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INFINITE G;-GAMES WITH IMPERFECT INFORMATION (V)

1. Introduction. Games with an infinite number of moves and perfect
information have been studied by several writers [1], [2], [3], [4], [6], but
just which games of this type have a value remains open. Indeed My-
cielski and Steinhaus [3] have proposed the axiom that every such game
has a value. In this paper we study games with an infinite number of
moves and imperfect information of a simple kind. Our result, analogous
to that of Wolfe [6] for perfect information, is that a win-lose game has
a value if one player’s winning set is a G5.

2. Statement of the Theorem. Let I, J be two nonempty finite sets,
let Z = IxJ, let 2 be the space Z" of all infinite sequences w = (z,,
23y ...); 2n€Z, and let ¢ be a bounded Baire function on 2. The function ¢
defines a zero-sum two person game, denoted by G(¢), played as follows:
Initially, player A chooses ¢, eI and, simultaneously, player B chooses
ji€J. Then the result 2z, = (¢,, j,) is announced to both players. Then,
simultaneously, 4 chooses i,el and B chooses j,eJ. Then z, = (%,, j,)
is announced to both players, etc. The result of the infinite sequence of
simultaneous choices i3 a point w = (24, 2;,...)ef2, and B pays A the
amount ¢(w).
Denote by S the set of all positions, i.e. finite sequences s = (2,
%), n=0,1,2,... A strategy a(f) for A(B) associates with each
position s a corresponding probability distribution on I(J): when the
current position is s, A (B) will make his next choice according to a(s)
(B(s)). A pair (a, 8) defines a probability distribution P, on £, and an
expected income

v(ay B,¢) = [ p(w)dPep(w)

for A in G(p) when he uses a and B uses p.
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The lower and upper values of G(p) are
L(p) = supir;f'v(a, B9,
Ulp) = il;fsupv(a, By9).

Always L(p) < U(g); if they are equal, their common value is called the
value of G(p). We shall prove the

THEOREM. Let T be any subset of S, and define ¢ on Q2 by ¢(24, 2., ...)
=1 of (21y...y2) €L for infinitely many n, ¢(2,,2;,...) = 0 otherwise.
Then G(p) has a value, i.e. L(p) = Ulyp).

As noted by Wolfe [6], the w-set {p = 1} is a Gy, and every G, in 2
is the set {¢p = 1} for some 7', so that our result may be stated as: if ¢
is the indicator of a G,, then G(¢) has a value.

3. Proof. For any position s, denote by wu(s) the upper value of
the game G(p) starting from position s:

u(8) = Ulgs),

where ¢, is defined by ¢,(») = ¢(sw). Associate with each s the game G;
which starts at s and which continues until a later position ¢e7 is reached.
If this happens, play stops and A receives u(?). If it never happens, play
continues indefinitely and A receives 0. Formally, G; is G(y), with
Y(21y gy o) = U(8,27,...,2) i 8,20,...,2¢T for 1 <iv <k and s, 2,
vy 2;€ly, V(21,25 ...) =01if 8,2,,...,2,¢T for any k > 1. It is easily
checked that y is lower semi-continuous, so that, from a general minimax
theorem of Sion [5], G has a value and B has an optimal strategy. Denote
the value of G5 by w(s). We shall show that

w(s) = u(s),

i.e. for any ¢ > 0, we shall describe a strategy g for B, starting from s,
such that, for every a, the probability that 7T is hit infinitely often does
not exceed w(s)+ e. Let B, starting from s, play optimally in G5, until T
is hit after s, say at . Then B plays to keep the probability that T is hit
infinitely often to %(t)4 ¢. Thus he restricts the probability that T is
hit infinitely often to w(s)4 &. Actually w = u, but we shall not need this.

We now, for any ¢ > 0, describe a strategy a for A which hits 7
infinitely often with probability u(e)—e¢, where ¢ denotes the empty
sequence, i.e. the starting position. Since u(e) = U(p), this will complete
the proof. Put &, = ¢/2". Let A start by playing an ¢, optimal strategy
in G;. If T is hit after e, say at ¢,, 4 then plays an ¢,-optimal strategy in
G;,. If T is hit after ¢,, say at t,, 4 then plays an ¢, optimal strategy in
G;‘z, etc. Let B use any strategy f, and denote the resulting play by

zl, 22, see
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Define x, = w(e) and, for k > 1, ax = u(tx) if 2,2, ... hits T for
the kth time at #;, @, = 0 if 2, 2,, ... hits T less than % times. Then

(1) E(xg|@gy oooy Tr_1) = Tr_1— &

This is clear if «;_; = 0. If x,_; > 0, T was hit for the k—1st time, say
at t, and A then played in G to get at least w(t)— e > @;_,— k. Sinee
his payoff in G; is then m;, (1) follows. From (1) we conclude B (x) >
= E(xr_,)— e, so that

(2) E(xr) = 2g— (e1+...+ &) > w(e)—e.
Since 0 < 4 <1 and a; = 0 unless T is hit k times, (2) implies
P{T is hit k times} > w(e)—e.
Letting &k — oo yields
P{Tis hit infinitely often} > w(e)—e,

completing the proof.

We conjecture that every G (¢) (with ¢ a Baire function) has a value,
but even the general case of ¢ for which, for every constant ¢, {p > ¢}
is a @5, remains unsolved.
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