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ON THE MEASUREMENT OF STOCHASTICAL DEPENDENCE

1. Introductory remarks. In 1956, at the request of the clothing
industry, an anthropometric survey was carried out in Poland. The main
goal of that survey was the determination of a set of statistical indi-
viduals, called “phantoms”, which could serve as good patterns for fitting
ready-made clothes. '

The survey was carried out under Professor Hugo Steinhaus who
acted as a general consultant and scientific supervisor of the whole ope-
ration.

During one of the seminars devoted to the optimal choice of sta-
tistical variates Professor Steinhaus pointed out some disadvantages of
the correlation coefficient and expressed the opinion that any properly
defined measure of stochastical dependence should meet the following
requirements.

1. The measure of dependence, which will be called a coefficient.
of dependence, should be equal 0 when there is no stochastical dependence
between the variables involved, and equal 1 when the dependence is.
perfect.

2. The coefficient should not lose its applicability in the non-linear
case of dependence.

3. The knowledge of the distribution (or at least of the limit distri-
bution) of the sample coefficient of dependence would have been extre-
mely desirable.

4. The coefficient ought to preserve its validity in the case of dis-
crete as well as continuous variables. In other words the coefficient should
possess its applicability in the case of twofold classification (when the
coefficient of association is usually applied), in the case of manifold
classification, and in the case when the bivariate population is conti-
nuous.

5. The functional relationship between the proposed coefficient and.
the classical product correlation coefficient has to be examined, given
the distribution of the universe is normal.



6. The proposed measure of dependence should possess two addi-
tional very important properties:

6a) the concept of this measure must be theoretically simple, liable
to easy explanation, popularization and wide application;

6b) the numerical and computational aspects connected with the cal-
culation of the coefficient of dependence should also be relatively simple.

Since 1955 the author has undertaken many attempts to find
:a measure of dependence possessing at least some of the properties listed
above. The first result of this effort was presented in [1], the second,
more developed, has taken the form of an unpublished paper “Coefficient
of Dependence”. (1)

2. Measures of dependence and their properties. Let us divide all
measures of stochastical dependence into two groups: parametrical and
non-parametrical ones, the first being related to the random variables
themselves and the latter to the distributions of the random variables.
To the first group belongs the correlation coefficient g, the correlation
ratio », the “generalized correlation coefficient” R [1], Spearman’s rank
correlation coefficient R, Kendall’s rank correlation coefficient z; to the
second group may be included Yule’s coefficient of association ¢, Pearson’s
coefficient of association 7, Yule’s “coefficient of colligation” Y, Pearson’s
contingency yx2, Pearson’s coefficient of mean square contingency C, and
Tschuprow’s coefficient T.(2)

The most important measure of dependence from the first group
is beyond doubt Pearson’s coefficient of correlation . This measure
however has three important disadvantages:

1. The lack of correlation is not equivalent to the lack of stochastical
dependence. (%)

2. It can be applied only when the regression function is linear.

3. The exact distribution of the sample correlation coefficient #
is known only if the joint distribution of the random vector (X, Y) is
normal.

(1) Prepared especially for the members of a seminar-led by the author during
his stay as a visiting senior lecturer at the University of Ibadan (Nigeria). By now
the author has collected a large scope of empirical examples and practical experience
providing him with a reason to believe that some of this results are worth publishing.
The author’s conviction is primarely due to the fact that the coefficient of dependence
possesses at least one significant feature: it is easy to calculate and to apply.

(3) A detailed discussion of measures of stochastical relationship between ran-
dom variables may be found in [2], where also numerous bibliographical references
are included (worth readers’ attention not only from a professional but also from
a historical point of view).

(®) In other words, from the fact ¢(X,¥) = 0 does not follow necessarily that

J@,y) = f, (@) f,(y) (see p. 235).
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The most important measure of stochastical dependence in the second
group is Pearson’s square contingency yx2. This measure has the two
following disadvantages:

1. It cannot be applied to measure the dependence between the
two random. variables X and Y if at least one of the wvariables is con-
tinuous.

2. It does confine within the limits 0 and 1.

It is worth mentioning that in exact sciences like physics, astronomy
or chemistry only one measure of dependence is sufficient e.g. the coeffi-
cient of correlation because when proving the existence of dependence
a large scale experiment can be applied. The situation is not so comfor-
table in biological and yet more in social sciences where artificial expe-
rimentation is very inconvenient, dangerous, costly, or sometimes impos-
sible at all. In such a situation a statistical approach is of great impor-
tance, especially if there exist many competitive methods and if the
indication of one method could be controlled by the other.

The measure of dependence we would like to present in this paper
belongs to the second group. It is free of the disadvantages mentioned
above. As will be shown by means of numerical examples, it is easy to
compute and to apply.

3a. Coefficient of stochastical dependence (continuous case). Let (X, Y)
be a random vector and F(x, y) its distribution function. If there exists
a density function f(x,y) which is continuous almost everywhere then
(X, Y) is said to be continuous. In this case the sufficient and necessary
condition for X and Y being stochastically independent can be expressed
in the form

(1) f(@y) = fu(@) fa(y)
where
fi@) = [f@,ydy and fi(y) = [ fle,y)ds.

Starting from (1) we define the coefficient of stochastical dependence
beetwen X and Y, called shortly the coefficient of dependence and deno-
ted by d:

() d=]/ 1— [ [ min[f(z, 9), fi(2)-Fa(y)]) dedy

—00 —

It is easy to see that 0 <d < 1.

3b. Coefficient of dependence (discrete case). In the previous section

a two-dimensional random variable has been considered, assumed to be
Q
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a continuous one. Now we are going to pay our attention to the case
of a discrete random variable (X, Y) with a finite set of possible values.
If X is stochastically independent of Y or, what is tantamount, Y is
independent of X then

PX=0,Y=y) =P(X =a)P(Y=y); aeX; ye)

where X = (2, 3, ..., %) aDd 9 = (¥4, Y2, ..., ¥s) are the sets of possible
values of X and Y respectively.

For the sake of simplicity of notation we will apply the symbol p;;
instead of P(X = w;, Y = y;) and the symbols p; and ¢; instead of
P(X = ;) and P(Y = y;). Let

P - - - Pis
(3). P, =

Prn - - - DPrs
and

Py - - - D1
(4) P, =

Prqy - - - Prgs

Suppose for a while that the coefficient of dependence has been
defined by equation

(5) D? = 1— ) min(py, pigy).
t,7

This definition is an analogue of (2) from the previous section. We will
now slightly change the external shape of (5) to make this formula more
convenient for the purpose of numerical computation.

Let us denote by M the set of pairs (¢,j) for which p; > p:g;,
and by K the set of pairs (¢,j) for which p;; < p;¢;. Note that

1-— ZZ’L‘% = 2 Dig;-
&, 5)eM (%,7)eK

Hence

D* = 1— Y min(py, pig) =1— D pigi— D py

1, (L.7)eM (4.7)eK
(6) = 21’1‘%* Zpi:i

(i,]’)cK (i,y’)EK
(7) = 2 Pij— Z Pig;-
(’i,y’)sM (’i,j)e]‘l

Without any loss of generality we may assume that s > r and that
every row and every column of the matrix P, contains at least one posi-
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tive element (otherwise the matrix could have been reduced to a smaller
size, but again with no zero rows and columns).

Let us denote by k¥ the number of pairs (¢,j) in K and by m the
number of pairs in M. Hence

kt+m=rs; 0<bk<rs; 0<<m<rs.
If &k = rs then
Py = pig; for all  4,j.
In such a case

D* = Z Pii— Z Pig; = 0.

(%, 9)eM (t,7)eM

It is slightly more difficult to show that D? < 1. Let us examine
the difference (7). We shall prove the following

THEOREM 1.

mx( Y p— Y pa) =12,

(1,7)eM (i,7)eM

The proof of the theorem is based on
LEMMA 1. If every column of P, contains only one element, then

() D pig >
(1,9)eM
The equality in (8) holds if and only if p, = p, = ... = p, = 1/r.

To prove the lemma let us notice first that in this case M consists
of exactly s pairs [i(j),j],j=1,2,...,8 where ¢(j) is the number of
the row having a positive element p;;, ; in the j-th column of P,.
Hence ¢; = pij,; and

Z piq; = Zpi(i)% sz(y)lh(;),a = 2 ZP@PW ZP’ZP'j

(i) M 7 T jedg T e

where J; = {j:i(j) = ¢}. There is also J; = {j: p;; > 0} and
pr —ZPU = Ps-
jeJ;

So we have

D i =Zp%.

(t,7)eM
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Since Y'p} is a convex symmetric function of the arguments p,, p,, ..., pr
then for }'p; = 1 and Pp; > 0 the minimal value is obtained for p, = p,
' 7

= ... = p, = 1/r. This ends the proof of the lemma.

Let us now go back to arbitrary matrices P, and P,. By comparing
appropriate elements of both matrices we can determine the set M.
Let A be an rXs matrix, the non-zero elements of which are such p;;
which meet the requirement (7, j)eM. Suppose

D py=a; 0<a<l.
(4,7)eM

We find now in every column of 4 a maximum element and set up from
these elements an rxs matrix A4,, all other elements being zeros. In
exactly the same way we determine matrix 4, composed of maximum
‘elements taken out of the columns of A after having erased these ele-
ments which had been exploited to set up A,. Repeating this procedure
as long as possible we obtain a sequence of matrices 4;,7 =1,2,...,n,
where 1 <n <7r. }

It follows from the definition of M that

=2Pi;‘ = Zpﬁ =pi
| j (i)edt
and
=2Pw = ZP@' =g;.
' (iyedt
Let us denote by p{" the sum of the i-th row of matrix 4;(I1 =1,2,...,n)

and by g‘,) the sum of the j-th column of that matrix. The followmg
frelatlons hold

Z p; Zq”’ Py = pigf = Z P gy

for all i,j. Let Zq”) — o;. Then

k
2 n=
‘3

and, in accordance with lemma 1, the following inequality holds

2

Y pPgh =
(@ 5jem® r

where M® < M, UMY = M, MY ~M® =@ for any I,t=1,2,...,n.
l
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Hence
n 1 n
Al P 3 Bl 0 (1 s 2
Spgz Yotz Y o= d
A @gyeM (Eg)eM i=1 (i)em® =1
If so, then
1 n
; 2
Zpif_ y]h%\a ——Zaz-
(t,5)eM (%, 9)cM r 1=1
But

a—— E af < a———

and the function f(a) = a— a2/nr, 0 < a < 1, reaches its maximal value
for @ = 1. Hence " '

D py— D) pigy<1—1/ur.
()M (i,7)eM
Since

therefore p;; > pi;q; = 1/rs for every (¢,j)eM. On the other hand the:
smallest number of elements in the matrix 4, which, when cancelled

out, turn A into A1 with all elements zero, is equal s. Hence 2 p;q; > 1/r.
(¢,7)eM

This means that in the case when X' p;¢; takes its minimal value,
(¢,9)eM

the number 7 in the inequality
D pi— D pigi<1—1nr
’ (i’j)qﬂl (i,j)c]‘l
must be equal 1. Hence we obtain finally
o 1
m&X( 2 Pij— 2 Pi%’) =1—-—
(2,5)eM (%,7)eM r

which ends the proof of the theorem 1.
Making use of the result of theorem 1 we introduce the following
definition of the coefficient of dependence for the discrete case

D 1— 2 min(py;, pig;)
(9) d = = Y -
]/ 1 X 1
1—— - ——
min(r, s) min (r, s)

It follows from theorem 1 that
0<daz<1.



4. Basic properties of the coefficient of dependence. Two cases deserve
a special attention: d2 = 0 and d? = 1. We are going to examine both
cases a bit closer.

THEOREM 2. A necessary and sufficient condition for X and Y being
stochastically independent is the equality d® = 0.

The elementary proof will be carried out only for the case when the
random variables are continuous. The discrete case is analogous.

1° Let us assume that X and Y are stochastically independent.
Then

f(zyy) = fil@)f(y)

and
f f min[f(z, ¥), fi(®)-f(y)]dz dy = f f f(x,y)drdy = 1.
Hence
az = 0.
2° Let d2 = 0. Then
[ [ min(f(@, ), fi(@fa@)]dwdy =1,
but T

[ [ f@,paedy = [ [ fi(@)f(y)dedy =1

—00 —00 -0 — 00
and therefore

f(@,y) = fi(2)f(y)
almost everywhere.

THEOREM 3. If X and Y are continuous random variables then d* = 1
if and only if the whole mass of probability is spread out over an area with
a plane measure equal to zero.

Proof. Let us define the following sets
H = {(z,9): fi(®)f:(y) > 0},
Th G = {(z,9): 0 < fi(z)fs(y) < f(x, Y)}-
en
@#@=1— [ [ min[f(z,y),f(2)fa(y)]dedy

[ | [[ @) dsty+ [[flo, v)aoiy).
H

Since both integrals in the. last expression are nonnegative then
for equality d2 = 1 it is necessary and sufficient that

Jc;ffl(a’)fz(y)dwdy =0
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and

[[f(@,y)dzdy = 0.

H-G

Hence f(z,y) = 0 almost everywhere, what ends the proof.

We know that if (X, Y) is a discrete random variable then d2 = 1

if sums of all rows of the matrix P, are equal and if D p; =1. We
1,7)eM

suspect that these requirements are also necessary éoilditions for d2
being equal 1.

Let us examine the case of special importance, when r = s = 2.
It is easy to prove the following theorems:

1° @2 = 0 if and only if

Pii = pig;  for 4,5 =1,2;

2° d? =1 if and only if sums of both rows are equal and if columns
contain one and only one element. In other words d* =1 if and only
if the non-zero elements of the matrix are equal and belong to one of
the diagonals of the matrix.

Let us now examine some numerical examples which will present
not only all details of the computational technique but also will illustrate
practical implications of indication of the coefficient of dependence,

ExampLE 1. Table 1 presents figures illustrating the distribution of
alive birts in Poland in 1964 with regards to consecutive delivery and
to the partition into country and towns (see [3], p. 51). Matrices P, and
P, are both presented in one table (table 2). The upper figures are the
elements of the matrix P,, i.e. the upper figures stand for probabilities
Pi;, whereas the lower ones are the elements of the matrix P, (in other
words they are probabilities p;q;).

One should now compare numbers in every cell. The numbers of
those cells where the inequalities

Pij > P

TABLE 1. Alive births in thousands by delivery number and area

Consecutive delivery
Area 1 9 3 4 5 6 7 8 and Total
more
Urban 99.9 75.3 | 33.2 14.9 7.1 3.7 1.9 2.1 238.1
Rural 91.5 83.3 | 61.3 38.4 22.1 12.4 7.2 8.5 324.7
Total 191.4 | 158.6 94.5 53.3 29.2 16.1 9.1 10.6 562.8

Zastosowania Matematyki, tom X 16



TABLE 2. Computational scheme for table 1
775 1338 .0590 .0265 .0126 .0066 .0034 .0037 4231
1439 1192 0710 .0401 .0219 .0121 .0068 .0080 4230
.1626 .1480 1089 .0682 0393 0220 0128 0151 5769
.1962 .1626 .0969 05646 .0299 0165 .0093 0109 .5769
.3401 .2818 .1679 .0947 .0519 .0286 .0162 .0188 1.0000
.3401 .2818 .1679 .0947 .0518 .0286 .0161 0189 .9999:

hold are printed in italics in table 2. One has

> po— Y pig; = 5T76—.4812 = .0964,
(’L’j')eM (’i’j)sM

and thus
d= .44,

ExaMpLE 2. A factory manufacturing radio and television sets has:
issued a pilot batch of television sets aiming to examine if newly designed
boxes which television sets were equipped with would please potential
buyers and eventually cause an increase of demand, despite a slight
increase of the price of new sets. Table 3 shows results of this examina-
tion. The size of the tested lot was equal 1000 sets, 400 of which have
been of the old type and the remainig 600 were equipped with the newly
styled boxes.

TABLE 3. Demand for television-sets TABLE 4. Computational scheme for
w ith respect to old and new types table 3.
B B z B B z
new old
A 0.60 0.00 0.60
A 0.36 0.24 0.60
sold 600 — 600
4 | 0.00 0.40 0.40
A - 400 400 0.24 0.16 0.40
unsold
z 0.60 0.40 1
x 600 400 1000 0.60 0.40 1

It is obvious that a modern outlook of the television set could exert
a sufficiently decisive influence on buyer and make them prefer new
sets to the old ones.

One expects that any measure of stochastic dependence, if embraced
within the limits {0, 1), should in a situation, like the one described
above, be close to 1. Let us check how the coefficient of dependence will
behave in these circumstances. Simple calculation technique connected
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with the computation of the numerical value of this coefficient is pre-
sented in table 4.
All marked cells create a set M. Hence

Z Pii— Z D:iqi 1—0.52

qz — GDM “i""M = '1 = .96.
1—— 1—=
min (7, 8) 2

REMARK. The round and easy to calculate figures of table 3 has
been chosen on purpose, in order to facilitate computational work. This,
however, should nobody lead to the conclusion that the whole problem
is just a classroom example. On the contrary, the problem itself stems
from economic life and preserves its practical importance. We are now
proceeding to present a slightly more sophisticated example based on
true statistical data ([3], p. 50). One important feature of this example
is worth emphasizing. It consists in the fact that both variables involved
are continuous. Examples 1-3 show that the coefficient of dependence
can be applied in all situations: when both variables are non-measurable,
when one is measurable — the other not, when both are measurable
and discrete, when both are measurable and continuous, and, finally,
when one is discrete and one is continuous.

While presenting the next example no further explanatory comments
will be made.

ExavmpPLE 3. Table 5 presents figures illustrating a stochastical de-
pendence between the age of the members of married couples in Poland
in 1964.

TABLE 5. Members of married couples by age

Age of women
Age of |19 years 50 years
men old or 20-24 | 25-29 30-34 35-39 40-49 old or | Total
less more
19 years
old or
less 7242 3030 400 54 19 3 1 10649
20-24 37724 47969 6843 1140 236 59 5 93976
25-29 17824 37629 14140 3501 971 218 13 74296
30-34 2351 7793 6823 4017 1627 522 34 23167
35-39 324 1607 2247 2472 1883 888 . 61 9482
40-49 82 410 861 1430 2114 2274 405 7576
50 years
old or
more 18 85 181 465 1055 3924 5777 11529
Total 65565 98523 31395 13079 7905 7912 6296 | 230675
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Table 6 is a contingency table filled up with probabilities p;; (upper
part) and p;q; (lower part). We call these figures “probabilities” although
in fact they are not probabilities but relative frequencies, playing
the role of estimates of unknown probabilities.

TABLE 6. Computational scheme for table 5

0314 0131 .0013 .0002 .0001 .0000 .0000 .0461
0131 .0197 .0063 .0026 .0016 .0016 .0013 .0462
1635 2080 .0297 .0049 .0010 .0003 .0000 4074
1158 1740 .0554 .0231 .0140 .0140 0111 .4074
.0773 1631 0613 .0152 .0042 .0009 .0001 .3221
.0915 1376 0438 .0183 0110 .0110 .0088 .3220
.0102 .0338 .0296 0174 0071 .0023 .0001 .1005
.02856 .0429 0137 0057 .0034 .0034 .0027 .1003
.0014 .0070 .0097 .0107 .0082 0038 .0003 .0411
0117 .0176 .0056 0023 0014 0014 .0011 0411
.0004 .0018 .0037 0062 .0092 .0099 .0018 .0330
.0093 .0140 .0045 .0019 0011 0011 .0009 .0328
.0001 .0004 .0008 .0020 .0046 0171 0250 .0500
.0142 0214 .0068 .0028 0017 0017 .0014 .0500
.2843 4272 .1361 .0566 .0344 .0343 0273 1.0002
.2841 4272 1361 .0567 .0342 .0342 .0273 9998
We have
D py=.1876 and D pig; = 5277,
(fym @fem
thus giving
1876 —.5277  .2599
az = - = .3.
7 857
1——
49
d = .55.

REMARK. The correlation coefficient would have taken in this case
a much greater value, presumably close to 0.7 (see section 6, table 7).

5. Significance of the coefficient of dependence. Let us now suppose
that the statistical data we have just used to calculate the value of the
coefficient of dependence have been obtained from a sample drawn at
random from a universe. In such circumstances the sample coefficient
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of dependence is a random variable. Unfortunately, we do not know the
exact distribution of this variable. Nevertheless there exists a possibility
to examine the significance of a sample coefficient of dependence, given
the sample is sufficiently large, so that relative frequencies p; could
serve as sufficiently accurate estimates of p;;. If this condition has been
observed then p; = Xp; and ¢; = Zp;; are by far more accurate estimates
of p; and ¢;. Hence we are fully justified to put

pi =i, G =4
It is generally accepted in practice to consider the size n of the sample w
as being sufficiently large if the-smallest frequency n;; in the (¢, j) cell

of the r X s contingency table is not less than 5. It is worthwhile to take
notice of the following equalities

N Ni; - ~ - ~
Z'n/ij =Mn; Pi= 77; P = Zpﬁ 4 = ZP{,’-
7 ) D)

Let us denote by @2 an estimate of d? determined on the basis of the
data delivered by the sample w, given the sample has been drawn out
of the population 2, the marginal distribution of which are the probabi-
lities p;, q;, ¢ =1,2,...,7;) =1,2,...,8

Hence
2 f’i?'_' 2 Pig; !

- (t,7)eM (t,7)eM

r—1

(10) dz =

where r = min(r, s).
It should be emphasized that r, p;, ¢; are given constants a,ndAM
is a given subset of pairs (¢, j). This enables us to find the variance V (d2).

Let us put
r N A
=6 D py=Q; D pig=R.

r— (. 7)eM (d)eM

Hence
\ . 1—
(11) V(d2) = eV (Q) = cz.w
where Q = Y pi;. If n — oo then the distribution of the random variable
(t,5)eM

(&2—E’(&2)/I/[V(&2)] tends to the mormal distribution N (0, 1).

We would like to draw the reader’s attention to the fact that when
applying formula (10) one should in the first step draw a large sample
w,, determine numbers r, 8, R the subset M ; then, in the next step, draw
the sample w, and, using the previous pa.rtltlon of the contmgency table

into r rows and s columns, find the value of the random variable Q, even
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if some (may be all) rows or columns of the table were empty. In practice
we can make use of the data of the same sample » in both steps given
the sample o is large.

Now we are able to write a confidence interval for the parameter d2:

P{@2—tV[V(d)] < @ < 2+ tV[V(d?)]} = a,

where a depends on ¢ and ¢ is a random variable normally distributed
N(0,1).

6. Mutual relation between the coefficient of dependence and the
coefficient of correlation when the distribution of the random variable
(X, Y) is normal. Let us assume that the density function f(x, y) of

the random variable (X, Y) is of the following

TABLE 7. Coefficient of de- form
pendence wvs. Coefficient of
correlation in a two-dimen- (12)  f(#, %)

sional normal population 1 x? -+ 2oy + y?
= p('— )'

0 P d 2nV(1— p)? 2(1—p)?

05 L0160 13 It is easy to notice that (12) is the density
.10 .0321 .18 function of a mnormal distribution, where p
15 -0485 .22 stands for the coefficient of correlation, whe-
-20 0654 26 reas E(X)= E(Y)=0 and V(X)= V(Y)
.25 .0828 .29 ..

‘30 1010 39 = 1. In such a case the coefficient of depen-
35 1201 35 dence is given by the formula

.40 .1402 .37

45 | 1616 | 40 (13) g2 — iff[-—l— X

50 | .1846 | .43 2n JJ LV (1—p?)

55 | 2095 | .46 . . .

60 | .2367 | .49 x — 20wy +Y z?+y

65 | .2669 | .52 XeXP(_ 2(1—g?) | OP\T T2 dudy,
70 | .3008 | .55

75 -3397 58 where G stands for an area such that
.80 .3856 .62 .

85 4417 66 fle,y) > fu(@)fo(y) i (2, y)eq.

.90 5143 79 It is easy to show that G is the area
.92 5522 .74 lying between two branches of a hyperbola.

We would like to draw the reader’s attention
to the fact that the regression lines

y =Aox and & =Apy, wherel=1/(1+V1—¢?),

play the role of asymptotes of this hyperbola.

Formula (13) is an explicit expression of the mutual relationship
between d and ¢ in the normal case. The integral (13) has been investi-
gated by A. Smoluk. As yet all attempts, undertaken by him to change
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the double integral (13) into a form which could enable an analytic solu-
tion have failed. However A. Smoluk applied approximate methods and
golved the problem numerically [4]. Similar results have been obtained
by E. Trybus, who applied the Monte-Carlo method for evaluating the
integral (13). Table 7 gives the results of computations carried out by
A. Smoluk.

Table 7 gives the possibility of evaluating the coefficient of correla-
tion by means of the coefficient of dependence and vice versa.
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