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Introduction

1. Let K be any quadratic field of the diseriminant 4 £1, & —
classes of ideals defined either by (4) or by (4) and (5) (see below), yq —
characters of classes &, ¢ — any natural number > 1, y, — Dirichlet
characters modq. Then there is a group G, of reduced classes of residues
1{mod q) formed by the residues of the ideal norms Na with (a, [¢]) =1
and a belonging to the principal class &;. The group of characters of any
Abelian group being isomorphic with the group itself (see [7], § 10}, there
ig a group I of characters y, corresponding to &,. Let us introduce the
funection

N
Wt e = S AT i ),
o

In § 2 we shall prove that (1) is a Hecke L-function with a character z(a)
mod [¢]. We denote by N (a, T, y,, ze) the number of zeros of the function
(1) in the rectangle (¢ < o<1, [t| <), by d(n) and ¢(g) the number of
natural numbers dividing # and the number of reduced classes modg,
respectively. Let '

(2) ) = ) rg(m)E™m
.1%?7.'#54
and let > denote a sum over all characters of the group I excluding the

X . .
prixmipallchiumctar %y- The aim of the present paper is the proof of the
following

TrarorEM, For all ae[l/2,1] we have uniformly in D=2, M > 2,
T3
" 1 v 0=
@ N N e N ) 2N, T, g 20) < DU Jog M
L ¢la) &

% g
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{3) is an analogous of a theorem due to Bombieri about the number of
zerog of Dirichlet L-functions ([1], Theorem 5). With respect to M the
right-hand side of (3) is in esgential ag amall ag in Bombieri’s work, but
it is larger with respect to T. Nevertheless it can be applied (see [6]}(Y)
for proving a mean value theorem. of Bombieri’s type ([1], Theorem 4}
but for primes which are ideal norms for a given class K in any quadratic
field. o ‘ : '

Preliminaries

2. LemMA 1. In any algebraic number field K (of degree m 3= 2) (1) 4s
a Hecke L-function with character yx(a)mod[g].

This has been stated. in [4], § 4, yeb the proof given there being inguffi-
cient, we are going to complete it here.

The integer ideals a-and b are of the same class R if there are integers
a, fel guch that - - ' : '

{4) | afal = b[g]
and ' '
(5) a0, p=0

where £ %~ 0 means that all the real conjugates (if any) of & are positive,
Let further | = [¢] and (a, f) = (b, f) = 1. I besides (4) and. (5)

{6) ¢ = f = 1(modf),

then o and b are in the same class Hmodf (see [8], Definition VIII),
Since T = [¢], by (6) we have a = 14 ¢y with a suitable integer y<K.
Multiplying by the conjugate numbers o' = L-tgy’, 0" = 1443, ...
and considering that the elementary symmetric functions of y, »', y”, ...
are rational integers, we deduce that Na = 1(modg); similaly N I
= l(modg). By (4} Na-N[e] = Nb-N[f], whence

{7) No = Nb(modg),

since by (5) Ne>0 and Nf>0 and thus N[e] = Na, N[§] = N8
{cf. [9], Satz 812). Thus all ideals of the same clags $ have the same norm
regidue I(modg). By [4], § 4, for any class & there ig the same nuniber
» = g(q) (say) of modg incongruent numbers I with (1, gy = 1 and such
that Na =I(modg) for appropriate ideal acK(*). Let £, %I, ..., 9%

{!} The restriction imposed on ¢ in [8], footnote on P. 8, is unnscemsary.
(*} »is the order of groups &, and I'; introduced in § 1.
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be all the classes $ = R, of ideals ¢ with Na = 1{modg){®). Then there
is a group :

{8) Hy = {(SD+ (5D + .- +(Hy)

whose elements are the classes 7 (1 < 7 < g). Since in the group representa-
tion &, = H H,+ HH,+... any two cozets are either identical or they
have no common element {(see [7], § 6), taking merely the different cosets
we get a representation '

(9) Rl =§31H1+59H1+---+5»H1

where all the classes § of the same coset $,H, contain exclusively ideals
with the same norm residue I{modgq)<@,;. The characters of the group K,
(of elements $ = $;-Hi) can be represented by the products

{10) 2a{9y) - #(H7)

where x,{$;) = z,(Na} (if ae$;} runs through the characters y,el7
(zee §1)(* and »{H runs through all characters of the group (8). In
a gimilar manner we can represent the characters of a1l the classes $.
Let K, ..., & be all the classes K. We denote by $;, ..., D a fixed set
of classes $ such that $; < &y, ..., H; = &,. Defining 74(H;) = 12 (K

if §, = 8, all the characters yx($) of the classes § = $,529; can be
represented by

(11) 2(B) = 2(H9) #($ 22 (5

Agreeing that y(a) = x(9) ¥ ae, (11) represents all characters y(a)
mod[¢g]. ¥ in particular » is the principal character, then x({a)
= yg(Na}ze(a) and the lemma folows.

LeEMMA 2. If el and if not both y, and yg are principal choracters,
then (1) is an integral function (°).

Proof. By Lemma 1

N x(a)
1) Z Za It\lr)ayf.sa(a) = Y

a

where ¥ (a) is a character mod[¢]. If the right-hand side is not an integral

(%) There ia at least one such clags H, viz. the class cox}t;a.in.-ing a==J1]
{*} Consider that the factor-gromp &,/H, is isomorphic with the group (§;)-
A (Hg)- ..o+ ($,) which is isomorphie with &. . - N
2(-") The following example shows. that we caunot dispense with the condition
ggel’y . If ¢ = 4, then there are two charaeters yq(n): the pr_incipa!.l one au_ld the charac-
ter (—1)?~1/2, Since odd sums of two squares are = 1{(mod4), in the field generated

by ¥ —1 the corresponding funetions (1) are both identical and have a pole at s == L.
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funection, then y(a) is the principal charaeter (¢f. [8], Saty LXIIT) whenee
the coefficient g, in the Dirichlet-expansion 3 a,n™" of (12) is
"

{18) a, = Z 1,

' Nawn
provided that (n, ¢) == 1. Let us suppose that on the left-hand side in (12)
vala) is the principal eharacter but y, non-principal (whence p(g) = 2).
Then there are numbers # = Na with (Na, ¢) =1 and rey,(¥a) <1,
whence the sum -

D) %a(Na)
dizagrees with (13); a contradiction to the uniqueness theorem for Dirichlet
series. ' '
If xe(a) is not the principal character yet the function (1) is not
regular at s = 1; then we use some fixed class &; with re 1e(8) <1 con-
taining an ideal q, with the norm Na, = 1({modg) (or congruent to some
other suitable number)(®) and arrive at the same contradiction.
3. Lmsma 3. Let

ARV E(s, 1) = > xl@)Na~

be the Hecke L-funetion of the quadratic field K (of a discriminant 4) with
a primitive characier modf. Let further s, = ¥-+ity, 84 = $-+ity {8 €1),
[ = A

s i _11/___m _ d* (14 )T

Then we have uniformly in d and 1,

16) sy p) = > 2 ”I(Naatu)J’ 2 E(a)"’“(”i'\ﬁl’t") *

i Ni>1,
if  Ni=1.

< Na% '\ d Nat-% o\ d
NassX NoX
’ z(a) Na z{a) (Na -
) 2 Naal’“(“;r’**% L wen g B
L NaX ' NaX

{5} We consider separately the cases (1) ¢, (g) = ¢ (g); ({1} @y (g) = 1; (i) L < ¢y (@)
< @(g). In the case (i} in any class & there is an q with N¥a = 1(modg). In easa (i)
there is no other yyel’ than the prineipal one, which malkes the condition Ng
= 1(modq) superfluous. In cage (iii) there is in I'; a character y, which takes at leagt
two different values at the normresidlues (modg) of ®; and as many at thosoe of Ry
{since by (9) the residues of & ave thosc of & multiplied by a suitable number

ar = ¥a(modg) with ae$;). Henee therve is at least one aeRy such that x,(Na)ye (S}
= 1, efe.

icm

On the zeros of a class of L-funclions 157

where the 3; are appropriate funclions such that for j =1,2,3,4
1 in any case,
FTM i o> 1(a+3)logd

with an absolule constant in the notaiion (7).
For the proof see [5], Corollary.

Lvwa 4. Let ©(y,) be defined by (2) and let a, be any complexr numbers.
Then

ay Y ;’lruﬂ)lBL >

=X Y+ U

(17) @, 1) £

x:; (‘W") an

< 2-3(log X)max (X% T) la, |2,
Y+isns¥+U
provided that X is greater than some numerical constant.
This is Theorem 3 of [3].

LevMMA B. Let a, (—N <<n<<N) be any complex numbers and let
S(w) = aneﬂn‘im_
—N<ns N
Further let ,, ©sy ..., G (B> 2) be any real numbers and define
]

= 1min {{;— @
Jk
where ||x|| stands for the distance from @ to the nearest integer. Then

3 |8(enl< 2 2max (87, 2¥) Y lan
l<t<lt ’ —Nn<N
This is Theorem 1 of [2].

LevwaA 6. Let ¢, , be any complew numbers, the other notation as before.
Then for X =2

(19) le 7 ()12 |

g X xg

2
Xg:('"') @ Cn,q
FHlgns¥+U

< max (X% XU) d(n)la,|® maxie, -|*
TH1Enar+T ¢

with an absolute constant in the n_otdtz’on.

() I have been informed by A. I. Vinogradev and A. P. Lavrik that a suitahle
approximate equation follows also from Lavrik’s paper in Izv. Akad. Nauk SSSR,
Ser. math. 32 (1968), pp. 134-185.
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Proof. Arguing as in the proof of Theorem 3 of {2] (but with
4,0, instead of a,) we deduce that

2 m e
S e e =o@ > |8,
i Yiisns¥+U 1Smeg 4
(mg)=1
and
.| -l , 2
ol@) > ( ) <¢da D 3,0, o 1T
l<mag dlg 1<m<q YH<€nsF+U
(e, q)=1 Mug)=1 din
where
ari
S x) = 2 @Oy g O
Fiisa<¥ U

Hence, by & denoting the left-hand side of (19), we have

Ggm'nm/q 2

(20) s<>ad M| 3 ao,
d<X  g<X 1<m<q P+ign<¥+U
dlg  (ma)= aln
For any fixed d let us write g = dg’, » = dn’.
(with @, = m/¢’, § = 1/g)

i 2
Z‘ Z iy Gy, g0

limﬁq YHisn<¥+U
(@)= dln

By the previous lemma

2in (mig’)|2
= d 2 2 : Lt Cian gt © i)

1<m=;q’ (F+1)/d<sn’ (X +U)/d
(m,g’)=1

<d-ma;x(q’, 1+ —E) 2

(F+1ya<n <(F+0)/d

[@ns Cane aqr 1%

Summing over all ¢ < X/d we obtain the inequality

2ninmlq 3
Y E a,,en,qe
X iemsyg Y4+lnsI+U

dlg (m,g)=1 dln

<)

_ [ ma:x[ Oam gt %
(T ddn < (F+T)d “

whence, after multiplying by d and summing over all d << X (cf. (20)),
{19} follows.
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LEuMa 7. Let 1,(n) be the number of solutions of the equation n
= &3 By . o . By 10 natural numbers. Then for any natural numbers k, 1 and for
x =3 we have

1
(21) D wln) <€ a(loga)®
] .
with the constant in the notation depending on k and 1.
For the proof see [10].

Proof of the mequality (33)

4. Let 3 he an arbitrarily large natural number and ¢ be a natural
number such that

1<y M.

Further let K be a given quadratic field of the discriminant 4 <1 and
let Z(8y x4y 2g) = £(8, %) (xmod[q]) be the function (1) (see Lemma 1).
The character ymod[q] may be imprimitive one. Then there is an ideal
fellg] (To = Tolxy)) and a primitive character y'(a)mod f, such that

I i—v @y
bltglptiy

(22) ' 5(3: x) = (s, 2"

where p denotes prime ideals (c¢f. [8], p. 102). In the case of a primitive
z =y the product iz empty and it has the value 1. In the present para-
graph we shall nge (16) with

8y =§ = }+1it, 8 = %,

(23) 1
=—V4|-Nfo, X =M1+t

where ¢ stands for some constant > 3*A42 The character ' being a pri-
Initive one we may replace (s, ¥*) in (22) by the four sums (16) (with *
instead of ¥) and a remaining term 0(1). If a i3 not divigible by any of
the prime ideals p under the product in (22), then by (1) and (12)

(24) 1/ (0) = g (Najyala),

Let ug partition the remaining ideals a info sets in such a manner that
all ideals of the same set have in coramon the same powers of prime idsals
dividing the square-free ideal

' T:L-‘"““HP

%' {0) = x(Na)ya(a).

(pllg, p1To)-
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This eommon divisor denoting by c¢ in case of the first sum we take hefore
the parenthesis y'(¢)/N¢*; for the other sums the corresponding factors
are 7 (/N5 ¢ ()N, ¥/ ()] N ¢ ™", respectively, Considering that
the product in (22) iz equivalent to the sum

u(B) 7' (6)

{#(B) -~ the Mobius function of ideals), we get the representation

u(B)y (B)

'(25) C(.SJ x) = Ng® {El+22+23+24+0(1)}
Bify .
where '
2 (¢) 25’ (ay) Na,c )
N D o

g
Noy<X/Nc

and, 5, X, X, stand for analogous sums with y' replaced by y’, s replaced
by 1—s or } and 5, veplaced by 4#,, 54 OF 7, (With ¢ in u; and », replaced
by 0). Hence by Cauchy’s inequality and by (24)

T A Naayelas) [ Nagc
Z Ny LT N1 d ) b

1

2

-+ 1

2 e
12l < 2..1 Ne¢
i Nalé:EWNE
Let a; (1<j<h <€1) run through the possible values of yga{a,). Then

1 Ko (Na) Nac
@9) e dg| 2 wamenlTg o
[ aq

Nass X|Ne
zR(ﬂ)=aj

2

where
2

Na1/2+1'.t’71 d ¥ 1

H

8, =k >

.oa
Nasa/Nc
xglo)=0y

s 3

a
B NeSNaLX|Ne
xao)=05

% Na) (Nac )

27
@ 2. (Na)

Nac 2
Na1,'2+ﬂ771 a 2

© = oM (1+ |¢))logt M.
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In what follows we choose & fizxed number D > 2 and we consider
merely numbers ge(1l, M] with the restriction

d(q) < D.

Then there are at most D* different values of ¥f, and, by (23), as many
values of d. Now let ns partition the characters y, into classes K, (v = 1,
2,... € D*) insuch a manner that for all % Of the same class U, the number
d in (27) ig the same one-valued function of ¢. Henee in estimating the sum

1
C 7 = —_— 2 '
(28) } |1 5 (P(g) S |T(?:q)| S;:
g Ly
dlg)<D

we may use (19) for each of the classes K, separately and add the results.
Since 7, (¥, ¢) €1, by (17), and since p(g) > g/loglogg if ¢ > 3 (of. [11],
p. 24), we deduce that

N5
V., <€ D*(loglog M)max (_M"‘, M_'Ti,.) YV d(n)

Nel 2o 7

n=g{Ne

{congider that there are no more than d{n) ideals g with Ng = n; ef. [9],
Satz 882). Hence, by (27), (26) and partial summation

(29) V, <€ D*M*{1+ hlogle M (14 J¢))loglog 3.
In order to estimate the sum
T o "
PR 2
S ‘P(Q) ‘> IT(XQH S:it

g<M Ly
A(g)<D

we gplit the interval #/N¢ < Na< X/Nc¢ inte <log M(1--]t) parts
{(U,20) where U =z az/M and get

(30) Ve=

1 \' 2
V, < DPlog M(1-+it))loglog M max E Zmax M |z{g)tx
2 X gu 4 rd
T 7 d%q)g])

Cos nNC 2
Z xg(%);’;i%’]l( q ;tH

UVa<2U

GM == Z 1 .
N ua=n
zgla)=ay

» ZQEK,,

X

where

Using Oauchy’s inequality, (19) and the estimate «,(¥, %) <y 1 for
y = a/M (cf. (17) and (27)) we prove that -

11 — Acta Arithmetica XVIII
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(81) V, <L Dlog* M(1+[t)) max max(M*, MU)

%{“Ug% véncay 0 nNc
%
< D?log? M(1+|t]) max wmax(M, 1) 2L (g U)
) X NC U
NcﬁU%m

<€ D* M log® M (1+|t)).

(”1 “jp )<e"p{ 2

] 4108'4

Since

1 1
Z e S ]7 11/5p
[ PiLal

{p denoting primes), from (26) and (28)—(31) we deduce that

} < (loglog ir)*

| 1
323 D oo D)l ne

<A %q
alg)y<D

L DM*(1+ [t])log® M (1+ [#]) (loglog M )*.

The same estimate holds if X in (32) is replaced by Xy, 2y, X, or by O(1).
Considering that by Cauchy’s inequality

(S < T1 Tas<r 342 comes,

blify Bl n

from (25), (1), (12}, (32) (and the analogous inequalities with Xy, ..., 0(1)
ingtead of X)) we deduce that

(33) 21 T 1L+, 2os 12012

ﬂq

<
d(q}th

K DM (14 [¢) Jog M (14 18]} -

Proof of the theorem

5. Let u(a} be the Mébius function of ideals and let y,(Na)yq(a)
= z{a),

(34) C Qs 1) = Qs 1y tm) = 2 pi{a) x(a) Na~,
NaéM2
(35) fls, ) = fls, Xur X)) = &8, %4y x0) D (5, Zar Xo)—1. |
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By (34), (18) and (21)

w33 Ztruﬂnﬂ QU+, 20, )12

xg Q<M
ao)<D

< M2

log* .

Bince, by (35),

s, )i <1412-@1 <
from i36) and (33) we deduce

1441212+ 11Q0,

) > 2 M)Z (e (1?2, 200 20)

e

< DML+ [t)log® ML (1 + [¢]).

Let
o = 1- !
T log MTC
By (35) and (34)
. _ ra(n)a,
f(Uo‘l’ 7, Z) n}ZMz %ﬂ”0+u

where @, = a,(xp) 18 In modulus < d{n)%. Writing

M, = M(log’.M.’l’}g
and using (21) we get

Flaytit, z) = L oy,

M2<HQM1

Splitting the last sum into <€log M, parts U <» <20 and using (18)
together with. Cauchy’s inequality we prove that

‘— S‘ T 1 (004 ity )12

< (log M) max

ML

o
) N o o,

Un<2lT
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Since by (21}

(2> 3),

Z A{n)® < z(logs)®

R

it follows thatb

@) > Fw Z )

e g

floo+it, Kot Xl

< (log M)
Now we introduce the integral function

H{g) = I_I n ” S C P Iﬂ))mq)

f4 g M qu‘l
CICIES Zpri

< (log MIHW,

where
e(xg) = (M) |v(x)

znd consider that any zero of (s, x,, xg) is also a zero (of at least the
same order) of the function 1— f2(s, x,, ze). Using (37) and (38) (which
are the analogues of [1], Lemmas 8 and 9) and arguing as in the proof
of [1], Theorem 5, we get (3).
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Diophantine approximation and certain sequences
of lattices

by

Worrsane M. Scmaapr (Boulder, Colo.)

In wmemory of H. Davenpori

1. Introduction. The present paper iz a continuation of the joint
work [2], [3] by Davenport and the author, but most of it can be read
independently.

Let ay, ..., a, be real numbers. There are two forms of Dirichlet’s
theovem on simultaneous approximation.

{a)} For any positive integer N there extsi iniegers oy, ...,wn, Y, nmot
all zero, and satisfying

L) g+ .. ooyl <N,

(b) for any positive integer N there are integers ®y, ..., @y, Y, not all
zero, with

max (@], ...y 2]} S N

(‘9") mﬁx(lﬁy—"ﬂ?ﬂ, ey ]any—mn.l) <N_17 |?l| ‘<\Nﬂ"

Now let A(ay, ..., a,; N) be the lattice in the space of dimension
(3) =n+t+1
with basis veetors
gr=(¥N"50,...,0,a,¥",

go= (0, N7 ..., 0, a, 5™,
() e
gn= (0,0,..., N7 a,N"),

g =(0,0,..,0, N%.

Torm {(a) of Dirichlet’s theorem says precisely that A{ay,...; a,; N)
has a nonzero point (namely 2, 9,+...+@,9,--¥g;) in the cube defined
by &<, ..., 16, 1,8 <1. Dirichlet’s theorem in form (a) can
be improved for particulat a,,..., a,; N if the lattice A{ai,..., 0.} N



