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OPTIMUM TRANSPORTATION BASES

1. Introduction. The transportation problem can be stated as follows.
There is given a system (C, M), where C = {¢;} is a m Xn rectangular

matrix (cost matrix) with ¢; real, and M = (a;, ..., @n; byy..., b,) is
n n

a system of m-+n positive numbers a;, b; with > a; = > b;.
i=1 j=1

The problem is to find a m Xn matrix X = {x;} whose elements x;
satisfy for all 4 =1,...,mj = 1,...,n conditions

(1) ;= 0,

n
Sey =
=1

(2) m

and minimize a function (cost function)
m n

o £= 3 Sy o
t=1 =1

In section 2 we recall such terms as graph, cycle, basis, zero matrix
and basic matrix. It is known that to each basis B there exist:

a) exactly one zero matrix i.e., a matrix ¢ = {¢;} with ¢;;
= ¢;+u;+v; (u;,v; — constants) satisfying condition ¢;; =0 for all
(¢,4)eB.

We denote such a matrix by Oz = {c5}.

b) exactly one basic matrix, i. e. a matrix Y = {y,;} whose elements
satisfy (2) and where y; = 0 for all (¢, j)eB. Such a matrix we denote
by Y(B) = {y}.

Matrix O is said to be of property A if to each basis B

¢ #0 for all (i,j)eB.
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Basis B is called an optimal basis of C if
ci>0 for all (i,j)eB.

The paper presents a method of solving the transportation problem
by means of optimal bases (OBM). An initial version of this method was
published in [1]. The OBM is illustrated by a numerical example (section 7).

This method consists in finding a sequence

(*) Y(B,), Y(B,), ..., Y(Bx)
with

Ry(B) S 8¥(By) S «-+ S 2y (By))

where B,, B,, ..., B, are optimal bases and Y (B;) is an optimal solution
of the transportation problem. Any two consecutive bases in (*) differ
by one element. In sections 6 and 7 it is shown how to find B, and Y (B,).
In sections 3, 4 and 5 some special perturbation technique is developed
which guarantees the finiteness of sequence (+) (theorem 13). Applying
this technique we are to solve instead of the original problem another
problem (W, M) with W = C+F and F defined by formula (6). Both E
and W have property A (theorem 2 and 5) and each optimal basis of W
is an optimal basis of C (theorem 6). Theorems 3, 4, 7, 8, 9, 10, 11 develop
some other important properties of £ and W which make it possible to
simplify considerably the process of solving the (W, M) problem.

In sections 8 and 9 some properties of the set of optimal bases are
examined. Thus, for instance, if ¢ is of property A4 then for ach pair
of its optimal bases B,, B there exists a sequence of optimal bases of C

By, B,, B, ..., B

where ony two consecutive bases differ by one element (theorem 14).
Theorems 15, 16, 17 and 18 imply the following result (corollary 7).
The number of optimal bases of a m Xn matrix which is of property A

is equal m+n—2) Theorems 6 and 18 imply theorem 19: The number N,
m—1 D

of optimal bases of an arbitrary m Xn matrix satisfies the following
relation

(m—i—n—2

e )<Nopt<’m/n—lnm_l'

In the concluding section of the paper (section 10) some comparisons
between the OBM and the classical primal transportation method are
made.

2. Notation and definitions. Let @ be the set of all nodes (¢, j)
t=1,...,m; j=1,...,n of an mXn rectangular net. Two mnodes
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a, = (%4, j,) and ay = (%4, j,) are said to lie on one line if either i, = i, or
J, = js. Two nodes of 2 = @ are netghboring if they lie on one line and
no other node of 2 lies between them on the same line. Let a;, and a,
be two neighboring nodes of 2. By a link a,a, we mean a straight line
segment of endpoints «, and a,. We assume that a,a, = a,a,.

A set of nodes (2, together with the set of all possible links in £,
is called a graph Gq. Graph Gy, is a subgraph of G, if Q' = Q. By a route
a;—a; we mean a sequence of different links a,a,, ayas, ..., ax_,a;, where
every two consecutive links are perpendicular and at most two nodes
of the route are on one line. For k> 5, if a; = a,, then we call a cycle
either the route a,—ay;, or the graph G, where 2 is the set of all nodes
in the route a;—ay.

We say that G, contains a cycle if there exists a subgraph of G, which
is a cycle. G, is said to be connected if to any two nodes a, and a; of 2
there exists a subgraph (of G,) whose links all form a route a;—a;. We
say then that G, contains a route a,—ay.

Let B a subset of @ consisting of m+n—1 nodes. B is called a basis
if Gp contains no ceycle. It is known (see e. q. [4]) that Gy is a connected
graph.

Let there be given a matrix ¢ = {¢;;} and a basis B. A m Xn matrix
¢ = {céj} of the form cé,- = ¢;;+u;-+ v; where u; and v; are arbitrary constant
and where

c;; =0 for all (i,5)eB

is called a zero matrixz(t). It is known that to each basis B there exists
exactly one zero matrix. Let us denote it by Cr = {c5}. A basis B is called
an optimal basis of C or, more compactly, an optimal basis, if

¢i>0 for all (i,j)eB.
Matrix C is said to be of property A if for each optimal basis B
>0 for all (i,j)eB.

Thus we can assert the following
CorOLLARY 1. If for each basis B

¢ii 0 for all  (i,j)eB

then C is of property A.
We now introduce:
PROCEDURE 1. Consider an arbitrary cycle Gr. Divide I" into two

subsets say I',, I'; assigning a) neighboring nodes to different sets, b) a spe-
cified node of I' to I',.

(1) In [4] such a matrix was called a zero cost matrix.
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Let us introduce the following notations

c(I'y, I'y) = Z Cij— Z Cij
(’i,]’)el‘l (i,j)sf2

and
c(I') = |e(I'y, I')|.

It may be observed that there are two possible partitions of I" if only
part a) of procedure 1 is used. Newertheless, the value of ¢(I') does not
depend on what of the two partitions we take. Bearing this in mind,
we now assert and prove:

THEOREM 1. A sufficient condition for C to be of property A is that
¢(I') > 0 for each cycle Gp.

Proof. To prove the theorem (see corollary 1) we are required to
show that if the condition is fulfilled then cj # 0 for each basis B and
(i, j)eB. Thus, take an arbitrary basis B and an arbitrary node (p, q)<B.
Graph Gg, 4 contains exactly one cycle ([4]), say Gr. Using procedure
1 divide into Iy and I', assigning (p, ¢q) to I'y. From [4] (page 163) it
follows that

: . 1 B B __ B
(4) oI, Ty) = DYoy— Doy =D eh— ) 6 = ey
Iy Ty Iy Ty

and ¢(I") = |¢B|. So if ¢(I") > 0 then cp; # 0 and this completes the proof.

3. Matrix F and its properties. We introduce a number d as follows
min ! min ¢, min e¢(I)—ec(l"),
1 I'ie(I") >0 I, I :e(IN)y (M)
any positive number if there is no cycle G(I'),
such that ¢(I') # 0.

(5) d =

We algo introduce

PROCEDURE 2. Establish a one-to-one correspondence between all
nodes (¢,j) of & and numbers 1, 2, ..., mn 8o that the nodes ¢z, j) can
be arranged in a sequence

(11, ceey ai,‘.oo’ Omn o

To illustrate this, suppose that (i, j) corresponds to number 1 under
procedure 2. Then a, = (1, j).
We finally introduce an m x#» matrix E = {e;} defined as follows,

(6) e; = h'é for all (i,))e®,

where h is a positive integer and ¢ > 0.
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This permits us to state and prove a series of theorems and corollaries
as follows:

THEOREM 2. Given a malrix E where h >1 and two different sub-
sets of @: Q, and Q,, then

Proof. Let W, = ) ¢; and W, = D'e;. Suppose contrary to the

1
hypothesis of the theorem,
W]_ = Wz-

Subtracting identical terms, if any, from both sides of the last equation
and dividing it by 6 we get
W = W,.

There are two cases:

10 W; = W, = 0. Then we get a contradiction since, by hypothesis,
2, and Q, are different.

20 W, = W, # 0. Then W; = b1+ ... +h's, W, = hli+...+h where
w>1, v>1 and all 1,,...,0,1,...,l, are different integers. Without
loss of generality I, = min(l, ..., L, i, ..., ;). But then I, < min(i,, ...

eisluy Uiy .., I). Dividing both sides of equation W; = W, by k"t we get

1R R = RIhy 4 R-h
which is impossible since the right side of the equation is divisible by

h > 1 while the left side is not.
COROLLARY 2. Given a matriz K, where h > 1, and an arbitrary cycle
Gr then e(I') > 0.
Proof. Divide I' by procedure 1 into Iy and I',. For I, # I', we
then have (theorem 2) ;eﬁ #* ; e;;. Therefore e¢(I') > 0. Q. e. d.
1 2

REMARK. Theorem 1 and corollary 2 imply that if # > 1 then F is
of property A.

THEOREM 3. Given a matriz E where h > 2 a basis B and two diffe-
rent nodes (p, q)eB, (r,s)eB. Then

B B
epq # 61-3-

Proof. Let G, and G, be cycles contained in Gz, g, GBigs
respectively. Divide I" by procedure 1 into I'; and I', assigning (p, q) to I,
and I" into I'; and I', assigning (r, ) to I.

Suppose contrary to the hypothesis of the theorem

B
egq = €rg.
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According to (4) this is equivalent to

Ser=Bew=Teu- T
Iy Ty X

or to

Subtracting identical terms from both sides of this equation and dividing
these sides by 4 we get

We St Sa- Yot L a-m,

ry—I,rj Iy—ryry ri—ryry I'y— Tyl

If W, = 0 then also W, = 0 and this implies I"—I"" which is impossible.
Since sets I', I, and I'1I, may not be empty one can present W, and W,
in the form

W, = kbl . kb, W, = kR 4. kg,

where numbers k,,..., ky, k1,..., k, are either 1 or 2. Suppose [,
=min(ly, ..., ly, liy ..., ly). Then 1, <min(ly,...,0l,1,...,1). Divide
both sides of the equation W, = W, by k" to get

By kB L LR B = BRI R R
which is impossible for the right side is divisible by & > 2 while the left

side is not. This completes the proof.

THEOREM 4. There are given a matriz C and a matriz E defined
by (6). If
d h-—1

(7 h>2 and 0<5<§"hm—,,+1—__—1

for d definded by (5). Then e(I') < @/2 for each cycle Gr.

Proof.
e(l') = |Zeﬁ—zeﬁ < ey < Doy = d(h+h*+...+5™)
Iy Ty r @
h'm'n+1_h
= 0 -
h—1

For h and ¢ satisfying (7) we get e(I') < d/2.
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4. Matrix W and its properties. Let there be given a matrix ¢ and
a matrix K defined by (6). We introduce an m xXn matrix W = {w;}
where

(8) W =C+E.

Take an arbitrary cycle, say Gr. Divide I' into I'; and I', by procedure
1. Then

w(l'y, I'y) = Zwif_zwii = Z (Oif+eii)_z (i1 €45)
) Ty n, Ty

- Ses= Jet Sen— Yo
'8 Ty | Ty
So

(9) w(l'y, I'y) = e(I'y, I'y)+-e(I'y, I'y).
Given a matrix W defined by (8) where d satisfies (5) and h and
0 satisfy (7), the following theorems holds.
THEOREM 5. For each basis B wg # 0 for all (i, j)eB.
THEOREM 6. Each optimal basis of W is an optimal basis of C.
THEOREM 7. Relation cg > 0 implies wg > 0.
THEOREM 8. Relation B, > c5 implies wh, > wk.

Proof of theorems 5-8. Consider an arbitrary node (p, q)eB. In the
same way as in the proof of theorem 1 we get

w(I) = |wpg|
and from (9)
[wpgl = le(I'y, Ta)+e(Iyy )]
If ¢(I'y, I';) = 0 then
[wpgl = le(I'y, )| = e(I).
By corollary 2, however, e¢(I') is positive so wfq #0. If ¢(I'y, I,) #0
formula (5) implies
d<e(l).
On the other hand

lwpy| = |e(I'yy Ty)+e(Iyy Ty)| = |e(Iy, Ty)| — |e(Iy, Ty)|

r I>d a_4a >0
= e(N)—e(I) >d—5 = 5 >0.
Thus wp, # 0 and the proof of theorem 5 is complete.
To prove theorem 6 now we need only to show that wp > 0 implies
ci > 0. Suppose, on the contrary, that for some (p,q) the inequality
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wg, > 0 implies ¢p; < 0. From the definition of Oy it then follows that
(p, q)eB. Let Gr be the cycle contained in Gg 4. Divide I' into I, I,
by procedure 1 assigning (p, q) to I'y. Then (see proof of theorem 1)

c(I'yy I) 22%‘—2%‘ =203_205 = cgq< 0.
Ty Ty I Ty
But ¢(I')y = |e(ly, I,)| >d >0. If ¢(Iy,I,) is negative we have
e(l'y, I'y) < —d.
On the other hand e(I') < d/2 (theorem 4) so e(['y, I;) < d/2. From the

last inequalities we get

d
w(ly, I'y) = e(I'y, I'y)+e(I'y, I') < —d+§< 0.

But wgq = w(l'y, I'}) < 0 where (p, q)el’;, which contradicts the assump-
tion that w3, is positive. Thus cp; = 0.

To prove theorem 7 take be an arbitrary node (p, q)eB for which
¢5, > 0. Let G be the cycle contained in Gp +(n,9- Divide I' into I'; and I',
by procedure 1 assiging (p, q) to I';. Since

qu =c(ly, I3) >0
and therefore

From theorem 2 we have
d d
6(F)<~‘—2~, 80 6(.F17F2)> _'2_'

Using all these results we get

d a
wz}fq = w(l'y, ) = O(Fl,F2)+e(I’1,I’2)>d-—_2_ — _2_>0_

Consider a node (p, q). If (p,¢)eB then obviously wh, = e = 0.
Suppose (p, q¢)eB. From the proof of theorem 7 we got the following
formula

*) wig = (I, Ty) = o(I'y, To)+e(I'y, T),

qu = ¢(['y, I),

where I' = I'y+1I'; is the cycle contained in the graph Gp, (. Consider
another node (r, s). Then

wEB=c¢E=0 if (r,s)eB
wre = w(I', Iy) = ¢(I'1, Ie)+e(I, Ie),

(**) & =o', T},
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where I" = I'|+TI; is the cycle contained in the graph Gg,(.. Since
(p,q) # (r,8) therefore I' ## I". It is known that (p, ¢)el” and (7, s)el".

To prove theorem 8 first remark that both (p, ¢) and (r, s) cannot
belong to B (for then ch = ¢5). Hence there are only the following three
cases

1° (p,9)eB, (r,8)eB,
2° (p,q)eB, (r,8)eB,
3° (p,@eB, (r,8)eB.

Consider case 1°. Assumption c5, > ¢p implies that at least one of
e(I'y, Iy, e(I'y, I;) is different from zero. So (see (5))

O(Fh[’z)"c(P;’F;) = d.

Theorem 4 implies

d ¢ d
e(l'y, I'y) > -3 and —e(l, ) > —5

Using (*) and (**) we get
Wpg—Wre = [6(I'yy To)— (', Iy)1+[e(I'y, Ta)—e(Iy, I3)] > d—

-~ =0,
2 2

Consider case 2°. Here wp, is given by (*) while ¢& = wZ = 0 and
the assumption cp, > cf; implies cp, > 0. Hence (see theorem 7) w3, > 0.
For wZ = 0 then wh, > w}.

Finally, we turn to case 3°. Here c5, = wp, = 0 white w% is defined
by (**). For gfq > ¢2 50 ¢& < 0. From the definition of d and from theorem 4
we get

cfs = O(P;’Fé)< —d,
b A
e(I', I'y) SE
and
B ’ ’ ’ ’ d
Wrs = ¢(I'y, Iy)+e(ln, Ip) < —‘d+§ <0.

For
B B B
Wpe = 0  then  wy, > wy,.

Theorems 2, 5 and corollary 1 imply
COROLLARY 3. If E satisfies (7) then both E and W are of property A.
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Theorem 8 implies the following.

COROLLARY 4. There is given a matrix W = C+E where d satisfies
(4) and E satisfies (7). Let 2 be some subset of D. If (r,s) is the unique
element of 2 satisfying
¢ = min cj;
(1,7) 2
then
wyy = minw;.
(i)
5. Further properties of matrix E. Let the following be given:
a matrix ¥ = {e;} defined by (6), an arbitrary basis B and a node (p, g) ¢ B.
By Gr denote a cycle contained in Gz, q . Divide I' by procedure 1 into
I'; and I', assigning (p, q) to I';. To each element (¢, j) of I" there corresponds
exactly one natural number ! such that 1 <1< mn and (¢, j) = a;. We call
l an index of (¢, j).
Suppose that (¢,j) = a; has the -th biggest index among all nodes
of I Then we introduce the following notation

it (vy4)el’y,
-1 it (¢,])el%.
THEOREM 9. If E satisfies (7) then for each basis B and for each
(P,q)eB

(10) UEy =

sgnep, = sgnu®,.

Proof. Since %, # 0 it is enough to show that

1° 4%, > 0 implies ey, >0 and |

2° u%, < 0 implies ep; < 0.

Because the arguments are similar we need only consider case 1° in
detail. Thus, let (r,8) = a; be the greatest index among all elements
of I". By assumption «%, > 0 so u%, =1 and (r, 8)I'y. For (p, q) belongs
also to I', and since all e; are positive, we have

Cpg = D, 61— D, € > bre— ), -
But I'y = {ay, ..., q;_;} (for azel,). Therefore

H—h
Doy <hS+h+.. +H o=
Ty

h—1

and e,; = K. Hence

B—h )
B>Heé—6 = B —2nt +h
€pg = b h—1 h——l( +h)

5 oh
> (@H—2W+h) = - >0 Q.ed
1 th=5=7>0 Qe
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Let there be given a basis B, and two different nodes (p, ¢)eB and
(r,s)eB. By Gr and G, denote cycles contained in Gz, (g, @si(s
respectively. Let ¥ be the number of nodes in I" and %' be the number
of nodes in . We will prove the following.

THEOREM 10. There exists a number t < min(k, k') satisfying
(11) UKt 7 UB-

Proof. Let us assume k¥ < k'. From the definition of %, it follows
that there exists a number say t', ¢’ < k such that |u%;| is just the index
of (p, q). From the definition of ¥ it follows that to no node other than
(p,q) does there correspond an index |up|. Therefore |ug| # |uz,
which implies

ufy #ug; Q.e.d.
REMARK 1. The definition of u%; and properties of F imply that
the equality
UEL = up,
requires that (p, q) belongs either to I'\I'| or to I,I}.
THEOREM 11. There are given a matrix C and a matric E defined

by (6). If

d h—1
(12) h>3, 0<d<—

5 g,
for d defined by (5) then for each basis B and for each pair of different nodes
(p, Q) eB,(r, s)eB

Sgn (€, — 6rs) = g0 (UH,—uF ;).

Proof. From the definition of %, and ug, it follows that (p, q)el’;
and (r, 8)el";. Then

(13)

B B - '
epa— €y = €(I'y, I';)—e(I'y, I'2) E 6ij — Z, €ij — §, e + E, €ij
Ty I I
1 2
—
2 €ij — E €ij — § i + 2 €ij .

r—nr; Iy—IyTy ryj-rri Iy—Iyly

Let IT = (I'y—TI'\I)+ (Iy— o) + (M — D)+ (T — T Ip) =TT —
—(I, Ty +T,T3). Consider a node of IT with the biggest index, say I. We
will show by a procedure 3 that

1 = max (Jul,|, [uB,l)-
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PROCEDURE 3.

Step 1. Let (¢,,j,) be the node of I'+I” with the biggest index.
There are two mutually exclusive cases as follows:

1° (21, 41) elT;

2° (il,jl)eP1F1+F2F2'.

In the first case %', +# wgp, (see remark 1). So g = 1 and the index
of (i,,4,) is equal max(|u¥,|, |uE.|) = 1. Thus the statement has been
proved. When case 2° holds turn to

Step 2. Consider a node of I'+/" with the second biggest index
say (%s,].)- But then as was the case in step 1 we again have two cases:

1° (ig, jo) eIT;

2° (i2,j2)€F1F{+P2F2’-

For the first case ¢ = 2 and the maximal index of nodes in 1° is equal
to the index of (i,,j,) which is equal max(|ug,|, |u%,./) =1, and the
statement has been proved. In case 2° turn to

Step 3. Repeat step 2 again and again considering nodes of I'41”
with third, fourth, and so on, biggest indices until case 1° from step 2 arises.

The latter happens after at most k steps where k is number of nodes
in I'. For suppose on the contrary that we have performed % steps where
we considered k different nodes (¢, j,) (%2, js); - -+, (i, jx) and where case 2°
always arises. Let us denote by (2 the set {(¢y,7:), .-y (%, jx)}. Then:
Q cTI'and 2 < I". For I consists of k nodes so £ = I'. But then [" < I"
which leads to a contradiction since (p, q)el' and (p, q)el”. Thus sgn
(uFy—ug4) # 0 so to prove the theorem it is sufficient to show that

. . B B
ufy >ug, implies e,, > €.

(The second case: u%, < w5, implies ep, < 65, follows immediately from
that one with the reversed inequality signs if we put (p, q) there instead
of (r,8) and vice versa.)

There are two cases:

1° |ullyl > lug,| and uFy > ug,;

2° |ubyl < lup,l and uE,; > up,.

In case 1° %, is positive so (p, q)el}, w5, =1 and e,, = k6. In
case 2° up, is negative so (p, q)el,, |uh, =1 and e, = h'6. In either
case

F;—FIF{ < (al’ Ugy eeny G1_1)y Fz'—rz-rz’ < (aly Ggyeeey Op_y).
Therefore

< hé-+-h2d 16 =6 W1 d <6 h—1
Z Cij < —+ +...4 = 1 an 2 6ij & h—1 .

rn-rnn Ty—Iyly
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So (see (13))

B B
€pg— Crs = Z‘ e+ Z el,—2—.

ry—rri ry—rar,

In case 1° (p, q)el'y, (p, q) eIy, s0 (p,q)el,—I', T and

ht— B—1
efq—ef €pq— 26ﬁ = hlé 26ﬁ
In case 2° (v, 8)ely, (r,8)ely 50 (7, 8)el, so (r, s)EI“;—FZFQ and
h'—1 h'—
B — € > €rs—20 = 1'o—26
fpa—¢ ¢ h—1 h——l

Thus in either case we have

)
e —eb > T (1 —3h 4-h).
But 4 >0 and & > 3. Therefore

) B
e —eb > Ty (h-W—3h +h) = —— (30— 3K +-h) = =7 h>0.

h—1

This completes the proof of theorem 11.

To see the point of these developments suppose there is given a matrix
E satisfying (12) a basis B and a set 2 disjoint with B. Then theorems 10
and 11 imply a procedure by means of which it is possible to find in Q
a cell (4,) which satisfies the condition
(14) 5 = min 5.

(i,9)eQ

Moreover this may be done while omitting the construction of Ep = {ef}}.

The procedure is described in steps as follows:

PROCEDURE 4.

Step 1. Find
(15) min %, .

(0,9)e2

Let 2, be the set of (p, q) satisfying (15). There are two cases: a) 2,
consists of one element, b) 2, consists of more than one element. Let
|u%,| = 1. Consider case a. Then (theorem 11) a;; = (%, j) satisfies (14)
and the procedure terminates. In case b turn to

Step 2. Repeat step 1 again and again where instead of 2 we have
to consider sets £2,, Q,,...,and instead of #¥ -numbers u¥%%, ugs, ...,
until case a from step 1 arises.

Theorem 10 guarantees the finiteness of procedure 4.
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6. A method of finding an optimal basis. One can give many ways
to construct an optimal basis given a cost matrix ¢ = {¢;;}. One possible
method is as follows:

a. Choose any row of C, say row i.

b. Construct a new matrix ¢’ = {¢};} = {¢;;+v;} where v; = —¢j
so that
¢y =cy;+v, =0 forall j=1,...,n.
c. Find
c; = mjincé,-, i=1,2,...,1—1, i+1,...,m,

and for each 7,7 # ¢ one node where ¢; is attained. These n—1 nodes
together with n nodes of row ¢ form a basis B which is optimal. For only
single nodes of B appear in m—1 rows of C so G contains no cycle. B con-
sists of m+n—1 elements and therefore ([4]) B is a basis. To prove opti-
mality of B construct a new matrix C"" = {¢;} = {c;;-+u;} where

u; =0, u;= —¢; for i #74.

It is easy to see that ¢’ has the following properties
ci; =0 for all (3,j)eB,
cij >0 for all (i,j)eB.

Two bases B, and B, are neighboring if they differ by one element:
so B, = B;—(k,l)+(r, 8). Graph Gy _,; consists of two connected sub-
graphs GQI and G,, where 2, and 2, are two disjoint sets (one of these
sets may be empty). By £, we mean either an empty set if (k,1) was
the only node of B in column I or a set which contains another a node
of B in column I. By I, and I, denote sets of the numbers of rows occupied
by nodes of £, and £2,, respectively, and by J, and J, denote sets of the
numbers of columns occupied by nodes of £, and £,.

To conclude this section let I = (1,...,m), J =(1,...,n) and
introduce sets y and ' as follows

p=I=I)X(J—=J)—(k, 1), o =I,xd,.

Now suppose a basis B, containing the node (k, 1) is optimal. We define
a procedure of finding another optimal basis B, which is neighboring
to B, and does not contain the node (%, ).
PROCEDURE 5. Find a node (r, s)ey’ for which ¢! = min ¢/jl. Then
By = B,—(k, 1)+ (r, 9). Eee
Theorem 5.3 of [4] implies that B, is a basis. The optimality of B,
follows from a) the definition of (r, 8), b) formulas (6.3) of [4] which when
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applying theorems A and A’ of [5] can be written in the following form

0.32 = 031—021 for  (¢,5) ey,
(16) c§-2 = o§1+c,’§1 for  (¢,f)ey’,
cii* = cjit for (i,))e@—(p+9y').

7. Solution of the transportation problem by the optimal bases method
(OBM). There is given a transportation problem (C, M) and a basis B.
By a basic matrix ¥ = {y;;} we mean any m X»n matrix satisfying condi-
tions

n
E Yi; = A,y z=1,...,m,
j=1

Z?/ijzbiv j=1,...,n,
1=1
Yij = 0 for aﬂ (’&,])EB.

As may be verified (see [3] page 159), to each basis B there exists exactly
one basic matrix. Such a matrix we denote by Y (B) = {yg}. We give
a procedure of finding Y (b) (see proof of theorem 5.5 in [3]).

PROCEDURE 6. Take a node of B, say (¢,,j,), which is the only
element of B on some line, say on the ¢-th row (case 1) or on the j,-th
column (case 2). Set

e _{ail in case 1,

Yiia = b;, in case 2.

Repeat the same procedure for the set B—(i,,j,) and for the system

(au--',ail—lyoyailx-ly---yamibla---’bil—labil_ailybjruy---,bn)

in case 1

M = ’
((ll,...,a;l_l,a“—-—bil,ail+1,...,azm; bl""7b7'1—170’bj1+17"'7bn)

in case 2

and determine y; ;,. Repeating this m+n—2 times find y;; for all (i, j)eB.
The remaining y;;, (¢, j)eB, are set equal to zero.

Suppose we are given an optimal basis B, and, neighboring to B,,
an optimal basis B, = B,—(k, 1)+ (r, s) found by procedure 5. We now
provide a procedure for finding Y (B,) provided Y (B,) is known.

PROCEDURE 7. Consider Gp, ,(s. This graph contains exactly one
cycle, say Gr, and (r,s)el’. Divide I' by procedure 1 into I, and I,
assigning (r, s) to I', (then also (k,1)el';). Define Y (B,) as follows:

?/%2 = ygl_ylgly (i’J:)‘PU
(17) ygz = :l/gl-i-illkzl, (7/,.7')5112;
Yii* = Yii', (¢y9)el’.
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There are given two basic matrices Y (B,) and Y (B,) where B, and
B, = B,—(k,1)+(r, 8) are optimal bases. Hence the following theorem
is pertinent:

THEOREM 12. If yig! < 0 then 2y, > 2r@s,-

Proof. Procedure 7 and the proof of theorem 6.3 from [3] imply

B B
2y(By — ¥ (B)) = Crs'(—Yu')-

For ¢! > 0 and 3! < 0 80 2y, > 2r(s,)-
We also have

COROLLARY 5. If C is of property A and yi' < 0 then 2y, > 2ra,)-
The corollary assumption implies cgt >0 for all (i,j)eB,. Hence also
ol >0 and Ry(y)—R¥(B) = cgl(—yﬁ‘) > 0.

In preparation for the illustrative example discussed in the next
section we present the following method of solving the transportation
problem (C, M)(2).

Step 1. Find an optimal basis B, (for example by the method given
in section (6). Using procedure 6 find Y (B,).

Step 2. Find a node (k,!) such that

yf}l = min yﬁl.
(ii)ed

If y5! > 0 then, Y (B,) is the optimal solution of the transportation pro-
blem. If yi! < 0, then proceed to.

Step 3. By procedure 5 find an optimal basis B, neighboring to
B, where (k,l)eB,. Find Y (B,) by procedure 7. Repeat step 2 again
and again until a basic solution is obtained, say Y (B,), which is the optimal
solution of the problem.

Evidently the above solution procedure reduces to finding a sequence
of basic matrices

(18) Y(B,), Y(By), ..., Y(By), ...,

with 2y, ) > 2yp,, for t =1,2,...

The procedure terminates as soon as in the sequence (18) a matrix
is obtained with all elements nonnegative. _

If some basic matrix containing negative elements say Y (B) appears
in (18) twice, then apply

(2) It should be pointed out that this method can be considered as an adaption
of the well known G. E. Lemke’s dual method [2] of solving the linear programming
problem for the transportation case.
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Step 4. Consider a transportation problem (W, M) with W = C+FE
and matrix F defined by (6). We set >3 and
d h-—1

Using procedure 2 arrange the elements of @ in a sequence
Ayy cony Uiy ouvy Oy

so that the first m+n—1 nodes belong to B. Perform steps 1, 2 and 3
starting with Y (B) as the initial basic matrix until the optimal solution
of the problem (W, M) is obtained.

The solution obtained in step 4 is also an optimal solution for the
problem (C, M) (theorem 6).

REMARK 2. One can considerably simplify the step 4 of the procedure
by applying the theory developed in sections 4 and 5.

In each iteration of the above solution procedure we go from Y (B;)
which is already known to Y (B;,;). In the process we are required to
determine |

min wft.

(i.1)e¥”
To find the node for which this minimum is attained proceed as follows.
Find

min ¢t
(i,i)e‘l"
There are two cases
either min ¢t = ¢ >0, or min ¢t =

(1,7)e¥” (1,7)e?’
In the first case we need only introduce node (r, s) into the new basis
By, ,. Therefore consider the second case. Let
min ¢t = 0
(4,7)e¥’
and 2 c ¥’ be the set of nodes (¢,j) for which ¢f* = 0. Then we are
to find (since wij = cht-+ eht)
min e,
(1,7)eR
To do this use procedure 4 (see section 5).
To conclude the present discussion we now state and prove
THEOREM 13. The number of ilerations leading from any basic matriz
Y (B) where B is an optimal basis to the optimal solution of the transportation
problem (C, M) is finite.
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Proof. If in sequence (18) no matrix appears twice then no basis
(see [4] p. 159) appears in (18) twice. Thus this sequence is finite because
the number of all optimal bases is finite (less then m"~' »™ ! (see [3]).
Suppose now that some basic matrix appears twice. We then use step
4 considering the problem (W, M) where W is of property 4 for A>3
and

0< 8 d h—1
S OSSR g
(theorem 5). Suppose we get the following sequence of basic matrices
of the (W, M) problem.

(*) Y(By), ¥(By), --+y ¥(By), o5
Then (corollary 5)
(**) 2r(Ey < 2rdy < - < 2y < -

From (*#*), and also from the fact that to each basic matrix there corresponds
exactly one value of z (see [4]), it follows that no matrix and therefore
no basis appears in (*) twice. For the same reasons as before we conclude
that (*) is a finite sequence.

8. An Example. Consider a 3 x5 transportation problem with the
following cost matrix

13 13 9 14|10
@ | v 16 12 n |3
©) 16 18 13 7 |7

4 3 5 6 2

The numbers a; and b; are on the right and below the cost matrix. To
find an initial optimal basis we use the method from section 6.

Choose the first column, circle all the elements in that column and
add numbers —8, —12, —9 to the first, second and third row, respectively.
This produces the following matrix

I EERER
SERRIIERE
@794@7
L .
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Minimal elements in the remaining columns are 5, 4, 0, —2. We therefore
circle one minimal element in each column. Substracting them from the
corresponding columns we get the following matrix

0 0 1 1 8 10
0 0 0 0 1 3
0 2 5 4 0 7
4 3 5 6 2

This gives B, = {(1,1), (1,2), (2,1), (2,3), (2,4), (3,1), (3,5)}. It is
easy to see that the above matrix is cp .
Find Y (B,) using some modification of procedure 6.

O | O 10
O OO 3
O O |7
4

3 5 6 2

First determine elements y;! for the circled nodes which are on separate
lines. Thus, by following this instruction we get

911;1:37 f’/gl"—'f’r ?/2111=67 f‘/:ﬁ1=2-

1

@ 7=10
G @ -8=3-11

2

With these values specified we then readily find the remaining y5! in
the circled nodes to be yo! = 7, yi = —8, ya! = 5. All remaining y2!
are zeros. This yields

3

3 5 6
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For convenience we now write Cp, and Y(B,) in the same table, as
below

\
— @Z__@3 [1] 1 8
v@e 0 @5——@6 1
— @5 2 5 4—0)°

Using step 2 we find min yJ!' = yo! = —8 < 0, and therefore proceed
(2,5)eP

to step 3. Consider graph G, _(2,1)- This graph consists of two subgraphs

Go, and Gy where Q, = {(1,1), (1,2), (3,1), (3,5)} and 2, = {(2, 3),

(2, 4)}. Therefore ¥’ = Il><J2 = {1, 3), (1, 4) (3, 3), (3,4)} (cells Whlch

are on the intersectlon obtained by extending the “arrowed” lines). Thus

we find min ¢f! = ¢! = 1 and so B, = B,—(2,1)+(1, 3).
(2,9)e¥’
Consider GB, .03 This graph contains a cycle G, where

@417 | + | ®
@@ |
@é—— 2 5 4 £0)?

r={1,1), (,3), (2,1), (2,3)}. Using procedure 7 divide I" into I
and I’ assigning (1, 3) to I. 8o I', = {(1, 3), (2, 1)}, I, = {(1, 1), (2, 3)}.
Applying (17) find Y (B,)

"./g = y31—|—8, (¢,))el’y,
ytf —?/w 18, (¢,9)el,
yw = ?/w ’ (¢, 4)el.
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@1——@‘7’——5'_] 81 1 8
1 5 0 Y @i—-@s 1
@2 2 5 4——0)’

To find Cp, apply formula (6.2) from [4]. Adding: —1 to the third
column, 1 to the second row and —1 to the fourth column we get Cp,

\
—0+@° | @ | @
1 v@i—@s 2
2 4 3 0’

REMARK 3. To find Cp, one can also apply formula (16). In any
event Y (B,) is not the optimal solution of the problem for

v
18,

yf? min yf}? = —3.
(&,9)e®

We therefore have to consider Gg, ;. Here ¥’ = {(1,4),(3,4)} and
min ¢f2 = ¢®2 = 0. Therefore B, = B,—(2,3)+(1,4). Graph G, 0.4
(&, 9)e¥”

contains a cycle G, where I' = {(1, 3), (1, 4), (2, 3), (2, 4)}. So, as before,
divide I" into I, and I',. Here I', = {(1, 4), (2, 3)}, I, = {(1, 3), (2, 4)}
and Y (B,) is defined as follows: y52 = 043 =3, Yol = —343 = o,
Y8 =8—3 =5, yos = 6—3 = 3, yi® = yi¢ for all remaining (4, j).

N |
S 3 @ 5 _@3 8
o | ©® 2
43—

Here Cp, = Cp,. For min yP =y = —1 50 P’ = {(3,2), (3,3),
(,9)e®

(4,3)} and min ¢f* = ¢;* = 2. Therefore B, = B;—(1,1)+ (3, 2).
o @m‘

~s‘ .
@
e v Pugvaelsy L)
i

o)

>

s
-~
-£,

b

X
S
"
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2 2
0o | @H@H@ | o
| 3

1 1 0 @ 2
-2 @ﬂ-—§1 4 3 @2

Graph Gp, 32 contains a cycle G, where I' = {(1,1), (1, 2), (3,1),
(3, 2)}. Here I', = {(1,1),(3,2)}, I, = {(1,2),(3,1)} soyt = —1+1 =0,
Yt =0+1=1, yBs =31 =2, yft =5—-1 = 4, ybs = yls for all rema-
ining (¢, j). Adding —2 to the third row and 2 to the first and fifth columns
we get Cp,

2 @2 @5 @3 10
3 1 0 @)3 4

Here

Y(Bg)= 3

As can be readily observed Y (B,) has no negative element. Hence this
matrix is an optimal solution of the transportation problem.
It is perhaps worthwhile to observe also,

REMARK 4. Consider the following situation. There are given two
transportation problems (C, M) and (C, M’) where the elements of M
differ only slightly from the corresponding elements of M’. Suppose that
an optimal solution of (C, M), say X (B), is available. Then to solve (C, M’)
it is especially useful to apply the OBM, starting with B as an initial
optimal basis.

9. Sets of optimal bases. If an m xn matrix ¢ with property A is
given, we can then prove
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THEOREM 14. For each pair of optimal bases B, and B of C there
exislts a sequence

By, Byy By, ..., B
where consecutive elements are neighboring optimal bases.
Proof. Construct a matrix X = {z;} as follows

Ziy =a>0 for all (¢,j)eB,
2i; =0 for all (i, j)eB,

where a is some positive number. Consider a transportation. problem
(C, M) where the elements a; and b; of M are found from formulas

m
Ziﬁ, i=1,...,m,
i=1

bj = Tij, ]=1,...,’ﬂ.
i

a;

7@

I
—

Since all Z;; > 0 and B is an optimal basis it follows that X is an optimal
solution of the transportation problem (C, M). Now solve the transporta-
tion problem (C, M) by the OBM starting with B, as an initial optimal
basis. According to corollary 5 and theorem 13 we will get the optimal
solution after a finite number of iterations. For X is the only (because O
has property 4) optimal solution of (C, M) so the iterative procedure
produces a sequence '
Y(By, Y(B,),..., Y(B) = X.

This completes the proof.

It is now convenient to introduce some definitions. Use N (C) to
denote the number of all optimal bases of C. Let n;(C) be the number of
optimal bases of C, having at least two nodes in k¥ rows of matrix C.

If C is a m X1 matrix then

1 for k=0,
m(0) = {0 for k>1.
If C is a m Xn matrix with » > 2 then

o) — 0 for k=0,
m(C) = 0 for k>min(m,n—1).

Therefore the following formula is true

min(m,n—1)
(19) N(0) = 2‘ 1, (0).

k=0
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Now let C, and C, be two arbitrary m X% matrices of property A
where m and » are arbitrary integers. The following theorem holds.

THEOREM 15. n4(C,) = ne(C,) for all k =0,1,2, ...

Proof. We prove the theorem by induction. Since the theorem is
true for ¥ =0 and %k >min(m,n—1), we need only prove it for
0 < k < min(m,n—1). Suppose that the theorem holds for all k, k<1
where 1 <!< min(m,n—1). Let I = (1,...,m). By I, denote a subset
of I consisting of I elements and by C(I;) and I xXn submatrix of C con-
sisting of rows whose indices belong to I;. Let I/ be an arbitrary optimal
basis of C(I;) containing in each row of C(I;) at least two nodes. Then
there always exists exactly one optimal basis B of C with the following
properties. 1°¢ /7 < B. 20 in each row ieI —I; there is exactly one node
of B. To show this let us determine C;(I;) (zero matrix for II). Using
formulas (6.2) from [4] find numbers u; and v;,1¢l;, j =1,...,n. Add
these numbers to the corresponding lines of C. We get a matrix (" = ¢;;
where

C,,{j =ci,-+u,-+'v,- for iGIZ, j = 1,2,...,"?«;
c,'-,,-=ci,-—l—v,- for ’l:eIl, j=1,2,...,’n
and, furthermore
;=0 for all (i,5)eQ.
Find for each i1el—1I,;
min ¢;; = ¢
1<isn
and choose one node (it is unique as we later show) where this minimum
is attained. Thus we have chosen m—1 cells which form a set, say II'.
It is easy to see that IT+/I' = B is a basis. To show that B is an optimal
bagis form a matrix ¢’ as follows

cij = cij—e; for iel—TI,
Cij = Ci for iel;.

Obviously ¢’ is a zero matrix for B. For C is of property A so C'’ has
exactly m+n—1 elements equal zero. From this we conclude that for
each ieI—1I; there exists exactly one node where min ¢;; is attained.
Now we are justified in writing 1<i<n

m(C) = D m[C(I)].

Inicl
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Applying (19) find N[C(I;)] using the fact that C(I;) is an I X% matrix
with I < min(m,n—1). We thus have

1
NICI)] = D mlC(L)].
k=0

Therefore
-1

m[C(I)] = N[C(I)]— D m[C(I)].

k=0

Let D be a rectangular matrix and DT its transpose. Obviously
N (D) = N(DT). Therefore

min(n,l—1)

NICI)] = N[O = D m[CT(I)].
k=0
Applying this we find that

min(#n,l—1)

-1
mlC(I)] = D mlCT(I)]— D ml0(D)].
k=0

k=0

But Il <n—1 so
-1 -

m[C(I)] = D' m[CT(I)]— D m[C(I)].
k=0 k

=0
From the inductive assumption we have
me[C1 (I)] = mi[C3 (I)]
and
nx[C1(1)] = nx[Co(1h)]
for all ¥k =0,1,...,1—1. Therefore
m[C1(I1)] = m[Cy(L;)].

Theorem 15 and formula (19) imply
COROLLARY 6. N(C,) = N(C,).

10. Number of optimal bases. There is given an m xXn matrix ¢ of
property A. We are to find N (C). Suppose we know the number, say ¢,
of optimal bases of some other m X matrix of property 4. Then applying
corollary 6 we have

N(C) =t.

First introduce the following definition. By a Dantzig basis we mean
a basis B such that the links in G5 form a nonincreasing step line conecting
the nodes (1,1) and (m, n). ‘
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Now consider a matrix D = d;; defined as follows
dij=2k, k=1,2,...,mn

for nodes (7, j) ordered diagonally beginning from the southwest corner.
In the illustration below this convention has been followed for a 4 X6
matrix.

97 911 915 919 922 924
24 28 212 216 220 223
22 25 29 218 21 221
21 23 26 910 914 918

For any such matrix the following theorem holds
THEOREM 16. Matriz D is of property A.

Proof. Consider an arbitrary cycle, say Gr, and divide I" be procedure
1 into I'; and I, assigning to I', the greatest element di; = 2* of I'. Since

k-1
Sasa-rs3rs T
(i,f)epl pP=1 (?:,7')5112

8o

a(I) >0

and due to theorem 1 matrix D is of property A. Next we prove the
following.

THEOREM 17. B is an optimal basis of D if and only if it i8 a Danizig
basts.

Proof. Let B a Dantzig basis. To prove its optimality we will show
that df > 0 for all (i, j)eB. Consider an arbitrary node (p, g)<B. Graph
G5, @4q contains exactly one cycle, say Gr. Divide I" by procedure 1 into
I'; and I'; assigning (p, ¢q) to I';. Then ([4] page 163)

dpg = ) dy— Y dy.
I, Ty

Cycle G, may be of two forms which may be schematically depicted as
follows
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[eg1—
(a) (b)

In either case cell (p, q) and all black cells belong to I",. From the defini-
tion of D it follows that the greatest element d;; in I' belong to I'; (in
case (a) some element in the black cells; in case (b) the element d,,).
Therefore

Y dy> )'d; which implies dp, > 0.
I Ty

Let us suppose now that we could have an optimal basis B which is not
a Dantzig basis. Such a B must then contain three nodes located as follows

(a) or (b)

Consider the node, say (p, ¢), which is on the fourth corner of the “rectan-

T

Obviously (p, g)eB (otherwise Gp contains a cycle) and Gg, (., contains
exactly one cycle G, where I' consists of corners of the “rectangle”.
Divide I'" by procedure 1 into I, and I, assigning (p, q) to I';. From the
definition of D it follows that in either case the greatest element d;; in I’
is on the upper right corner of the rectangle. Therefore

D'dy< Y dy; which implies dpy < 0.
Iy Ty
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This contradicts the assumption that B is an optimal basis. Therefore B
is a Dantzig basis, and the proof of the theorem is complete.

We next also prove the following.

THEOREM 18. The number of Dantzig bases for a m Xn matriz is
mi+n—2

equal to ( 1 )

Proof. Let B be any arbitrary Dantzig basis. Links in Gg form
a step line linking points (1, 1) and (m, n). This can be uniquely described
by an ordered sequence of m+n—2 numbers consisting of » —1 numbers 0
and m —1 numbers 1. Here 0 corresponds to a horizontal and 1 to a vertical
segment of the step line. But the number of different sequences of m +n—2
("

elements with n—1 zeros and m—1 one is 2) Hence the number

of different Dantzig bases as it was to be proved.
Theorems 15, 16, 17 and 18 imply the following.

COROLLARY 7. Let C be an arbitrary m Xn wmatriz of property A.
Then the number of optimal bases of C equals

m+n—2
( m—1
We prove the following.

THEOREM 19. Let N, be the number of optimal bases of an arbitrary
m Xn matrix. Then

(m-{—n——2

o )< -Nopt< m= 1

Proof. The left inequality follows from corollary 7 and theorem 6.
The right inequality follows from the fact that the number of all transporta-
tion bases is equal to m"~'n™"!, (see [3]).

We also insert
REMARK 5. For m > 3, consider a m Xn matrix C defined as follows

¢ij = 0;

¢ 1;+¢j+1  for 3 >3,
Cii =
! Cij1+ci;+1  for 1<,

This matrix does not have the property A. Take, for example, the cycle
Gr where I' = {(1,2), (1, 3), (2,3), (2,1), (3,1), (3,2)}. Divide I' be
procedure 1 into F1 and I,, assigning (1 2) to 1. Then Z ¢ij =1+143

= Z ¢;; = 3+1+41. One can easily show (the proof is qmte similar to the

proof of theorem 17) that each optimal basis of C is a Dantzig basis and
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vice versa. Therefore
m+m—2
o = (" 2707)

m—1

which shows that property 4 is not a necessary condition for a matrix C
to have the minimal number of optimal bases.

On the other hand take a matrix ¢’ = {c;} with ¢;; = u;+v;,+p
where u;, v; and p are arbitrary constants for+ =1,...,m,j=1,...,n.
Then each basis of ¢’ is an optimal basis and therefore

- —-1
Nopy = m" o™ 1,

It is interesting to note that for any transportation problem (C, M)
the number of feasible bases (3), 82y N, satisfies the following relation (*)

: max (m,n)—1
Nfeas>m1n(m’") (rm=1,

11. The primal transportation method and the OBM. There is given
a transportation problem (C, M). By f; denote the set of feasible bases
of (C, M) and by B, the set of optimal bases of C.

The primal method of solving the problem (C, M) consists in finding
a sequence of basic feasible solutions

X (B1), X(By), ..., X (Bx)
where Bj, ..., B;. are elements of g, and only B; belongs also to f8,. Cor-
responding values of the cost function satisfy the following relation
2X(B) Z #X(By Z +++ Z #X(BY-
The OBM consists in constructing a sequence of basic matrices
Y (B,), Y(By), ..., Y(By)
with
Ry@B) S Rypy) S -0 < Rypy)-

Here B,, B,, ..., B; are elements of §, and only Bjef;.
Obviously zym), = 2yp,- So we can state the following theorem:

For each transportation problem (C, M) the following equation holds
min zxp) = Max 2ys)-
Bepy Befy

This theorem is reminiscent of the well known duality theorem in
linear programming. It also implies that both sets g, and g, have at least

(3) B is a feasible basis if all elements yg of ¥ (G) are nonnegative.

(%) F. Nozitka in a private communication to the second author, October 1964,
has indicated that this result was found by M. Fiedler and others.
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one common element, i. e. a basis which is feasible and optimal. So the
primal method enables to choose among elements of a finite set §; an
element which belongs to f,. The OBM consists in choosing from g, an
element belonging to f;.

Of course, we do not, in general, know the number of elements in
B, and f; but only lower bounds for N, and Nye,s. It is easy to show that
the lower bound of N, is considerably smaller than that of N,, for
arbitrary values of m and ». This, however, does not imply that the number
of iterations involved in using OBM is smaller than the number of itera-
tions when solving the (C, M) problem by the primal method. Nevertheless
there exists several cases (see remark 4, section 7) when recourse to OBM
is especially useful.
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OPTYMALNE BAZY TRANSPORTOWE

STRESZCZENIE

Zagadnienie fransportowe da si¢ sformulowaé nastepujaco: Dany jest uklad
(C, M), gdzie C = {ci;} jest prostokatna macierza typu m X n, zwany macierzg kosztow
o elementach rzeczywistych, a M = (a,, ..., am; by, ..., by) jest ukladem m +n liczb
m n .
dodatnich a;, bj, przy czym 3 ai = > bj.
=1

=1 7‘
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Nalezy znalezé macierz X = {wi;} typu m Xn, ktérej elementy spelniaja dla
wszystkich ¢ =1,...,m, j =1, ..., warunki

(1) x> 0,

n
D @i = ai,
=1

(2)

i dla ktérych funkcja
n
(3) 7= DYoywyj =ax

osigga warto$é najmniejszy.

W rozdziale 2 zdefiniowane sa takie pojecia, jak graf, cykl, baza, macierz zerowa
i macierz bazowa. Wiadomo, ze do kazdej bazy B istnieje: ,

a) dokladnie jedna macierz zerowa, tzn. taka macierz ¢’ = {cij}, gdzie ¢ij =
= ¢jj +ui+vj(ui, vj — stale) i spelmiaja warunki czf]. = 0 dla wszystkich (4, j)eB.
Taks macierz bedziemy oznaczaé przez Cp = {cg};

b) dokladnie jedna macierz bazowa, tzn. macierz ¥ = {yij}, ktorej elementy
spelniaja (2) i ponadto yi; = 0 dla wszystkich (¢, j)¢G. Taka macierz oznaczymy
symbolem Y, = {yg}.

Méwimy, ze 0 ma wlasnosé A, jesli do kaidej bazy B

e #0 dla wezystkich (i, ])¢B.

Baza B jest baza optymalna dla O, jesli
cg> 0 dla wszystkich (¢, j)¢B.

W pracy podana jest metoda rozwiyzania zagadnienia transportowego oparta
na bazach optymalnych, zwana dalej metoda baz optymalnych (OBM). Jest ona
adaptacja metody Lemkego [2]. Poczatkowa wersja tej metody zostala opubliko-
wana w [1]. Postugujac sie ta metoda w pracy rozwiazano przyklad liczbowy (roz-
dzial 7). Metoda baz optymalnych polega na wyznaczeniu ciagu macierzy bazowych

(*) Y(B1)!(Y(B2),---’ Y(Bk),

dla ktorych
ST(B) S AT (By < -+ < AX(By

i gdzie B,, B,, ..., Br 8a bazami optymalnymi, a ¥ (Bk) jest optymalnym rozwia-
zaniem zagadnienia transportowego. Kazde dwie kolejne bazy wystepujace w ciaggu (%)
réznia si@ jednym elementem. W rozdziatach 6 i 7 podana jest metoda wyznaczania
B, i Y (B,). Rozdzialy 3, 4, i 5 zawieraja teori¢ pewne]j techniki perturbacyjnej, ktéorej
zastosowanie gwarantuje, ze rozwiazujac OBM-em, uzyskamy rozwiazanie optymalne
zagadnienia transportowego po skonczonej iloci krokéw. Rozwigzujemy ‘zamiast
problemu (C, M) inne zagadnienie transportowe (W, M), gdzie W = O +E, a inacierz
E jest okrelona wzorem (6). Obie macierze E i W maja wlasnoéé A (twierdzenia 2 i 5)
i kazda optymalna baza dla W jest optymalng baza dla O (twierdzenie 6). Twierdzenia
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3,4,7, 8, 9, 101 11 podaja inne wazne wlasnodci macierzy F i W, umozliwiajace
zZnaczne uproszczenia przy rozwigzywaniu zagadnienia (W, M) metoda baz opty-
malnych.

W rozdziatach 8 i 9 podano pewne wlasnodci zbioru baz optymalnych. Do kai-
dych dwéch baz optymalnych B, i B macierzy O, ktéra ma wlasnosé A, istnieje ciag
baz optymalnych

By, B,, B,, ..., B,

gdzie kazde dwie kolejne bazy réinia sie jednym elementem (twierdzenie 14).
Twierdzenia 15, 16, 17 i 18 implikuja nastepujacy wniosek (wniosek 7): Ilodé
baz optymalnych dla macierzy typu m xn o wlasnoéei A jest réwna (m;an-l'z).

7 twierdzen 6 i 18 wynika nastepujace twierdzenie 19: Liczba Npt baz opty-
malnych dla dowolnej macierzy typu m Xn spelnia warunek

m;:a;2)< Nopt< mn_l,nm—I.

W kohcowym, dziesiatym, rozdziale pracy omdéwiono pewne réznice miedzy
klasyczna metoda transportowa a meftoda baz optymalnych.

B. TPABOBCKH (Bapmasa) n B. IIBAPII (Bponnas)

OIITUMAJIBHBIE TPAHCITOPTHBIE BA3UCBHI

PE3IOME

TpancnoprHaa sajava gopMmyaupyercAa ciaepymouum o6pasoM: 3agaHa cucrema

(C, M), rge C = {cij}, maTpuua NMOPAAKA M XN, BIEMEHTH KOTOPON HNeHCTBUTENbHH,

a M-=(ay,...,am;by,...,bn) ecTb cucreMa m-+n NONOMUTEJIHHHX 4YNCEI a;, bj,
m (2

7
npudeM Y a; = Y bj. Cueayer ompemenuts Marpuuy X = {xi;} mopagka m Xn aie-
i=1 i=1

MEHTHl KOTOPOit yHXOBJIETBOPAKWT Aiaa ¢ = 1,...,m;j =1, ..., n ycuosuam
(1) wu) 0,
n
(2) 2, wij = i,
i=1

(2)
m
2 zij = by
i=1

m n

(3) 2= D) cijwiy = 2X.

t=1j=1

¥ MUHUMHUBHDPYOT QYHKIUIO

Bo Bropoii raase BBefeHH TakMe NMOHATUA, KAK rpad, 1uwiI, 6asuc, HyJIeBad
Marpuna, GasucHada Mmarpuuna. WsBecrHo, uto mua BcaAkoro 6asmca B cymecrTByer
a) TOYHO OJHA HYJeBaA MarTpHIa, T.e. Takad Marpuna €’ = {czfj}, rjge clf]. = cij—f-
+“i+”7' (ui,v,. — KOHCTAHTH) M BHIOOJHAKTCA YCJIOBUA czfj = 0 gas Bcex (t,j)eB.
By.
Takyio marpmny o6osuauum depes Cp = {oﬁ},
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6) ToyHo opHa OasucHAA MaTpula, T.e. Takaa marpuna Y = {yij}, saemeHTH
KOTOPO#l BHIOIHAWT (2), a Takme Yy = 0 mas Bcex (4, J)eB. Takyio Marpumy 0603-
Hauum Y 5 = {yg}.

Craem, uro C oOuapaer cBoiicTBoM A, ecaum maA Kampaoro Gasuca B

cg #0 pua Bcex (i,j)eB.
Basuc B ecthb ontumajbHHi 6asuc paa C, ecaun

cg>0 nas Bcex (i, j)eB.

B pafore mpuBefieH MeTO[ pelleHNA TPaHCHOPTHOH 3ajauyM onupalolmMiicA Ha
onTHMaJdbHEeEe Gasmcel. ITOT Merox O6yaeM B HmaJjibHellleM HA3HBATH METOXOM OINTHU-
ManpHHX GasucoB (OBM). HauannHaa BepcMsa 3TOr0 MeTOXA OmyGaukoBana B [1].
B paGote pemeH aTHMM METOOM YMCJIEHHHH npumep (raasa 7). MeTox onmTMMaJbHBIX
G6asncos (saBaaomuiica agantanueit Merona JleMke [2]) cocTouT B onpepedeHuM pARA
6a3uCHEIX MaTpHNI

(%) Y (B,), Y(By), ..., Y(Bk)

BHIIOJHAKIIAX YCJ0BUA
2Y(B) < 2Y(By) < -+ < 2V (By)»

rae B,, B,, ..., Bx cyTs onTuMaabHbie Gasuch, npuiyeM YV (By),t =1,...,k—1 umeer
no KpaliHeit Mepe OAMH oTpUIATEeNbHE ddemeHT, a Y (Bx) — onTMMaabHOE peureHue
TpaHcnopTHolt 3agauu. Hamanie fBa ouepesnble 6a3uCH pAJa (%) OTIMYATCH OIHUM
vJeMeHTOM. B mecroit u cefibMoil riasax mpuseieH MeToJ oupejeineHuda By n Y (B,).
TpeTss, YeTBepTasa U MATAA IIaBH 3aKIN0YAT B cebe TeOpuIo OXHOM nepTypGanuoHHoi!
TeXHUKHU, IPMMeHeHHe KOTOPOit TBapaHTHPYeT MOJy4YeHue MeTO/IoM ONTHUMAJIbHHX 6asu-
COB ONTHUMAaJbHOr0 pelleHNs TPAHCHOPTHOH 3amauy NOCIe KOHEYHOTO 4YMCiAa IIAros.
Bmecro mpoGaemn (C, M) pemaem papyryio npo6aemy (W, M), npuuem W = O+ E,
a F sunonuder (6). Marpuust E n W ob6aanalor csoiictBoM A (TeopeMbl 2 U 5) M KarK AEIik
ONTUMaNBHBI Oasuc maAa W saABiasercA onTUMalbHEIM GasucoM pad C (teopema 6).
Teopemu 3, 4, 7, 8, 9, 10 u 11 copepar gpyrue BaKHEe cBoitctBa Marpun E u W,
NM03BONAIIME 3HAYMTEIBHO YIPOCTUTH pemeHue mpoGaemu (W, M) MmeTomom omnrH-
MaJbHEX (a3ucoB. '

B BoCcbMOif M [eBHTOH rJjaBax lpHUBefcHH HEKOTOpPHE CBONCTBA MHOMeCTBA
ONTUMANBHHX 6asucoB. JJA BCAKUX J[BYX OHNTUMAJIBHHX O0asucoB B, u B wMa-
rpunn C o6mapgaiomeli cBoiicTBOM A CyIecTByeT pAJM OOTHMAIbHHX GasucoB gaa C

B,,B,,B,,..., B,

IpUYeM Kask[hle [Ba ouepeAHHe 6asuChl OTIMYAIOTCA OJHUM 3leMeHTOM (Teopema 14).
N3 reopem 15, 16, 17, u 18 BriTeKaer ciaefcTByue 7: YMCI0 ONTUMAJILHEX GasucoB

RJIA MaTpUMIH HOpAAKa m X7 o6iafgawineil cBoiicTBOM A paBHO ("‘;gf-l-z)

U3 Teopem 6 u 18 caexyer teopema 19. Uncio Nopy OnTHMAILHEIX Ga3UCOB JIA
BCAKON MaTpUIH MOPARKA M X% BHIOJIHAET yCI0BUE

(m';;ﬁ.IZ) < l\ropt < ,’n"lo,—l,n?n_l .

B nocunepHeit, mecATol riase 06CyHKAOTCA HEKOTOPHE PA3INIMA MEMH/Y MPAMBEIM
METOJIOM pelleHMA TPAHCHOPTHOM 3afayM a METOMOM ONTHMAJBLHHX 06asucos.



