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1. Many a problem of graph theory can be formulated and solved
as pseudo-Boolean programs, i.e. as mathematical programs with bivalent
{0, 1) variables.

Procedures were developed for:

1. finding the “globally minimizing points” (or simply “minimizing
points”) of a pseudo-Boolean function (i.e. of a real-valued funection
with 0-1 variables) with or without constraints;

2. determining the “locally minimizing points” of a pseudo-Boolean
function with or without constraints (i.e. those points which fulfil the
constraints and have no neighbours fulfilling the constraints and yielding
a smaller value to the objective function).

These methods were first elaborated by I. Rosenberg and the authors
in [9]; an improved version was given in [10] (see also [11]).

Applications were given to a variety of problems arising in graph
theory, among which we mention: the determination of the numbers
of internal and external stability, the determination of the chromatic
number, the determination of the kernels, of the value of the maximal
flow and of the minimal cuts in a network, the determination of the
minimal decomposition of partially ordered sets into chains. For these
and other applications, see [11].

In the present paper it is shown that several problems concerning
systems of representatives may be solved by pseudo-Boolean programming.

2. Let E = {¢y,..., €y} be a set and & = (8,,...,8,) an ordered
sequence of subsets §; of E. An ordered sequence R = (¢;, ..., ;) of
elements of E is called a system of representatives for if a; ¢ 8;(j = 1, ..., n).
Then é; is said to represent 8;.

A system of representatives for % is called a system of distinct repre-
sentatives if the elements e; R are distinct.

Of course, a necessary condition for the existence of systems of
distinet representatives is that m > w.

We recall that a bipartite graph is an undirected graph G = (N, o)
= (N', N""; p) for which the set N of the nodes is decomposed into two



disjoint sets &', N’ such that (N', o) and (N, o) are totally disconnected
subgraphs of G.

A one-to-one correspondence between two subsets A" and A’ of N’
and N'/, respectively, is called a maiching if every two corresponding
vertices are linked by an edge. The matching is thus characterized by
the set of edges involved in it.

A matching M will be called maximal if there is no other matching
M’ properly including all the edges in M; the matching will be called
absolutely maximal if no other matching involves a greater number of

edges.
In [12] we have shown that the maximal matchings of a bipartite

graph can be determined by pseudo-Boolean methods. Hence, considering
the bipartite graph G = (F, &; ¢) we see that the following theorem holds:
THEOREM 1. An ordered sequence R = (€, ...,€; ) 18 a system of
distinct representatives for & if and only if the set {(e, 8), ..., (€, Su)}
is an absolutely maximal matching of the bipartite graph G = (E, ¥; e).
CorOLLARY 1. A system of distinet representatives exists if and
only if the absolutely maximal matchings of G involve » edges each.
COROLLARY 2. Pseudo-Boolean procedures may be applied for es-
tablishing the existence of the systems of distinet representatives, as
well as for their effective detection.
To do this, we associate to each system R of representatives for &
a characteristic vector (x;;), defined as follows:

g — 1, if the element ¢; is taken as a representative of S;,
97710, if e;¢S; or if e;e8; but ¢; is not taken as a representative of S;.

We see that z; must satisfy

(1) Yaz=1 (G=1,...,7).
i=1

Moreover, B is a system of distinct representatives if and only if its
characteristic vector satisfies (1) and

n
-
X5
j=1

However, we prefer to determine the z;;’s using the method given
in [12] for the determination of the absolutely maximal matchings. We

obtain thus
THEOREM 2. The family & has a system of distinct representatives
if and only if the maximum of the pseudo-Boolean function

m n
2, 2w

i=17=1

1 (¢e=1,...,m).

N
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under the constraini
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is equal to n (or, equivalently, if and only if the maximum of the unrestricted
pseudo-Boolean function

n m m n n
1 Al Bl )/ k
(2) E V' /; M (oF+ 05 ) %i; T
i=1 j=1 i=1 h=1j=1 k=1

is equal to n), where 6 is the Kronecker symbol and p is the number of edges

Example 1. Let ¥ = {1, 2,3,4,5,6,7, 8} and suppose & is com-
posed of S, ={1,2,4},8, = {4} S3 {1 2,5,84,8, ={1},8;, = {1, 3,
4, 7,8}, 8 = {4, 6, 7}°

The associated graph G = (F, &;¢) is that on Fig. 1.

7 3 3 A 5 6
1" 2" 3" 4" 5" 6" 7" 8"

Fig. 1

For the sake of simplicity, let us denote

P11 = Y1y T2 = Yo, Ty = Ya, Tog = Yay Xa1 = Ys
P32 = Ye, T35 = Y1, T3g = Ysg, Ta1 = Yo, Zs1 = Y109
Tsz = Y119  Tsa = Y129 P51 = Y13y  Tsg = Y1a,

Tes = Y15, Tes = Y169 Te7 = Y11y

(3)

the function (2) becomes

17

N i+ 18 (Y19 + Y193+ Y2Ys+ YsYs+ YsYr+ YsYs - Yelr+ YsYs +
i=1

+Y1Ys+ YoY11+ YoY12 T Yo¥1a T Yo¥Y1a T YuYie + YuYis+
+YuYrat¥12Y13 T Y12Y1at YY1+ Y1sY16 + Y1sY17 + Y1617+
+ 9195+ 1Yo +Y1Y 10+ Ys Yo+ YsYrot+ Yo Y10+ Y2Ys + Ys¥Ys+
+Y3Y12t+ YsYis+ YaY12 T YaY1s + Y12%1s) -



The globally maximizing points of (4) can be determined as in [10];
they are given in Table 1.

TABLE 1
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From theorem 2, (3), and Table 1 we see that ¥ has eight systems
of distinet representatives; they are given in Table 2.
The number of systems of distinet representatives is here incidentally
equal t6 the number of elements in Z.

TABLE 2 Various problems concerning systems of dist-

S, 8, 8; 8, 85 84 inct representatives may be translated into the
~ pseudo-Boolean language. For instance, a theorem

Bt Y 1 TS of Hal [5] states that & = (Sy,...,8,) has
R: 2 4 5 1 8 6 a system of distinet representatives if and only
Rl 2 4 51 87 if forall k. =1,2,...,n every union of k sets of
By 2 4 51 3 6 & contains at least k distinct elements.
Bg) 2 4 5 1 37 This result yields the following
R, 2 4 81 3 6 i
Ry| 2 4 81 3 7 THEOREM 3. Let A = (a;) be the adjacency

matriz of the graph G = (E,¥;¢). Then & has
a system of distinct representatives if and only if the minimum of the
pseudo-Boolean function

n m n
n= Y= 5[] 1)
i=1

=1 j=l
18 non-negative.
Proof. Let &’ be a subsystem of .¥ and (z,, ..., x,) its characteristic

vector, i.e.
1, if §;e7,

v =
"o, it 847

The element e; ¢ E belongs to the union (J S; if and only if
Sje.f"
(1—0;@'1%,') =0.
j=1
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Hence, the number of elements not in (J 8; is equal to
S

m n
2 []o—aym).
i=1 j=1

On the other hand, the humber of sets in &' is > ;.
j=1

The condition given in Hall’s theorem is that the number of elements

in (J 8; is not less than the number of sets in &’. In other words, this
S:e%’
coniiition requires that the relation

,»
,..
\w
-,
I

-

holds for all (,, ...,a;n)eB’;.
This completes the proof.

3. A system R of representatives for & will be called a system of
restricted representatives with respect to the couples of integers d;, d;,
where 0 < d; <d; (i =1,2,...,m), if every element e;eE occurs in
the system of representatives RE at least d; times and at most d; times.

The following theorem is obvious:

THEOREM 4. R is a system of restricted representatives for & with
respect to d;, d;, if and only if ils characteristic vector satisfies

(5) Zmﬁzl (j=1,2,...,n) TABLE 3

|12345678
and

n & |2 0020011
d@<2xﬁ<d,’; (i=1,2,...,m). 1411311
7=1

LR

Example 2. Let E and & be defined as in Example 1, and let us
seek the systems of restricted representatives for & Wlth respect to the
numbers d;, d; given in Table 3.

The system (5) becomes

1) Yit¥et¥s=1, Ys=1, Ystyst+¥+ys=1,
Yo =1, Yp+¥Yn+¥Yet¥ustyu=1, Ys+¥hetyn=1,
while the system (6) becomes
2 <y +Ys+Ytyvo<4, 0<y,+tys<1l, 0<y,; <1,
B 2 <yt yt Yt <3, 0<y <1, 0<y,<l,
1<

Yistyn <1, 1 <Ygt+ ¥ <2



' Using the methods given in [10], we find that the system (7), (8)
has the solutions which are given in Table 4.

TABLE 4

Y Y2 Ys Y+ Ys Yo Y71 Ys Yo Yr0 Y Yiz Y13 Y4 Yis Yie Y1z

0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0
0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1

Hence we have found the following systems of restricted representa
tives with respect to the numbers in Table 3:

Rl = (4, 4; 87 1, 1’ 7)7 Rz = (17 47 87 1’ 47 7)7
Rs = (17 47 87 17 77 4), R4 = (47 47 17 1’ 87 7)-

4. Ford and Fulkerson [1] have shown that the following condition
is necessary and sufficient for the existence of a system of distinet repre-
sentatives: Every subset X of the set of indices {1,2,...,#n} has no
more than

(9) mjn(n—in'dmL 2 d; 2 dé)

iel(X) el (X)

elements, where I(X) < {1,2,...,m} is the index set of | §;.
jeX
This theorem may be translated into the pseudo-Boolean language
as follows:

THEOREM 5. A system of restricted representatives for & with respect
to d;, d; exists if and only if the minimum of the pseudo-Boolean function

(10) f(®oy @1y Tay vy @)

= @, [%+ Zdi” (1—%'50;')] +502d§ [1— n (1—-%';'%')] — Z%‘
iZ1 7=1 i=1 j=1 izl

18 mon-negative, where a; = 1 if e;€8;, and a; = 0 if €;¢8;.

Proof. Let (2, «,, ..., x,) be the characteristic vector of the set X.
Then, obviously, the following relations hold:

(11) n— Zdﬂr 2 d; = n+ Z di = n+ fdiﬁ(l_aiimf)7
i=1 1eI(X) HWI(X) i=1  j=1

n

(12) D i =3 di[1— []a—aya)].

el (X) i=1 7=1



Pseudo-Boolean viewpoint on systems of represenlatives 141

Denoting the right-hand sides of.(11) and (12) by g(xy, Tay ..., %)
and h(zy, @, ..., ¥,), respectively, the condition given by Ford and
Fulkerson becomes

n
N | .
T < IIN[G(Xy, Bay ovey Tn)y B(Xyy Bay ooy Tp)]

1
-

7
for all (2, @5, ..., #,)eBy. In other terms,

n

B —
Z X < To (X1y Bay - o vy xn)‘{‘xoh(mla Toy ooy x’n)
io

n+1
for all (%, @y, ©a, ..., X,) e B3 7", ie.

NE

min [xog(ml, Loy evey Tn)+ Zoh(Xyy Toy ooy Tp)— w,-] =0,

I
—

7
which coincides with (10).

REMARK. Takingd; = 0,d; =1 (i = 1,2, ..., m), Theorem 5 reduces
to Theorem 3. '

Several other problems concerning systems of representatives (as
those on systems of common representatives, marginal elements, matrices
of zeros and ones, etc.) may also be handled by means of pseudo-Boolean
techniques. As a matter of fact, several proposals were made for using
integer linear programming procedures (especially the Gomory algorithm)
in order to solve combinatorial problems belonging to the above discussed
class. The bibliography concerning systems of representatives is rich
enough. For instance, the reader is referred to Ford and Fulkerson [1],
[2], Fulkerson and Ryser [3], Hall Jr. [4], Hall [5], Halmos and Vaughan
[6], Hoffman and Kuhn [7], [8], Mann and Ryser [13], Mendelsohn and
Dulmage [14], Ore [15], and Ryser [16].
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