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CYCLIC RANDOM INEQUALITIES

Let X,, X,,..., X, be a sequence of independent random variables
and let

(1) EE=PX;< Xip1 < Xiyg) (6=1,2,...,n)

where indices in (1) are considered modulo n. Denote
(2) %p, = supmin(&,, &y ..., &),

The supremum in (2) is taken over the set of all random variables
X = (X,,..., X,) with independent components satisfying (1). The main
aim of the paper is to prove the following

THEOREM. For n = 1,2, ...

1 6 1

(3) E—m<m<§.

The investigation concerning random inequalities was initiated by
Hugo Steinhaus in [2]. About other results of this kind see also [1], [3], [4].

To prove the theorem we need some lemmas that may be of some
independent interest. To state the first one the definition of p-quantile
will be necessary. The number #® will be called a p-quantile of the ran-
dom variable X if

PX<a®)>p and P(X>a¥)>1—p.

LeMMA 1. Let X, Y, Z be independent random variables. If P(X < Y
<Z)>a and pP(Y < z<“>)+(1 Q)P(Y = 29) < a then o < 29,

Proof. Let pP(Y < 29)4-(1—¢q)P(Y > 29) < a and suppose that
#® >29, Then PX <Y <Z,X>a2",Z <29 =0 and

PX<Y<Z)=PX<Y<Z,X<a®,Z<0+
+PX<Y<Z,X<a® Z>29+
+PX<Y<Z,X>a®,Z>z29)

< P(X <a®)P(Y <2)P(Z<2)+
+P(X < 2®)P(Z > 29)4-P(X = 2P)P(Y > a®)P(Z > 29)
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=P(X < 2PP(Y < 2)P(Z <)+
+P(X < 2P)P(Y < 2P)P(Z > 29)+
+P(X < aP)P(Y > 9P(Z > M)+
+P(X = 2P)P(Y > 2P)P(Z > 29)
< P(X <a®)P(Y < 2D+P(Y > 29P(Z > 29)
<pP(Y <2+ (1—g)P(Y >29) <a
against the supposition that P(X < ¥ < Z) > a.
COROLLARY 1. Let X, Y,Z be independent random variables. If
P(X<Y<Z)>13 then a® < 2O,
Proof. It is sufficient to put p = ¢ =% in lemma 1.
LEMMA 2. For each m > 3 there exist independent random wvariables

X, Xy .oy Xn such that
1 6
7,>'__—' =1 2 cee
£ 5 n(n+4) (2 y 4y y 1)

where &; are defined by (1).
Proof. Suppose that » > 3. Define the independent random variables
X, X;,..., Xn as follows

PX;=14)=p;, PXi=n+i)=1—p; (¢=1,2,...,2-1),

P(X,=n)=1,
where
_ ) 4(1+2) ‘ . _n
A YENET) (1+ n(n+4)) for 1<
. n .
Pt =1—p,_, for z>§ (r=1,2,...,,n—1).
4 +2) . .n
Put k; = a(ntd) and suppose that ¢ <§—1. We have
i+1 1+ k)
) 1_ i) = 1 T Tass o a4
Pip1(1—pi) 2(12) A+k +1)(1 2(%+1))
— 143 LI
- 4 4( t4+17 ’l/—|—2 t+1)
s T\ ) T T ey

Moreover, for n/2 <1 < n—1

1 3
i1 (L1—2:) = Pn_i(l—Pu_i_ —_t .
Pisal Di) = Pnil P l)<4+'n('n+4)
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n n
The case 3 —-1<i< 2 requires special consideration. It can occur

only when » is an odd number. Taking into account that p,_; = 1—p;
we obtain

(1—pua) = (1 )2—(3+ ot )2<i+ °
P e ) = T e =y T et )+ 4)) T4 nint4)
for n = 3. 1

We have proved that p; ,(1—2p:) <Z + for 1 =1, 2,

3
n(n-+4)
«..yn—1. Then for ¢+ =1,2,...,n—3

& =PiPipr+(1—0i 1)) (1—Diy2) = 1—0i 1 (1= D) —Di o (1—Piy1)
1 6

=3 n(nt+4)
Moreover

bn2 = P(Xp_2s < Xp_1 < Xy) = Pn_aPn1 = (1—p,)(1—1p,)
1 6 L 16 }_ _ 6
T2 ant+4) | ni(n+4) Z 2 nn+a)’
b1 =PXp 1 < Xu < X)) =Pua(1—p) = (1—p,)? > (1—p,)1—p,)
1 6

-3 n(in+4)’

1 6
b =P(Xn < X, < Xp) = (A=p)(A—po) > 5 — nntd)’

1 6
Then inequality &; > o m holds for ¢ =1,2,...,n what com-

pletes the proof.

Proof of the theorem. Since for n = 1,2 the theorem is obvious
we prove it for n > 3.

The left hand inequality in (3) follows immediately from lemma 2.
To prove the right side of (3) it is sufficient to notice that inequality
%y, > % implies, by corollary 1, the condition

(4) <, (=1,2,...,9),

where indices in (4) are taken modulo n.
For n = 2k this gives

o < o) < ... <2l | <P



For n = 2k+1 this gives
o <o <. <o, <P <o) <... <o) <2

Then in both cases the supposition x», > % leads to contradiction what
ends the proof of the theorem.

From the theorem immediately follows
COROLLARY 2.
(5) Hm %, = }.

N—00

At the end, let us notice that sup min (&, &5,..., &) will
change its value if we remove the supposition of independence of
X,,X,,...,X,. To prove that define the function o(x,,®s,..., ¥n)
as follows: ¢ = k if exactly k¥ among the following n double inequa-
lities are satisfied

By < By < Dgy Py < Lg << LgyeveyPp_o<Tp_1 << Tpy Tp_1 < Tn

<$1,£L'n<a/‘1<w2.

It is obvious that o(wy, 2.y ..., 2,) <n—2. Furthermore, if x4 is the
distribution of a random variable X = (X,,..., X,) which takes its
values in an n-dimensional Euclidean space E, then

n—2> [odp > bt bato.t b > nmin(fy, &, ..y £n)
En

and
n—2

(6) min(&;, &z, ...y &n) < "

From the other side, if X is uniformly distributed on the set of n points
with coordinates 1,2,...,7;2,3,...,n,1;...;2,1,...,n—1 then P(X;
< X1 < Xi ) = (n—2)[n and there exists the random variable X for
which

. n—2
(7) min(&;, a2y .e0y &n) =
Formulas (6) and (7) give
. n—2
supmm(é‘l, 52’ °",‘§n) = "

where the supremum is taken now over the set of all random variables
X =(X,, X,y ..., Xp).



Oyclic random inequalities 127

References

[1] Chang Li-chien, On the mawimin probability of cyclic random inequalities,
Scientia Sinica 10 (1961), pp. 499-504.

{2] H. Steinhaus and S. Trybula, On a paradox in applied probabilities,
Bull. Acad. Polon. Sci. 7 (1959), pp. 67-69.

[3] S. Trybutla, On the paradox of n random varitables, Zastosow. Matem. 8
(1965), pp. 143-154.

[4] Z. Usiskin, Max-min probabilities in the voting paradox, Ann. Math. Statist.
35 (1964), pp. 857-864.

WROCLAW TECHNICAL UNIVERSITY
DEPARTMENT OF MATHEMATICS

Received on 10. 10, 1967



