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REMARKS ON THE TIME TRANSPORTATION PROBLEM

1. Introduction. Suppose Wwe are given the system (7, M), where
T = (t;) is an (mXn)-matrix with real numbers ¢;, M = (a,, Ay, ...

@y byy by, ...y b,) and a;, b; are positive real numbers such that
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will be called a solution of (T', M). The problem is to find an optimal
solution, i.e. a solution X of (T, M) which minimizes the function

(2) #(X) = maxty, where® ={(¢,]): 2;>0,1<i<m,1<j<n}.
(t,7)e@

Methods of solving time transportation problems are described
in [1], [2]. They are not adapted for computer calculations. Therefore
a new version of the method for solving TTP, being a modification of
that presented in [2], is presented in this paper. This method may be
successfully used in computer calculations even for great m and n.

2. Notation and definitions. Let @ = {(7,4): 1 < i< m, 1<j <.
Any subset Q of @ we call a set of nodes. By a route (p, g)— (r, s) connect-
ing in 2 nodes (p,q)ef, (r,s)ef we mean the smallest sequence
{(4, Ji)} (K =1,2,...,1) of different nodes from Q satisfying the con-
ditions

(41,31 = (P, q), (%7, 5;) = (rys),

fOI‘ k — 1,2, ...,l—‘l eithel‘ ik - i/\'+l or jA :j].'?»l'
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If there is in 2 a pair of nodes (p, q), (r, 8) for which two different
routes (p, q)—(r, s) exist in £, then we say that 2 contains a cycle. In
that case we mean by a cycle the sum of the routes (p, q)—(r, 8). A subset
B of @ consisting of m+n—1 nodes which contains no cycle is called
a basis. To each basis B there exist not more than one matrix X = (x;)
whose elements satisfy (1) and also the conditions x;; = 0 fer all (¢, j) e®—B.
Every matrix X which satisfies these conditions will be called a basic
solution of (T, M) and denoted by X(B) = (#). A basis B for which
exists a basic solution X (B) of (T, M) will be called a feasible basis.

Let

O(B) = {(4,§)eB: 2E >0}, V(B) = {(s,]) eB: 2% = 0},
W (B) = |(¢,j)eB: t; > t(X(B))}

for any basic solution X (B).

We shall say that a basic solution of (7', M) is degenerate if the set
V(B) is not empty. The number of nodes in the set W (B) will be called
degree of degeneration of X (B) and denoted by dg X (B).

Any node (k,l)eB which satisfies the condition

tkl = max tw = t(X(B))
(%,7)e@(B)

will be called a central node of basis B. The node (¢, j) e®—B which satisfies
the conditions
(1) every route (¢,j)—(k,!) in the set B+ (¢,j) contains an even
number of nodes,
(ii) (k,1) belongs to the cycle contained in B-(¢,j) will be called
a netghbouring node to a central node (k, I).
By the neighbouring set to (k, 1) we mean the set of all neighbouring
nodes to the central node (k,!). We shall denote it by ¥,;(B) or shortly
by Y.

3. Method of solving TTP. We propose the following method of
solving a time transportation problem (TTP).

1. Find an initial basic solution X (B,) by any of the known methods.
(Suppose that ¢, # ¢(X(B,)).)

Now for h =1,2,... do the following:

2. Find the central nodes (k, 1) of the basic solution X (B;) and fix
as (k;,!,) any of them such that if (k,_,,[,_,) is a central node of B;,
then (ky, i) = (Kp_yy lp_y)-

3. Find the set ¥, , neighbouring to (k;, {,).
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4. Choose an arbitrary node (p;, 9;) belonging to the set

{®,9: tyy = min iy, (p7Q)€Tkhlh}-

(@.9)e ¥,
There exist two possibilities (a) and (b).
(a) tyray = Uty = HX (Bn))-
Then stop because the basic solution X (B,) is an optimal solution.
This follows from theorem 2 in section 5.
(b) bopar, < Uiy

The set B, (P qn) con’tains exactly one cycle, say @,. Di-
vide @, into two subsets Gy, @, assigning to G, nodes (i,j) for
which the route (i, j)— (P, ¢») I G4 contains an odd number of nodes.
Subset @, contains the remaining nodes. Of course, (p,, q,)eG,
(Fny Tp) € G;»,~

5. Find

min wgh - ih'

(6,7) € Gy,

Determine a set Fj = {(r, 8)eGy: zpr= %} and fix as (r,,s,) any
node from it such that if (k, ly) e Fp, then (r,, 8;) = (k;, 1,). Determine
a new basis By, = By+ (Pr, &) — (725 $») and a new basic solution X (B, +1)
defined by the formulae

mff"-|— Zy, if (@,.7) GG;H

gl = Lafh—T, it (i, )Gy,
aih it (4,7)¢Gy.

Repeat steps 2, 3, 4, and 5.
It will be proved that for any TTP only a finite number of iterations

is needed.

4. Commentary. In comparison with the method described
in [2] the algorithm presented in this paper includes 3 corrections.
Steps 6 and 7 have been omitted. This is very important in com-
puter calculations. It is practically impossible to verify whether a se-
quence of basic solutions X(B,), X(B,), ..., X(B;) contains two iden-
tical solutions. Just this difficulty causes that the method described
in [2] could not be used in computer calculations. The modifications
done in steps 2 and 5 of the algorithm allow to leave out steps 6 and 7
from our algorithm. This will be illustrated by two examples.
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Suppose we have following TTP:

o =1 OO
L O
Lo W =3 W
© o ot =
H o ot ©

4848

(The numbers a; and b; are on the right and below the matrix T = (t;),
respectively.)

The initial solution is given in Fig. 1.

Leaving out the modification done in step 2 we would obtain the
sequence of basic solutions given in Figs. 2 and 3. We see that X (B,)
— X (B,) and B, = B,. Using the algorithm presented in this paper and
leading from the initial solution X (B;) we obtain after six iterations
the optimal basic solution given in Fig. 4.
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Suppose we have the TTP

WY owt
W W o =
QU Qo M

= o

with the initial basic solution X (B,) presented in Fig. 5.

Leaving out the modification done in step 5 we would obtain the
sequence of basic solutions given in Figs. 6 and 7. We see that again
X (B,) = X(B,) and B, = B,, while the exact result is that of Fig. 8.
(Elements (ky, 1), (74; $a)s (Pn, 4n) and (.i7j)€¥lkhlh have been denoted in
figures by a square, a crossed square, a crossed circle, and crosses, respec-
tively.)

5. Theorems. First, let us state and prove a series of properties of
the sequence X (B,), X(B,), ..., X(By), ... of basic solutions of (T, M)
obtained by using the method given in steps 1-5.

Let 2(X(B)) = max t;.

(i,7)<B

Remark 1. If (3,])eW(B), then af} = 0.

Remark 2. 2(X(B)) = t(X (B)).

Remark 3. z(X(B)) = t(X(B)) if and only if dgX(B) = 0.

Proof. 2(X(B)) = t(X(B)) < W(B) = 0 < dg(X(B)) = 0.

COROLLARY 1. 2(X(By)) > 2(X (Byyy))-

Proof. By, = By—(1ss $u)+(Pry @) and ¢, . < t(X(Bh)). It follows
from remark 2 that ¢(X(B,)) < #(X(B,)) and thus ¢, . < 2(X(B,)).

COROLLARY 2. t(X(B))) <2X(B)) (h =1,2,...).

Proof. ¢(X(B,)) < #(X(By) < 2(X(B))).

COROLLARY 3. If t"131 = z(X(Bl)), then there exist nmo basic solution
X(B,) (h > 1) such that (r,,$,)eBy.

Proof. (ry, 5,)¢Byy By =By Bt Puys @)+ D1,y a))+-..+ (o4, n,);
where 1 <1< min{h—1, m+n—1}, t, o =2(X(B)) > 2(X(B,,)) and thus
ts, > tﬂhﬂht- or (ry, 8) # (Pn,r In,)- This means that (r, s)¢B,.

COROLLARY 4. If dgX(B,) = 0 and if (k,, 1)) is a central node of B,
found in step 2 of the algorithm, then there ewist no solution X (By) (b >1)
for which aih = 0.

Proof. Let ¢ >1 be the stallest number such that (k,, 1) eB; and
ofy = 0. 4, =2(X(B)) =#(X(By) > 2(X(By)) > t,, and thus from
corollary 3 it follows that (k,,L)eB), and, for 1<h <4, 2% >0. In
particular, wflil—ll > 0, and thus (k1)) is Ia central node of B, ,. But

By _gBic1 7 = i ans that afi-1 = zBi-1
Ty =@l — Ty = 0. This me kyy o =4 7%, and because of

the modification introduced in step 5 of the algorithm (k,,1,)¢B, must
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hold because (7;_;,8;—;) = (k;,1,). This contradiction completes the
proof.

THEOREM 1. The sequence X (B,), X (B,), ..., X(By), ... of basic solu-
tions of the TTP (T, M) constructed by the method given in steps 1—5 con-
tains no two identical solutions X (B;), X(B;) for i #j.

Proof. Suppose that in the sequence X (B,), X(B,),..., X(B,),
(e > 1) of basic solutions of (I'y M) obtained by using the discussed
method there is X (B,) = X(B,), B, = B,. From corollary 1 it follows
that z(X(Bl)) = 2(X(B,) = ... = 2(X(B,)).

Let Z(B,) = {(3, j) eBy: t; = 2(X (By))}. Of course, always Z(B,) +# @.
Take then Z(B;), Z(By;) A< h<e—1). We have B, = B,— (73, 83)+
+ (Pry @)y tppa, < t(X (By)) < 2(X (By)) = 2(X (Byy1))s 0y @) ¢Z(Byyy), and
thus Z(By,,) = Z(By).

Suppose that (i, j)eZ(B;) and (¢, j)¢Z(B;,,). Corollary 3 allows us
to state that (¢,j)¢B,. On the other hand, we have

B, = B, By+ (Dn)s @) +-- -+ (Dryr @)
A<h<h, 1<l<min{h, m+n—1})

Ph,9h,

and thus (¢, j)eB; B;. This means that (¢,j)eB;. However, B, = B,.
This allows us to assert that Z(B,) < Z(B,,,). Finally,

(3) Z(B,) =Z%Z(B,) =... =Z(B,) = Z.

Now the proof splits in two parts.

(a) Suppose that dgX(B;) = d > 0. This allows us to assert that
aft =0 for (¢,5)eZ. If t(X(B,)) = 2(X(B;)) for some 1< h< e, then
dg X (B;) = 0 (remark 3), the central node (k,,1,) of B, belongs to Z
and from corollary 4 it follows that there exists no solution X (B;) (¢ > h)
for which a5’ = 0. This means that xfe, +# 0. But we know that X(B)
= X(B,) and thus a4, = 0. This contradiction shows that ¢(X(B,))
< 2(X(B;)) or, otherwise, for all (i,j)eZ and h =1,2,...,e we have
Z <« W(B,) < By, wf» = 0. Thus, we see that

X'(B,), X'(By), ..., X'(B,) (X'(B) = X(B) for i =1,2,...,¢)

is a sequence of basic solutions to TTP (T, M), where t}; = t,; for (i, j) ¢Z,
ti; = ¢ for (¢, j)eZ, ¢ is an arbitrary nuflber such that ¢ < ¢(X(B,)) and
T' = (t;), and it could have been obtained by using steps 1— 5, because
(kny L) 42, (1hy S1) 42, (Dny 1) ¢Z for b =1,2,...,e. Of course, t(X(B)))
= t(X'(B,)) and z(X(B)) > z(X'(B,)).

If we repeat our argumentation, then after p (p < d) steps we come
to the conclusion that there exist the (m X #n)-matrix T? and the sequence
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1 lutions of (T®, M) which can be
X*(B,), X?(B,), ..., X?(B,) of basic so ,
obtairlle,d by uzsi;g the discussed method such that ¢(X? (B,y)) = 2(X2( B)).
This means that dgX”(B,) = .
All that allows us to assume that dgX(B;) =0 in the sequence
X(B,), X(B,), ..., X(B,) of basic solutions of (T, M).
(b) Suppose now that X (B,) is a degenerate basic solution of (T, M),
(B,—©(B,) + @) and that dg X (B,) = 0. We know (see (3)) that z(X (B,))

=... =2(X(B,) and Z(By) =... =Z(B,) =Z. We assumed dgX(B,)
= 0 and thus the central node (k;, ;) of B, belongs to Z. From corollary 4
it follows that for any 1 < h < e the condition wkl = 0 is not true. The

modification done in step 2 of the algorithm a]lowed us to assert that

B B —
(k., 1) is a central node of all B, (1< h<e). Now, @ h+1 — xkl;lll %,

a;B B
B Bh 1 =gP | and thus mBl — B
z, >0, and thus z ’;+1<96 . But oty o oh, o
=... = x or

1’1

(4) z,=0 for h =1,2,...¢

It is clear now that 25¥ =af*" for 1<h,h”" <e and O (B,)
=0(B,) =... =0(B,) =0. o .

ie;) us divide theesubset U of all nodes (i, j)e B,—® for which there
exists the route (¢, j) — (ki, l,) in the set O+ (7, j) into two subsets

U, = {(i,j)eUz (i, ) — Ghny L)

contains an even
number of nodes [’

contains an odd
{(m)ev iy §)— (ay 1)

number of nodes [°

Of course, U,+U, = U #© because B,—6(B,) + 0.

Let U, + @ and (i, j) € Uy. (k1, I) is a central node of all B, (1 Sh<e)
and thus (r,, s,) = (¢,j) can never be true. This means that (s, J)eB,
. <];'jef 32 # @ and (i, j) e U, Suppose that (ry, 5,) = (4, j) for 1 < h <.
Then (4, §) ¢ By, ,. The route (¢, j) — (K1, l,) in the set B,, 4 (4, §) (b < h <e)
contains an odd number of nodes. But B, = 1?6 .and thus th.ere eX}sts
a number &'(h < b’ < e) such that (¢, ) ¥y . Th.ls is, however, impossible
because the node (i,j) for which the route (’t,])—('kl, l,) contains an
even number of nodes would belong to ‘th,lh,. Finally, U < B, for
" i:af ;1s ;;oizv introduce the TTP (T, M*), where M* = (a!,...,dl, ...,
bl) is defined by the following formulae:

if (i,j)eU, then a; = a;+1 and b} = b, 41,
if (¢,§)¢U, then a; = a; and b; =b,.
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B, is a feasible basis for (7, M') and a basic solution X'(B,) can
be defined as follows:

. zgi+1  for (3,j)eU,

xl .
’ xh for (i,7)¢U.

The (m X n)-matrix X such that z;; = a;; for (¢,j)e U+0 and z; =0
for (¢, j) ¢ U0 is of course a solution to (T, M'). We know that U460 < B,
and thus B, is a feasible basis of (T, M') and X'(B,) is a basic solution
of (T, M*) for h =1,2,...,e. Therefore the sequence X'(B,), X'(B,), ...,
X'(B,) is a sequence of basic solutions of (7', M') obtained by using
steps 1—5. Also, t(X'(B,)) = t(X(B,)) = 2(X(B,)) = 2(X"'(B,)) and thus
dg X'(B,) = 0. Moreover, @ (B,) = O(B,)+U and U # 0.

Bearing this in mind we can assert that if we repeat our argumenta-
tion given in part (b) of the proof, then after » steps we will come to the
conclusion that there exists a TTP (T, M") such that the sequence X"(B,),
X"(By), ..., X"(B,) is a sequence of basic solutions of (7', M") obtained
by using the discussed method and for which ®"(B,) = B,. This means
that the basic solution X"(B,) of (T, M") is not degenerate. All which
was said in parts (a) and (b) of our proof allows us to assume that

(i) in the sequence X(B,), X(B,), ..., X(B,) of basic solutions of
(T, M) holds X(B,) = X(B,), B, = B, (¢>1),

(ii) dgX(B,) = 0 and X(B,) is an undegenerate basic solution of
(T, M).

We know (see (4)) that in this case @, =%, =0forh =1,2,... ¢

On the other hand, X (B,) is a non-degenerate basic solution of (7', 1)
and thus ! >0 for (i,j)eB and a7} =%, > 0.

This contradiction completes the proof.

THEOREM 2. If (k,1) ts a central node of a basis B, ¥;;(B) is a set
netghbouring to (k, 1) and if ¥;,(B) < I, then there exists no solution X = (x;))
such that x; = 0 for all (i,j)ell4-(k,l).

The proof of this theorem can be found in [2].

THEOREM 3. If TTP is solved by the method given in steps 1—5,
then the number of iterations leading from X (B,) to the optimal solution is
finite.

Proof. The number of all basic solutions of (7', M) is finite. The
sequence X (B,), X(B;),..., X(By),... of basic solutions of (T, M)
obtained by using the method given in steps 1—5 consists of different
elements (see theorem 1) and, therefore, is a finite sequence. It means
that there exists a number A > 1 such that the basic solution X (B,) of
(T'y M) satisfies the condition formulated in step 4, (a) of our algorithm.
Theorem 2 shows that X (B,) is an optimal solution of (7', M). The proof
is completed.
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A. JANICKI (Wroclaw)

UWAGI O ZAGADNIENIU TRANSPORTOWYM Z KRYTERIUM CZASU

STRESZCZENIE

Zagadnienie transportowe z kryterium czasu mozna sformulowaé w nastepu-
jacy sposéb: Dany jest uklad (T, M), gdzie T = (¢;) jest macierza typu mxn o ele-
mentach rzeczywistych, a M = (a;, dy, ---> @m> b1, by, -, b)) jest ukladem m+n
liczb dodatnich ay;, b;, przy czym

m n
i=1 =1

Problem polega na znalezieniu minimum funkeji
t(X) = max ¢y, gdzie © = {(4,)): 25> 0, 1<i<m, 1<j< n}
(i,7)e®
okreslonej na zbiorze macierzy X = (z;;) typu m Xn spelniajacych dlat = 1,2, ..., m
ij=1,2,...,n nastepujace warunki:

n m
x> 0, Zwij = i, 2 Tij = bj.
ji=1 =1

Przedstawiona w niniejszej pracy metoda rozwigzania zagadnienia transporto-
wego z kryterium czasu jest metoda iteracyjna. Przy pomocy dowolnej ze znanych
metod konstruuje sie rozwigzanie poczatkowe X (B;), a nastepnie wyznacza sie skoii-
czony ciag X (B,), X (B,), ..., X (Bx) rozwiazan bazowych, stosujac do tego celu
wzory zawarte w punktach 2-5 algorytmu opisanego w rozdziale 3. Po wykonaniu
skoriczonej iloéci iteracji otrzymujemy szukane rozwiazanie optymalne X (By). Odpo-
wiednie twierdzenia mozna znaleié w rozdziale 5.

Omawiana tutaj metoda jest zmodyfikowana i znacznie uproszezona wersja
metody opublikowanej w [2]. Modyfikacje wprowadzono z my§la o adaptacji metody
dla obliczeri wykonywanych przy pomocy maszyny cyfrowej. Uzyskang w ten sposéb
metode mozna z powodzeniem stosowaé w obliczeniach wykonywanych na maszy-
nach cyfrowych nawet dla duzych m i n.
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A. AHUIIKH (Bponnas)
3AMEYAHUSA O TPAHCITOPTHOI 3AJJAYM C KPUTEPUEM BPEMEHU

PE3IOME

TpancmopTHad 3ajaya ¢ KpurepueM BpeMeHU (OpPMYJIUPYETCA CIERYIOIIUM
o6pasom: samana cucrema (T, M), rge T = (f{;;) MaTpuLa MOpPAAKA M XN, JIJTEMEHTH
KOTOpoil peiicTBuTeNnbHH, & M = (a;, az, ..., am, by, by, ..., by) — cucreMa m-4-n mo-
JOMUTeABHEIX YMCeN a;, bj, mpuuem

DM

a; =

B

1

]
i
-,

Cuenyer HaiiTu MUHMMYM QyHKUUU

t(x) = max t;, rge O = {(¢,j): 25> 0, 1<i<m, 1 <j< n}
(4,7)€®
onpefielIeHHOi B COBOKYNMHOCTH Bcex MaTpun X = (z;;) mopAgka mXm YXOBIETBO-
pAoomux faga it =1,2,...,muj=1,2,...,n cIefylOMmUM yCIOBUAM

n m
zii = 0, inj= a;, Z.’):i,-=b7-.
ji=1 i=1

B crarbe npuBeJeH WUTePAIMOHHHEIN MeTOJ pelleHHA TPAHCIOPTHON 3apauu
C KpUTEepHeM BpeMEeHH.

C Havyana J0OHM M3BECTHHIM MeTOJOM HAXOAUTCA HavYaabHoe pemeHue X (B,),
a IOTOM KOHeYHY0 mocaepgoBartesabHocTs X (B;), X(Bsg), ..., X(By) 0asucHex pe-
UIeHuil, NpUMeHAA K 9To# ueaum QOpPMYJIH NpHBeleHHHE B IIYHKTaX 2-5 auropuTrMa
ONMCAHHOTO B riase 3.

Basucuoe pemenne X (By) ABIAETCA MCKOMEM OOTUMAJbHEIM peiueHueM. Goor-
BETCTBYIOIMEe TEOPEMH MOKHO HAliTM B riaBe 5.

Merop, IpUBEeNEeHHHEIH B CTaThbe, ABIAETCA MORMPUUUPOBAHHON, M 3HAYMTEIHHO
ynopoueHHO! Bepcueit MeToma onyGaumkoBaHHOro B [2]. Moaundukanum npuBefeHH
C ILeJbl0 NPUCIOCOGUTH MeTOJ K BHYMCIEHNAM HA DJIEKTPOHHHIX BHYUCIMTEIBHBIX
MaIIHAX.



