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Paracompaciness and product spaces
by
K. Morita (Tokyo)

As is well known, the topological product of normal spaces is not
generally normal. This fact suggests the possibilities of characterizing
a certain type of topological spaces by requiring the normality of the
product of them with a prescribed normal space. Indeed, C. H. Dowker [4]
proved that a topological space X is countably paracompact and normal
if and only if the product space X x I is normal. Here I means the closed
line interval [0, 1]

The purpose of this paper is to deal with the problem: What topo-
logical space ean be characterized if we require the normality of its product
with I™% Here mt is an infinite cardinal number and I™ means the produect
space of m copies of 1.

To state our result it is necessary to introduce the notion of m-para-
compactness. For any infinite cardinal number m, a topological space X
is said to be m-paracompact if any open covering of X with power <m
(i.e. consisting of at most m sets) admits a locally finite open covering
ag its refinement (*). In eage m =8,, “sy-paracompact’® ig nothing else
“countably paracompact’ and for a topological space X with an open
base of power < m the statement “X is m-paracompact” is equivalent
to “X is paracompact”. Here X is said to be paracompact if X is m-para-
compact for any cardinal number m. For a Hausdorff space X para-
compactness of X implies normality of X. While it is an open question
whether every normal Hausdorff space is countably paracompact or
not, it is easy to see that the notion of m,-paracompactness is different
from that of sai-paracompactness for normal Hausdorff spaces. In fact,
for any ovdinal o the linearly ordered space W (wai1), that consists of
all ordinals less than the initial ordinal wei; of the power 8..: and has
the interval topology, is a normal Haugdorff space which is s-paracompact
(or more precisely s,-compact) but not Ngy;-paracompact.

As a generalization of paracompact spaces, m-paracompact spaces
have many analogous properties. Some of these are included in § 1.

(*) A family of subsets of X is called locally finile if every pomt of X has a neigh-
borhood. that meets only a finite number of sets of the family.
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Now our main theorem, which will bo proved in § 2, veads ag followy:
A topological space X ig m-paracompact and normal if and only if the
product space X xI™ is normal,

As a special case wo obtain a theorem that a
is paracompact and normal i and only if X xI™
number m not less than the power of an open base of X. In the case of
completely regular Hausdorff spaces, another formulation ig Possible:
A completely regular Hausdorft space X iy paracompact if and only if
the product space X x 7' is normal for & compact Hausdorff space T
containing X as u yubspace. Ay an immediate congequence of our theorem
we have a theorem of H. Tamano [18] asserting that a completely vegular
Hausdorff space X ig baracompact if and only if X x B(X) is normal
where 8(X) is the Stone-Gech compactification of X,

As an application of owr main theorem we shall prove in § 3 that
if a topological space X hag the weak topology with respect to a cloged
covering {4} such that each 4; 15 m-paracompact and normal, then X
is m-paracompact and normal,

Tinally, in §4 we shall prove two
compactness of some topological space

topological space X
is normal for 5 cardinal

theorems asserting m-para-
8 treated in vecent literatures.
§ 1. Some basic properties of
begin by stating the following charae
TeEoREM 1.1. Let X be
ments are equivalent.
(a) X is m-paracompact and normal,
(b) Bvery open covering of X with power LN is a no
(in the sense of Tukey [17]).

(¢) Bvery open covering. of X with power
closed covering as its refinement.
) (d) Every open covering of X with power <m admdt
erving closed covering as s refinement.
(e) Every open covering of X with power
open covering as its refinement and X 48 co
The implications (a)—>(e), (c

m-paracompact spaces. We
torizationy of m-paracompact spaces.

a topological space. Then the following state-

mal covering
sm admits a locally finite
$ a closure-pres-

<M admits w o-locally finite
untably paracompact normal.
)—>(d), (8)->(a) are obvious. Now wus-
su.me_(d). Then the first part of (e) is proved, as in Michael [10]. The second
part iy obvious if we apply the condition (d) to the cage m — 8y. Thus
(d)—_~>(e) is proved. The second part of () seems necessary to agsure the
equivalence (a)=(e); but it is not necessary for a cardinal number m

not less than the power of an open base of X (= u base for the open
sets of X). ‘
The equivalence (a)z>

(b) is an immediate consequence of the following
theorem.
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THEOREM 1.2. Let & be an open covering of a topological space X.
Then the following statements are equivalent.

(a) ® 4s a normal covering.

(b) There exists a continuous mapping [ from X into a fmem‘.c space Y
such that & is refined by the inverse image of some open covering of Y.

(¢) ® admits a locally finite open normal covering as its refinement.

(d) © adwmits as its refinement a locally finite open cowfzring {H;} eﬂ.wh
seb of which is ewpressed as H, = {x | f(x) > 0} with a continuous function
i X—1.

(e) ® has a locally finite partition of unity subordinated to 4.
(f) ® has a partition of wnity subordinated to it.

(g) There exists a normal open covering {U,} of X such that on each
of the subspaces U, the covering {& ~ U, | G ¢ G} is normal.

Proof. The implications (a)—=(b), (b)—(¢), (¢)~=(d), (d)-(e), (e)»(f_),
and (a)—(g) are known or easy to prove (c,f.‘ A. H. Stone [13], BE. M.1
chael [8]). We shall prove only two implications (f)—(a) and (g)-(a);
(f)—(a) is stated in Michael [8] without proof.

(f)—(a). Let {p1|4 e A} be a partition of unity on X which is sub-
ordinated to ®; i.e. each g; is a continuouns map from X into I = [0,1]
such that D gu(w) = 1 for every point # of X and {» [ (@) > 0} is con-
tained in some member of . Let us congsider a metric space M Whlqh
consists of sets {w,| 4 e A} with 2, ¢ I such that Z.ml = 1 and has a metric
d(@, y) = D |ma—ya|- For every point 2 of X we assign ¢(z) ='{<p;,(w) | 4 e A}
Then ¢ is a continuous mapping of X into M. To.p?ove thig, for a given
point z, of X and a positive number e, we find a finite subset I" of A and
a neighborhood U, of x, such that ; %’1 @a(m) < & and “ZI“ |pa(@) — pa(@o) | < &

for 2e¢U, Then we have > gw)= Y (pu@o)— gil@) + %; P(@o)
Agr rel 4

< Y lpal@)— @alwo)| + 2 galwy) < 2 and hence d(p(@), p(a)) < %; lpa()
A€l i¢r .
— @)+ & < > ((p;,(w) +q1,1(m0)) +e< 2et+e+e=4e for every point z
1ér .
of Up. If we put Vy={{m}|2>0}, V, ave open sets of M and

p(X)CUV,, oV, ) = {& | pa(@) > 0}. Hence by (b) & is a normal
covering.

(g)—~(a). Let {V,} be a normal open GOVG:.[’i.]Jg of X yvhich is a _st:a,r-
refinement of {U,}. Let {p;|4e 4} be a partition of unity on X which
is subordinated to {V;}; we assume that {z|gi(z)> O}CVl_for each
A e A. Since ¥, is contained in some element U, of {U,}, {GFAV;]|Geb}
is a normal covering of the subspace V. )

16
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Let {f | x4} be a partition of unity on ¥, which is subordinatod
to this covering. We put

[ m@fe)  for  @eV,

Palit) = 1o for weX—T,.

Since we ha,ve pail@) = 0 for weV,—V;, @a(®) I8 continuous over X,

Since ¢x(@ 2 P(@) for @ e X, we have D ¢ (o) = 1 for © ¢ X. More-
Aoth

over, we h;wc @] pade) > 03 C {& | i) > 0} ~ {& | frul) > 0}, and
{m | Fru(®) > 0} is contained 111 some element of G. Hence {p,, | Ae /1, nely)
is a partition of unity on X whiekh is subordinated to &. Therefore G
is normal by (£).

COROLLARY 1.3. Let {G,|ueR} be an open covering of a normal
space X. If there exists a normal open covering {U,} of X such that each
set U, is contained in a sum of a finite number of sets of {G,}, then {G}
is a normal covering of X.

Proof. Considering a normal star-refinement of {U,} we see that
this corollary is an immediate consequence of Theorem 1.2, Iowever,
a direct proof is rather simple. {U,} has a locally finite open refinement
{Va|ie A}, Bach ¥V, is contained in | J{@, | a e I} with a finite subset I}
of Q. Then {Vin Go|iecd,aell} is a locally finite open refinement
of {G.]aef}

In view of Theorem 1.1, we obtain at once the following theorem
a8 in Michael [10].

TeErOREM 1.4, Let | be avclosed continuous mapping of a topological
space X onto another topological space Y. If X is m-paracompact and
normal, so is also Y.

TEEOREM 1.5. Let A be a subset of an m-paracompact normal space X.
If for any open set @ containing A there cwists a family {H,} of open I,-sels
of X such that A C\J)H,C G and {H;} is locally finite in A, then the sub-
space A is m-paracompact and normal.

Proof. By assumption, for each 4 there exist a countable nwmber
of closed sets Fj such that Hy = |J{#y [4==1,2,..} Take closed
sets Oy so that Fy CInt Oy, O C Hy. Since each Oy i m-paracompact
normal, H; is m-paracompact normal by Theorem 3.5 below. Now let
{&, ~ A} be any open covering of X with power < ni; @, are open sets
of X, Put ¢ = JG,. For this ¢ we find {H,} with the 1)101)01Ly stated
in the theorem. Then {H;~ A} is a mormal covering of 4 since it
satisfies eondition (d) of Theorem 1.2, and, {Gy ~ Hy ~ 4|y} is 2 normal
covering of the subspace H; ~ A gince H; is m-paracompact and nor-
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mal as is shown above. Hence {G,~ A} is a normal covering of X by
Theorem 1.2 (2).

COROLLARY 1.6. Let X be an m-paracompact, normal space. If A is
a generalized Fo-set of X (i.e. for every open set @ with A C @ there exists an
Fpset C with ACCOC @) then A is m-paracompact and normal.

Proof. Suppose that A C @& for an open set G. Then there exist
closed sets Iy, 4=1,2, ..., such that A C|JF;C@. Since X is normal,
for each 4 there exists a continuouns map f;: X—I such that fiz) =1

o0
or 0 according as weF; or we X—@. If we put () = > 2 %(=), then
i=1

= {w | f(#) > 0} is an open Fyset and 4 C H C G Thus the hypothesis
of Theorem 1.5 holds for A. ¥ence Corollary 1.6 holds.

This corollary is due to Y. Smirnov [14] for the case of normality
and to E. Michael [8] for the case of paracompactness.

Recently H. Corson [2] has shown that paracompact spaces are
characterized by the property of possessing a uniformity with a certain
type of completeness. His idea can be applied to our case.

Let {M;} be a uniformity of X in the sense of Tukey [17] (?).
A family § of subsets of X having the finite intersection property is called
a weakly Cauchy family with respect to {1;} if for each A there exists a set U
of the covering M, such that {F, U} has the finite mtel,sectlon property.
Then the following theorem holds.

THEOREM 1.7. A normal Hausdorff space X 4is m-paracompact if
and only if there exists o uniformity {U,} of X for which every weakly Cauchy
family of power < m (i.e. consisting of at most m sets) has a cluster point.

Proof. Suppose that X is m-paracompact. Let {i;} be the family
of all the open coverings of X with power < m. Then {1} is a uniformity
of X, as i easily seen from Morita [12], Theorem 1.2. Suppose that a weakly
Caunchy family § of power < m (with respect to this uniformity) has no
cluster point. Then U = {X—F | F e§} is an open covering of X with
power < m. Hence U is equal to some ;. Since § is weakly Cauchy,
there exists a set U, of U, such that Uy ~ F % @ for every F e §. However,
this is impossible sinee U, = X —F, for some ¥, eF. Thus the “only lf.”
part is proved.

Conversely, assume that there exists a uniformity {i;} of X for
which every weakly Cauchy family of power <<m has a ecluster point.
Let & be any open covering of X with power < m. Suppose that ® admits
no locally finite open refinement. We put § = {X— & | G « ). We shall
(*) We can prove similarly the following: A subspace 4 of a paracompact Haus-
dorff space is paracompact if and only if for any open set & containing 4 there exists
a normal (or locally finite) open covering {V;} of A such that Vi c G for each .

(%) Corson uses uniformities in the sense of Weil.
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prove that § is a weakly Cauchy family of power < n1. For cach U, thore
exists a set U of W; such that U is not contained in a sum of any finite
number of séts of @; otherwise G would admit a locally finite open re-
finement by Corollary 1.3. Hence {{, U} has the finite intersection prop-
erty. Therefore § is weakly Cauchy. But § has no cluster point. Thig
is a contradiction. Thus the “if*” part is proved. This completes the proot
of Theorem 1.7. ' '

In case of paracompactness, to assure the validity of Theorem 1.7
it is sufficient to assume the complete regularity of X instead of the
normality.

A topological space X ig called w-compact it every open covering
of power <m has a finite subeovering. In view of the condition (b) in
Theorem 1.2 we obtain at once the following theorem.

TrEOREM 1.8. A normal space is m-compact if and only if it i m-para-
compact and countably compact (or pseudo-compact)

§ 2. Product spaces. We shall first prove two theorems ag in
Dowker [4].

TeEEOREM 2.1. Let X be an wm-paracompact space and Y a compact
space. Then X x Y 48 m-paracompact.

Proof. Let {U, |4e 4} be an open covering of X x ¥ with | 4] <m.
Denote by I' the totality of all the finite subsets of A. Let us put for
any yel'

V,={z|ax YCu {U, [Aep}}.

Then V, is open since ¥ is compact. On the other hand, for any point =
(_)f X there exists y ¢« I' such that o x ¥ C U{Us | Aey}. Hence {V, |y el
Is an open covering of X and |I'| < m. Therefore, since X is m-paracompact,
there exists a locally finite open covering {@, |y eI} of X such that
@, CV, for each y. Now let us put G = (G, X X) A Uy, for Aey. Then
{@n|yel'y Aey} is a locally finite open covering of X x ¥ and is a re-
finement of {U;|4e 4}.

Remark. Similarly we can prove that the produet of an m-compact
space with a compact space is m-compact.

TrEEOREM 2.2. Let X be an m-paracompact normal space and Y

a comzl)acz normal space with an open base of power < m. Then X X ¥ is
normal.

Proof. Let 4 and B be two disjoint closed sets of X x Y, and let
{Gi|4e A} be an open base of ¥ with power < m where | 4] < m. Denote
by I' the totality of all the finite subsets of 4. Let us put

Hy=U{th|2ey} for yerl,
Alo]l ={y [(@,9)c 4}, Blal={y|(v,9)eB)

icm
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for ¢ X. If we put further
Uy={o|Al2)CH,, H,C Y-B[a]},

then U, is open since Y is compact. On the other hand, since A[#]
and B[z] are disjoint closed sets of the compact normal space Y, there
exists for any point @ of X an H, such that A[»]C H,, H, ~ B[z] = 0.
Therefore {U,} is an open covering of X with power < m.

Since X is m-paracompact and normal, there exists a locally finite
open covering {V, |y eI} of X such that ¥,C U, for each y. We put
V=U{V,xH, |yel}.

Then ¥V = UJ{V,xH,} since {V,xH,} is locally finite in X x ¥, and
we can easily prove that A CV, ¥V A B = @. This proves Theorem 2.2.

CoROLLARY 2.3. Under the same assumption as in Theorem 2.2, if X
18 collectionwise normal, then X X Y is also collectionwise normal.

Proof. Agis proved by M. Katétov [6], a normal space is collection-
wise normal and countably paracompact if and only if for every locally
finite collection {F;} of closed subsets there exigts a locally finite col-
lection {&;} of open subsets such that F,C @; for each A. To apply this
theorem to our case, let {#,} be a locally finite collection of closed subsets
of Xx Y.

The projection f defined by f(@, y) = » is a closed continuous mapping
of Xx ¥ onto X since Y is compact. Then {f(F,)} is a locally finite col-
lection of closed sets of X; since Y is compact, there exists for each
point # of X an open set @ of X x Y such that #x ¥ C@& and G meets
only & finite number of sets of {¥,}, and hence an open neighborhood
U of @ such that U X ¥ C @ meets only a finite number of sets of {f(F,)}.
Hence there exigts a locally finite collection {G;} of open sets of X
such that f(F;) C @;. Therefore {G4Xx ¥} is a locally finite colleetion of
open sets of Xx Y such that F,C G4x Y for each A. This proves the
collectionwise normality of X X ¥ by the theorem mentioned in the
beginning of the proof.

‘We shall now establish our main theorem.

THEOREM 2.4. A topological space X is m-paracompact and mormal
if and only if X x I™ is normal.

The “only if* part is obvious by Theorem 2.2, since I™ has an open
base of power < m. Before proving the “if”’ part we shall first prove
2 lemma by generalizing Dowker’s argument in [4].

LEMMA 2.5. Let X be a topological space such that X x W (wa-+1)
is normal. Then every covering of X with power < x, admits as a refinement
a closed covering of power < 8.. Here W{w,+1) is the linearly ordered
&pace consisting of all ordinals < w,.
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Proof. From the assumption X is clearly normal. Assumegthat the
lemma i true for any ordinal § legs than a. We ghall prove the validity
of the lemma for a. Let {U; |2 < ws} be any open covering of X with
power < 8. We pub V= J{U, | 4 < 2} and consider two sobs:

A=XxW—U{Vix (2, 0 |1< w,
B =X X wy;

where W stands for W(wa-+1). Then for any point @ of X theve existy
some V, such that @ «V,, and hence xx W€V, X (A, 0], and con-
sequently o x w, ¢ 4. This shows that 4 ~ B = @. Since A, B are closed
and X xXW is normal, there exist open sets G, H of X x W such that
ACG, BCH, G~ H=0. We put

= {r|loxléq for 1< aw,.

Then F, is closed, since X—F, = {& |ox1e@} and {w]oxie@} is
clearly open. We shall now prove

1) X =UiF |1 < wg,

(2) ‘ CV,y for A< o,.

To prove (1), let & be any point of X. Then @ X w, ¢ B C H. Hence
there exists some A < w, such that @x (4, w,]C H. For this 1 we have
#X(A+1) e H, and hence xx (A +1)¢ @. Therefore 2 eFyy. Thus (1)
is proved.

To prove (2), suppose that #e X—7V,. Then %X —V, for every
w< 4 since ¥V, CV,. Hence ©x A is not contained in V wX (1, wg) for
any u <A For u> 1 we have ¢ (4, w,] and hence BXAEV, X (1y 0]
for w> 2 Thus X 1le A C @ Hence we have z ¢ ;. This shows that
X—V,;CX—F;, and (2) is proved hereby.

The power x5 of the set {u|u <1} is smaller than s, , since w, is
the initial ordinal of the power 8,. Hence B < a. Now W(ws+1) is a closed
set of W(w.+1), and hence I, x W{wg+1) is normal as a closed subset
of the normal space X x W(w.-+1). Therefore an open covering
{Uun By | <A} of Iy with power < 8 is refined, by the assumption
of transfinite induction, by a closed covering of ¥; with power < s,
which we denote by {#,, | # << A}. Then the collection P | A< 0ay p <A}
is a closed covering of X with power <, sinece 82 = 8. Thus the
lemma is true for a. The above argument applies to a = 0 without
induetion hypothesis. Thus our proof by transfinite induction is completed.

Now we proceed to the proof of the “if” part of Theorem 2.4.

- Suppose that X x I™ is normal and that m = x,. Since W(wa-1)
is a compact Hausdortf space with an open base of power < x, , W(wa+1)

icm
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is homeomorphic to a closed subspace of I™ Hence X X W(w.+1) is
normal. '

Now let & be any open covering of X with power < m. Then by the
remark above it follows from Lemma 2.5 that & is refined by a closed
covering § of power < m. Hence we may assume that F = {F; |1 < w.}
and {G4 |2 < ws} is an open refinement of & such that

F,C@,  for cach 1< w,.

Since X is normal, there exists for each A a continnous mapping ¢;: X—T
such that gx(e) is 0 or 1 according as xeF; or xe X—@;. Let us put

(@) = {pa(@) | A< wo} for weX.

Since I'"™ is considered as the space consisting of the sets {y,: |4 < w4}
. . . . u
with 0 <y, < 1, ¢ defines a continuous mapping from X into I™. We put

H=UVy Vi={Wllm<1, Htel"},
for A< w,. Then we have

(3) p(X)CH; ¢ Y Vy)C6, for A< w,,

since X = I, o(I) CV,;. We denote by D the graph f)f the mapping
p: D ={(v, cp('m)’) |@eX). Then D is closed in X x I™. Since DC X XH
by (8) and X X H is open in X xI™ it follows from the normality of
X % I™ that there exists a continuous mapping @: X x I™->I such that
(@,y)eD,

(x,y)¢ Xx H.

0, for
1, for

We construct a function y(®, #’) on the product space X x X by

w(w, o) = sup |z, y)—-D@',y)|, for @, of X{(%).

yelm

Then p(z, ') is continuous over X x X, since I™ iy compact. Moreover,
we have

b, pl@)) <ylw, o) for w,0eX,
since

Do, p(a) =D (v, @) — O, p(a') < sup |B(@, y)— D@, y)|.
VE

If we put

U, ={o |yp(z,0)<27, for zeX,

' (4) The argument below is an elaboration of Tamano’s in [16].
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{Uz |# € X} is a normal open covering of X since p(z, @) i8 a pseudo-
metric olf/ X (i.e. p(@, @) = 0; p(@', 2) = p(w, 2') > 0; p(w, ) +y(o, o)
Z (@, a"') for @, a’, 2" ¢ X). For any point &' of U,, we have

P, p(0) <y(@, o) < 27
and hence :

P(Ua) C fy | D, y) < 271}
and consequently ‘

9(Uz) Cop(Up) Cly | D (2, y) <27} CH,

sjnce Dz, y) = 1 for y ¢ H. By definition, H = |V, and ®(Usz) is compact.
Hence there exists a finite subset vs of the set {4 | 4 < ) sueh that
?(Ug) CU{V1| 4 €95} Therefore we have by (3)

Uch{GAIAGQ’m}-

This s-hows that each set U, of the normal open covering {U, | we X}
of X is contained in a sum of a finite number of sets belonging to the
covering {(;} of X. Hence by Covollary 1.3 the covering {@} of X is
normal. This completes our proof of Theorem 2.4.

COROLLARY 2.6, Let X be a topological space with an open base of

power <. Then X is paracompact and normal if and only if X xI™ 4g
normal. ‘

"~ Proof. Any open covering of X has a subcovering of power < m,
and hence Corollary 2.6 follows immediately from Theorem 2.4.

TH:fBOREM 2.7. Let X be a completely reqular Hausdorff space. If

XX T is normal for a compact Hausdorff space T which contains a sub-
space Y homeomorphic to X, then X i3 paracompact and normal.

Proof. Inthe proof of Theorem 2.4, we replace I™ by T'and ¢: X —I™
by a homeomorphism @, of X onto Y. Then the proof of Theorem 2.4

is valid with ¥, replaced by any open sets W, of T such that po(G)
=Win Y (5.

§ 8. Spa(‘:es having the weak topology. Let {4, |Ae A} Dbe
a closed covering of a topological space X. Then X is said to have the
weak topology with respect to {4,)} if for any subset A’ of A every subset ¢
of U{4,1 | A€ A’} for which ¢ A A, is closed for each A of A’ is necessarily
cdosed in X. (cf. Morita [13] and Michael [9].) Every topological space

has a,.lways the weak topology with respect to any locally finite closed
covering.

This r(gniir: 1:1}01;1;1 be no.ted that Len?ma, 2.5 is dispensable in this proof of Theorem 2.7.
iy 18 also applicable ‘to a direct proof (along the same line as in the proof of
Theorem 2.4) of Corollary 2.6 if we assume X is a completely regular Hausdorff space;
in this case: there is a homeomorphism of X onto a subspace of I™. ,
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TEROREM 3.1. If a topological space X has the weak topology with
respect to a closed covering {A,} such that each set A, is . m-paracompact
and normal, then X is m-paracompact and normal.

Our proof is based on the following two lemmas which are proved
simply in Morita [13].

LemMA 3.2, If a topological space X has the weak topology with respect
to a closed covering {A;} such that each A, is normal, then X 8 normal.

LeMMA 3.3. If a topological space X has the weak topology with respect
to a closed covering {A,}, then X x Y has the weak topology with respect
to the closed covering {A; X X} for any compact Hausdorff space Y.

Proof of Theorem 3.1. Suppose that A has the weak topology
with respect to a closed covering {4;} such that ecach 4, iz wm-para-
compaet normal. Then, by Theorem 2.4, 4, x I™ is normal. By Lemma 3.3,
X x I™ has the weak topology with respect to 1he closed covering {d; x I™)-
Hence X x I™ is normal by Lemma 3.2. Therefore X is m-paracompact
normal again by Theorem 2.4.

Similarly we obtain the following theorem.

. THrOREM 3.4. If a topological space X has a countable closed covering
{dg |P=1,2,..) such that any subset C for which C ~ A; is closed for
each i is necessarily closed in X, and if each A, is m-paracompact and normal,
then X is m-paracompact and normal.

TaroREM 3.5. If a topological space X has a countable closed covering
{Ai]i=1,2,..} such that X = |J{Intd;|i=1,2,..} and if each A,
s m-paracompact and normal, then X is nt-paracompact and normal,

Proof. In this case {A;} hag the property described in Theorem 3.4.
Another proof is obtained directly from Theorem 3.1, if we note that {C;}
is a locally finite closed covering of X where () = A;—\J{IntA; |j < i}
for ¢ > 1 and C; = 4;.

In connection with Theorem 3.4 we mention the following theorem.

THEOREM 3.6. Let {4} be a countadle closed covering of a topological
space X.

(i) If X 48 normal and cach A; is countably paracompact, then X is
countably paracompact.

(i) If X is collectionwise normal and each A, is m-paracompact, then X
8 m-paracompact,

Proof. (i) follows immediately from the fact that a normal space
is countably paracompact if and only if any countable open covering
admits a countable closed refinement (cf. Morita [11], Dowker [4]).

(i) By (i) X is countably paracompact and hence the condition (e) of
Theorem 1.1 holds in view of a theorem of Dowker [5]. Hence (ii) holds.
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As is well known, a topological space which is a union of a countable
number of closed metrizable subspaces is not always normal.

§ 4. The m-paracompactness of some topological spaces.
As a generalization of a theorem of Dieudonné [3] we shall prove the
following theorem.

TumortM 4.1. Let X be a paracompact normal space such that each
point has a netghborhood base of power <m, and let ¥ be an m-compact
normal space. Then X X Y 48 m-paracompact and normal.

Proof. Let {Ujw) |Ae A} with |4] <m be an open neighborhood
base of power < m at a point @ of X. For any snbset € of X' x ¥ we can
easily prove the relation

Ola] = 1 OLUx()]

where C[U(x)] = {y|(#,y) € C for some @' e Uy(w)} and O[] = {y | (z,y) <C).
Suppose that C[#]CH for some open set H of ¥. Then we have

CLUx=)] C H for some Aed; otherwise {C(Uyw)]—H [2ed} would
have the finite intersection property and hence we would have NOLU ()]~
a

~H=( [w]—.H #* O because of m-compactness of ¥, bub this contradicts
tlfle assumption that C[z]C H. Therefore {2 |CU[w]C H} is an open set
of X (%),

To prove the normality of X x ¥, let 4, B be two disjoint closed
subsets of X x ¥. Then the get

Ug={w|Al®]CH, HC X—B[2]}

Is open for each open set H of Y. On the other hand, for each point x
of X the. closed sets A[x] and B[z] are digjoint in ¥. Since ¥ is normal,
there exists an open set H of ¥ such that A[#)C H, HC ¥ — B[#]. Thus
{Ur | H ranges over all the open sets of Y} is an open covering of X.
Now we apply the argument in the proof of Theorem 2.2 and we conclude
that X X ¥ is mormal.

The m-paracompactness of X XY follows immediately from Theo-
rem 2.4, since ¥ x I i m-compact and normal by Theorems 1.8, 2.2 and
Remark to Theorem 2.1, and hence X x (¥ x I™), which is homeomorphic
to (XX ¥)xI" is normal by the proof stated above.

Re‘eenﬂy, Mansfield [7] introduced the notation of almost-m-full
pormahty. A topological space X is said to be almost-m-fully mormal
if for eaeh_open covering & of X there exists an open covering $ of X
such that (i) § is a refinement of G and (ii) for each set M with | M| <m

(3 S' 3 3 . .
mappi(n)g. imilarly it can be shown that the projection from X x I onto X is a closed
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and M C St(z, ) (*) for some o ¢ X there exists a set ¢t e & with M C G.
Tere nt is any cardinal number > 2. It is proved by H. J. Cohen [1] that
a topological space X has the property that all neighborhoods of the
diagonal in X x X form a uniformity in the sense of Weil if and only if X
is almost-2-fully normal. We shall prove

TaEOREM 4.2. Bvery almost-m-fully normal space is m-paracompact
for an infinite cardinal nwmber m.
This theorem is an immediate consequence of Lemma 4.3 Dbelow.

LevMA 4.3. A topological space X is almost-m-fully normal tf and
only if for each open covering ® of X there ewists a wormal open covering B
of X such that if M CV for some set V of B and || < e then there s
a set G of & containing M.

In fact, let X be almost-m-fully normal, and let & = {¢;|2e A}
with |4] <m be any open covering of X with power < m. If we admit
the validity of Lemma 4.3, there exists a normal open covering B with
the property stated in Lemma 4.3. Then B is a refinement of ; otherwise
there would exist a sot ¥V of B such that V' ¢ G for every A e 4, and hence
the set M = {z; | Ae A} obtained by taking a point @, from cach set
V@, would satisfy the condition that |M|<m, M CV, but M ¢ G,
for any A. Thevefore X is m-paracompact.

Proof of Lemma 4.3. Assume that X is almost-ni-fully normal.
Let G be any open covering of X. Then there exists an open covering §
of X with the property described in the definition of almost-m-full nor-
mality. Then the covering B = {St(x, ) | @ ¢ X) is a normal open covering
with the property stated in Lemma 4.3 (%). Conversely, assume that for
any open covering & of X there exists a normal open covering B of X
with the property stated in Lemma 4.3. Let 28 be any open covering
which is a 4-refinement of B in the sense of Tukey [18]. Then the covering
$={GAW|Gec®, We2} possesses the property stated in the def-
inition of almost-m-full nornmality; indeed,  is a refinement of ®, and
if MCSt(w,$), |[M|<m, then MCV for a set V of B such that
St(z, $)CV (such V certainly oxisty since $ is a A-refinement of B),
and hence thero is o & e @ such that M C ¢ This completes the proof
of Lemma 4.3.

Tt should be mnoted that some of the properties of almost-m-fully
normal spaces obtained by Manstield ([7], § 8) ave ossentially those of
m-paracompact, almost-2-fully normal spaces.

() S, D) = U {H|xell, H eH}
(%) Generally, {St(x, W)| @ « X} is a normal open covering for any open. covering 1l
of an almost-2-fully normal space X.
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A fixed point theorem for the hyperspace of a snake-like
continuum

by
J. Segal (Seattle, Wash.)

Introduction. If X iy a metric continuum, ¢(X) denotes the space
of subcontinua of X with the finite topology. As a partial answer to
(uestion 186 (due to B. Knaster 4/29/52) of the New Scottish Book it
is shown that C(X) has fixed point property if X is a snake-like con-
tinuum. Thig is done by showing that 0(X) is a quasi-complex and since
C(X) is acyclic (see [9]) it has fixed point property by the Lefschetz
Fixed Point Theorem. -

DEFINITION 1. If G i a finite collection of open sets of X lot Q(G)
denote {K e O(X) | K ~ g = @ for each g ¢ @ and KC UG(g)}. The finite

€
topology on C(X) is the one generated by open sets gf the form 2(G.)
(See [8], pp. 183.) If U is a finite open covering of X define U* to be
{2(@) | 6 is a finite subset of T).
Levwa 1. If U is a finite open covering of X, then U* is a finite
open covering of CO(X).

- Proof. The elements of U* are open by the definition of the finite
topology, and sinece U is finite, so is U* If A ¢ 0(X), there is a subeol-
lection @ of U which irreducibly covers 4, so 4 € 2(6). Hence U* covers
o(X). o

Leuma 2. If Uis a findte collection of open sets, then mesh U* < mesh U.

Proof. Suppose that @ is a subcollection of U and K and L are
elements of 2(@). If » € K, there is an element g, of G containing #. Given
LAg,#O and diamg, < meshU, there is a point y of L such that
d(w, L) < mesh U. Hence for each » in K, d(w,L) < mesh ,U' Thereforg .
gince d'(K, L) = max (xﬁagd(w,L), rﬁ;‘xd(y, K)), &(E,L)< mesh U, and
hence diam @ < mesh U, O

LeMMA 3. If {U.} is a cofinal sequence of open eoverings of X, then {U*}
8 & cofinal sequence of open coverings of C(X).

Proof. A sequence {U.} of open coverings of a compact space X is
cofinal (in the set of all open coverings of X) if and only if mesh U,—0.
By Lemma 2 if mesh U,—0 then megh U%->0.
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