEHTHAA TEOPHA OBOJOYEK O ®OPME OJHOHOOJIOTO
THITEPBOJIOH TA

PE3IOME

B craree mpepcraBieHo TOYHOE PelTeHNe YpPaBHEHUIt PABHOBeCH TuIepsoiroun-
AATLHOH 000J0YKM NPH MOMOIMKM KBAIPATYP, NPUYEM NONYYeHO pelieHue B TeX CIy-
YaAX, B KOTOPHIX MeTOl PasBuTHA B PAX Pypoe oTHA3HBAET (JIAUNTHYECKUNE THIIED-
Gomoun). ITomydeHHHEe DPe3YILTATL INPUMEHEHO K CTATHYECKHM WHCYMCIEHMAM XO0I0-
FIIBHEIX GalleH HarpyMeHHHX COoOCTBeHHBIM BecoM U BerpoM. Kpome Toro B crarhe
OPUILATO HEKOTOPYl THmoTesy o B3aumopedicrBum oGomouru ¢ e8 kpaem. 'mmoresa
9Ta paspelnniza MGYUCIUTH BIMAHNE HA YCUJIUA B 000J0UKe KPYTOBOr0 KOJbLA COEAU-
HEHHOT0 MOHOJHUTHO C BEPXHI/IM RpaeMm OﬁOJIO‘IHP[.



