cm

Since by (21)

$$\sum_{n \leqslant x} d(n)^6 \ll x (\log x)^{63} \qquad (x \geqslant 3),$$

it follows that

(38)
$$\sum_{\chi_{\mathfrak{A}}} \sum_{q \leqslant M} \frac{1}{\varphi(q)} \sum_{\chi_{q}} |\tau(\chi_{q})|^{2} |f(\sigma_{0} + it, \chi_{q}, \chi_{\mathfrak{A}})|^{2}$$

$$\ll (\log M_1)^{65} < (\log MT)^{195}$$
.

Now we introduce the integral function

$$F(s) = \prod_{\substack{\chi_{\mathfrak{R}} \\ d(q) \leqslant D}} \prod_{\substack{\chi_{q} \in \Gamma_{1} \\ \chi_{q} \neq \chi_{q}^{0}}} (1 - f^{2}(s, \chi_{q}, \chi_{\mathfrak{R}}))^{e(\chi_{q})}$$

where

$$e(\chi_q) = (M!/q) |\tau(\chi_q)|^2$$

and consider that any zero of $\zeta(s, \chi_q, \chi_{\Re})$ is also a zero (of at least the same order) of the function $1-f^2(s, \chi_q, \chi_{\Re})$. Using (37) and (38) (which are the analogues of [1], Lemmas 8 and 9) and arguing as in the proof of [1], Theorem 5, we get (3).

References

- [1] E. Bombieri, On the large sieve, Mathematika 12 (1965), pp. 201-225.
- [2] H. Davenport and H. Halberstam, The values of trigonometric polynomial at well spaced points, Mathematika 13 (1966), pp. 91-96.
- [3] — Corrigendum and addendum, Mathematika 14 (1967), pp. 229-232.
- [4] E. Fogels, On the distribution of prime ideals, Acta Arith. 7 (1962), pp. 255-269.
- Approximate functional equation for Hecke's L-functions of quadratic field,
 Acta Arith. 16 (1969), pp. 161-178.
- [6] Большое решето, Latvijas PSR Zin. akad. Vēstis, Fiz. u. tehn. zin sēr. 4 (1969), pp. 1-14.
- [7] E. Hecke, Theorie der algebraischen Zahlen, Leipzig 1923.
- [8] E. Landau, Über Ideale und Primideale in Idealklassen, Math. Zeitschr. 2 (1918), pp. 52-154.
- [9] Vorlesungen über Zahlentheorie III, Leipzig 1927.
- [10] C. Mardjanichvili, Estimation d'une somme arithmétique, Comptes Rondus (Doklady) de l'Académie des Sciences de l'URSS, 22 (1939), pp. 387-389.
- [11] K. Prachar, Primzahlverteilung, Berlin 1957.

Received on 15. 2. 1970

ACTA ARITHMETICA XVIII (1971)

Diophantine approximation and certain sequences of lattices

by

Wolfgang M. Schmidt (Boulder, Colo.)

In memory of H. Davenport

1. Introduction. The present paper is a continuation of the joint work [2], [3] by Davenport and the author, but most of it can be read independently.

Let a_1, \ldots, a_n be real numbers. There are two forms of Dirichlet's theorem on simultaneous approximation.

(a) For any positive integer N there exist integers $x_1, ..., x_n, y$, not all zero, and satisfying

(1)
$$|a_1x_1 + \ldots + a_nx_n + y| < N^{-n}, \quad \max(|x_1|, \ldots, |x_n|) \le N;$$

(b) for any positive integer N there are integers x_1, \ldots, x_n, y , not all zero. with

(2)
$$\max(|a_1y-x_1|,\ldots,|a_ny-x_n|) < N^{-1}, \quad |y| \leq N^n.$$

Now let $\Lambda(a_1, ..., a_n; N)$ be the lattice in the space of dimension

$$(3) l = n+1$$

with basis vectors

Form (a) of Dirichlet's theorem says precisely that $\Lambda(a_1, \ldots, a_n; N)$ has a nonzero point (namely $x_1 \mathbf{g}_1 + \ldots + x_n \mathbf{g}_n + y \mathbf{g}_l$) in the cube defined by $|\xi_1| \leq 1, \ldots, |\xi_n| \leq 1, |\xi_l| < 1$. Dirichlet's theorem in form (a) can be improved for particular $a_1, \ldots, a_n; N$ if the lattice $\Lambda(a_1, \ldots, a_n; N)$

has a nonzero point in some smaller cube $|\xi_1| \leq c, \ldots, |\xi_l| \leq c$ where 0 < c < 1. Thus for given $\alpha_1, \ldots, \alpha_n$, to study refinements of Dirichlet's theorem in form (a) it is natural to study the sequence of lattices $A(\alpha_1, \ldots, \alpha_n; N)$ with $N = 1, 2, \ldots$

Form (b) of Dirichlet's theorem says that the lattice $\Lambda^*(a_1, \ldots, a_n; N)$ with basis vectors

$$egin{aligned} m{g_1^*} &= (N,0,\ldots,0,0), \ m{g_2^*} &= (0,N,\ldots,0,0), \ &\ldots &\ldots &\ldots \ m{g_n^*} &= (0,0,\ldots,N,0), \ m{g_1^*} &= (-a_1N,-a_2N,\ldots,-a_nN,N^{-n}) \end{aligned}$$

has a nonzero point (namely $x_1 \boldsymbol{g}_1^* + \ldots + x_n \boldsymbol{g}_n^* + y \boldsymbol{g}_l^*$) in the cube $|\xi_1| < 1, \ldots, |\xi_n| < 1, |\xi_i| \leqslant 1$. The lattice $\Lambda^*(a_1, \ldots, a_n; N)$ is polar to $\Lambda(a_1, \ldots, a_n; N)$. To study refinements of Dirichlet's theorem in form (b) for fixed a_1, \ldots, a_n , one has to look at the sequence of lattices $\Lambda^*(a_1, \ldots, a_n; N)$ with $N = 1, 2, \ldots$

Given a point $\boldsymbol{x}=(x_1,\ldots,x_l)$, write $|\boldsymbol{x}|=\max(|x_1|,\ldots,|x_l|)$. The determinant $\boldsymbol{\Delta}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_l)$ of l points $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_l$ in l-dimensional space E^l is defined as the $l\times l$ -determinant with row vectors $\boldsymbol{x}_i=(x_{i1},\ldots,x_{il})$ $(1\leqslant i\leqslant l)$. We now recall that the lattices of determinant 1 in E^l form a topological space (see [1], § V.3.2). A sequence of lattices $\boldsymbol{\Lambda}_1,\boldsymbol{\Lambda}_2,\ldots$ is everywhere dense in this space precisely if for every s>0 and every l-tuple of points $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_l$ with determinant 1 there is a lattice $\boldsymbol{\Lambda}_k$ in the sequence with points $\boldsymbol{h}_1,\ldots,\boldsymbol{h}_l$ in $\boldsymbol{\Lambda}_k$ such that

$$|x_i-h_i|<\varepsilon \quad (i=1,\ldots,l).$$

It is easy to see that a sequence of lattices $\Lambda_1, \Lambda_2, \ldots$ is everywhere dense if and only if the sequence of polar lattices $\Lambda_1^*, \Lambda_2^*, \ldots$ is everywhere dense.

THEOREM 1. The sequence of lattices A(a; N) with N = 1, 2, ... is everywhere dense in the space of lattices with determinant 1 in E^2 if and only if every block of positive integers occurs infinitely often in the sequence of partial quotients of the expansion of α as a simple continued fraction.

Almost every α (in the sense of Lebesgue measure) has an expansion as a simple continued fraction with the property described in the theorem. We therefore have the following

COROLLARY. For almost every α , the sequence $\Lambda(\alpha, N)$ with $N=1,2,\ldots$ is everywhere dense.

When n > 1 an appeal to continued fractions is not possible.

THEOREM 2. Let $n \ge 1$ and let N_1, N_2, \ldots be real numbers which increase to infinity. Then for almost every n-tuple (a_1, \ldots, a_n) , the sequence of lattices $A_k = A(a_1, \ldots, a_n; N_k)$ with $k = 1, 2, \ldots$ is everywhere dense in the space of lattices of determinant 1 in E^l .

This result sharpens Theorem 3 of [3]. By a remark made above it remains true if the lattices $\Lambda(a_1, \ldots, a_n; N_k)$ are replaced by the polar lattices $\Lambda^*(a_1, \ldots, a_n; N_k)$.

Siegel [6] defined a measure on the space of lattices of determinant 1. Hence it is natural to ask whether a sequence of lattices is uniformly distributed in this space. It is easy to see that the lattices $A(a_1, \ldots, a_n; N)$ change rather slowly as N varies, and hence $A(a_1, \ldots, a_n; N)$ with $N = 1, 2, \ldots$ is not uniformly distributed for any a_1, \ldots, a_n . On the other hand it is likely that the lattices $A(a_1, \ldots, a_n; 2^k)$ with $k = 1, 2, \ldots$ are uniformly distributed for almost every (a_1, \ldots, a_n) . Nothing in this direction will be proved in the present paper.

2. The necessity of the continued fraction condition. We shall adopt the notation of [4], chapter X, for continued fractions. Thus $[a_0, a_1, \ldots, a_n]$ is the rational function of a_0, \ldots, a_n defined inductively by $[a_0] = a_0$ and by $[a_0, a_1, \ldots, a_k] = a_0 + [a_1, \ldots, a_k]^{-1}$ $(k = 1, 2, \ldots)$. Every irrational number a has a unique expansion as an infinite continued fraction $a = [a_0, a_1, a_2, \ldots] = \lim_{n \to \infty} [a_0, a_1, \ldots, a_n]$ where a_0 is an integer and a_1, a_2, \ldots are positive integers. The numbers a_0, a_1, a_2, \ldots are the partial quotients, and the rationals $[a_0, a_1, \ldots, a_n]$ are the convergents of the continued fraction. One puts $[a_0, a_1, \ldots, a_n] = p_n/q_n$ where p_n, q_n are in their lowest terms, and $a'_n = [a_n, a_{n+1}, \ldots]$.

Suppose now that A(a; N) with N = 1, 2, ... is everywhere dense. Then a must be irrational. Let x_1, x_2 be the points

$$\boldsymbol{x}_1 = (2\varepsilon, -1 + 2\varepsilon y), \quad \boldsymbol{x}_2 = (1, y)$$

where $0 < y < \frac{1}{2}$ and where $\varepsilon > 0$ is small. We have $A(x_1, x_2) = 1$, and hence there are lattice points h_1 , h_2 in some lattice $A(\alpha; N)$ of the sequence with $|h_i - x_i| < \varepsilon$ (i = 1, 2). We may write

(5)
$$h_1 = ag_1 + bg_2, \quad h_2 = cg_1 + dg_2,$$

where g_1, g_2 are given by (4) and where the coefficients a, b, c, d are integers. Now $ad-bc = \Delta(h_1, h_2)$, and this is close to $\Delta(x_1, x_2) = 1$ if ε is small. Hence

$$ad - bc = 1$$

if $\varepsilon > 0$ is small. By virtue of (5) we have $h_1 = (aN^{-1}, aaN + bN)$, $h_2 = (eN^{-1}, eaN + dN)$, and hence the inequalities $|h_i - x_i| < \varepsilon$ (i = 1, 2) imply that

(7)
$$|aN^{-1}-2\varepsilon|<\varepsilon, \quad |aaN+bN+1-2\varepsilon y|<\varepsilon,$$

(8)
$$|cN^{-1}-1| < \varepsilon, \quad |c\alpha N + dN - y| < \varepsilon.$$

In particular we have a>0, c>0 if $\varepsilon>0$ is small. We further have $a|aa+b|<3\varepsilon N|aa+b|<3\varepsilon(1+\varepsilon)$ by (7), and hence $a|aa+b|<\frac{1}{2}$ if ε is small. It follows from a well known theorem (e.g. Theorem 184 of [4]) that -b/a is a convergent to a, say $-b/a=p_h/q_h$. By (6), the numbers a, b are coprime, and by (7) we have aa+b<0. Hence $a=q_h$, $b=-p_h$, and b is odd. Similarly from (8) we obtain that $c|ca+d|<(1+\varepsilon)N|ca+d|<(1+\varepsilon)(y+\varepsilon)<\frac{1}{2}$ if ε is small, since $0< y<\frac{1}{2}$. Thus also -d/c is a convergent of a, say $-d/c=p_h/q_h$. Using (6) and (8) one sees that $c=q_h$, $d=-p_h$, and that k is even. One sees from (7), (8) that

$$|q_k a - p_k| = |ca + d| < |aa + b| = |q_k a - p_k|,$$

since $0 < y < \frac{1}{2}$ and since ε is small, and therefore one has k > h. Finally, $q_k p_h - q_h p_k = ad - bc = 1$ implies that h = k - 1. For otherwise we would have h < k - 1 and

$$(q_h q_k)^{-1} = (p_h/q_h) - (p_k/q_k) > (p_h/q_h) - (p_{k-1}/q_{k-1})$$

 $\geq (q_h q_{k-1})^{-1} > (q_h q_k)^{-1},$

a contradiction. Altogether we have

(9)
$$a = q_{k-1}, \quad b = -p_{k-1}, \quad c = q_k, \quad d = -p_k.$$

The inequalities (7), (8) imply that

$$(10) q_{k-1}/q_k = a/c < 3\varepsilon (1-\varepsilon)^{-1} < 4\varepsilon$$

if ε is small. We also have

$$\begin{aligned} |q_k(aq_k-p_k)-y| &= |c(ac+d)-y| \leqslant |N(ac+d)-y| + |N-c||ac+d| \\ &< \varepsilon + N\varepsilon(y+\varepsilon)N^{-1} < 3\varepsilon. \end{aligned}$$

But by [4], § 10.9,

$$q_k(aq_k-p_k)=q_k(-1)^k(a'_{k+1}q_k+q_{k-1})^{-1}=(a'_{k+1}+(q_{k-1}/q_k))^{-1}.$$

Thus $|(a'_{k+1}+(q_{k-1}/q_k))^{-1}-y| < 3\varepsilon$, whence $|a'_{k+1}+(q_{k-1}/q_k)-y^{-1}| < 4y^{-2}\varepsilon$ if $\varepsilon > 0$ is small, and using this together with (10) we obtain

$$|a'_{k+1}-y^{-1}|<10y^{-2}\varepsilon$$
.

Since $\epsilon > 0$ was arbitrarily small, the sequence a'_1, a'_2, \ldots comes arbitrarily close to y^{-1} . Since y was arbitrary in $0 < y < \frac{1}{2}$, the sequence is everywhere dense on the half line x > 2. Since $a'_k = a_k + (a'_{k+1})^{-1}$, the

sequence a'_1, a'_2, \ldots is in fact dense on x > 1. From this it follows easily that every block of positive integers occurs infinitely often among a_1, a_2, \ldots

3. The sufficiency of the continued fraction condition.

LEMMA 1. Suppose every block of positive integers occurs infinitely often among a_1, a_2, \ldots Then the points

$$(q_n/q_{n-1}, a'_{n+1})$$
 $(n = 2, 4, 6, ...)$

are everywhere dense in the quadrant x > 1, y > 1 of the plane. The same is true with n = 3, 5, 7, ...

Proof. Let x>1, y>1, and suppose $\varepsilon>0$ is small. There are integers b_0,b_1,b_2,\ldots,b_s such that every number $x'=[b_0,b_1,\ldots,b_s,b_{s+1},\ldots,b_t]$ with arbitrary t and b_{s+1},\ldots,b_t satisfies $|x'-x|<\varepsilon$. There are integers c_0,c_1,\ldots,c_r such that every number $y'=[c_0,c_1,\ldots,c_r,c_{r+1},\ldots]$ with arbitrary c_{r+1},\ldots satisfies $|y'-y|<\varepsilon$. Now suppose n is large and such that

(11)
$$a_{n-s} = b_s, \ldots, a_{n-1} = b_1, a_n = b_0, \\ a_{n+1} = c_0, a_{n+2} = c_1, \ldots, a_{n+r+1} = c_r.$$

Since $q_n/q_{n-1} = [a_n, a_{n-1}, ..., a_1]$ ([5], § 11), we then have $|(q_n/q_{n-1})-x| < \varepsilon$, and similarly we have $|a'_{n+1}-y| < \varepsilon$. But (11) happens for infinitely many values of n. Since every block of integers occurs in $a_1, a_2, ...$, there are in fact infinitely many values of n for which (11) holds both for n and for n' = n + 2r + 2s - 1. But n, n' have opposite parity, and hence there will in fact be infinitely many even as well as infinitely many odd n with (11). This proves the lemma.

We now have to show that for any two points x_1 , x_2 with $A(x_1, x_2) = 1$, there are lattice points h_1 , h_2 in some lattice A(a; N) with $|h_i - x_i| < \varepsilon$ (i = 1, 2). We lose no generality by restricting ourselves to points x_1, x_2 which span a lattice A which has no points on the coordinate axes except the origin. Let $y_1 = (x_1, y_1)$ be a minimal point in A, i.e. assume that $y_1 \neq 0$ and that there is no point $(x_1', y_1') \neq 0$ in A with $|x_1'| < |x_1|$, $|y_1'| < |y_1|$. By replacing y_1 by $-y_1$ if necessary, we may assume that $x_1 > 0$. Let $x_1 = (x_1, x_2) \neq 0$ be a point with $|x_2| < x_1$ and with $|x_2|$ as small as possible. Then $x_1 = 0$ with

$$|x| < |x_1|, \quad |y| < |y_2|.$$

We may assume that $x_2 > 0$. The point $(x, y) = (x_1 - x_2, y_1 - y_2)$ has $0 < x < x_1$, and hence by the impossibility of (12) it has $|y| = |y_1 - y_2|$ $\ge |y_2|$. Since $|y_1| < |y_2|$, this implies that y_1, y_2 are of opposite sign.

Since there is no nonzero point in the region defined by (12), the triangle $0, y_1, y_2$ contains no lattice points but its vertices, and

$$\Delta(y_1, y_2) = x_1 y_2 - x_2 y_1 = \pm 1.$$

One has

$$|y_1|(x_1+x_2) < |y_1|x_2+|y_2|x_1 = |y_1x_2-y_2x_1| = 1$$

and therefore

$$\frac{1}{|x_1y_1|} - \frac{x_2}{x_1} = \frac{1 - x_2|y_1|}{|x_1y_1|} > 1.$$

It will suffice to find points f_1 , f_2 of $\Lambda(\alpha; N)$ which are close to y_1 , y_2 , respectively. For since y_1 , y_2 form a basis of Λ , we have $x_i = c_{i1}y_1 + c_{i2}y_2$ (i = 1, 2), and if f_1 , f_2 are close to y_1 , y_2 , then $h_i = c_{i1}f_1 + c_{i2}f_2$ is close to x_i (i = 1, 2). From here on, y_1 , y_2 will be fixed. Now choose n even if $y_1 > 0$, and n odd if $y_1 < 0$, and such that

$$|(q_n/q_{n-1})-(x_1/x_2)|<\delta, \qquad \left|a'_{n+1}-\left(\frac{1}{|x_1y_1|}-\frac{x_2}{x_1}\right)\right|<\delta,$$

where δ is some small positive quantity. Let N be an integer with $|Nx_2-q_{n-1}|<|x_2|$. Then

$$|(q_{n-1}/N) - x_2| < \delta$$

if n and hence N is large. We also have

$$||Nx_1-q_n|| = \left|\frac{x_1}{x_2}(Nx_2-q_{n-1})+q_{n-1}\left(\frac{x_1}{x_2}-\frac{q_n}{q_{n-1}}\right)\right| < x_1+q_{n-1}\delta \ll N\delta,$$

whence

$$|(q_n/N) - x_1| \ll \delta.$$

(The constants in \ll depend only on y_1, y_2 .) We note that by a formula in [4], § 10.9,

$$\begin{split} |N(aq_n-p_n)-y_1| &\leqslant \left|\frac{q_n}{x_1}(aq_n-p_n)-y_1\right| + \left|\frac{q_n}{x_1}-N\right| |aq_n-p_n| \\ &\leqslant x_1^{-1} \left|\frac{(-1)^n q_n}{a_{n+1}' q_n + q_{n-1}} - x_1 y_1\right|_1 + \delta N(a_{n+1}' q_n + q_{n-1})^{-1} \\ &\leqslant \left|\left(a_{n+1}' + (q_{n-1}/q_n)\right)^{-1} - |x_1 y_1|\right| + \delta. \end{split}$$

But

$$\begin{aligned} \left| a_{n+1}' + (q_{n-1}/q_n) - |x_1y_1|^{-1} \right| \\ & \leq \left| a_{n+1}' - (|x_1y_1|^{-1} - (x_2/x_1)) \right| + |(q_{n-1}/q_n) - (x_2/x_1)| \ll \delta, \end{aligned}$$

$$|N(aq_n-p_n)-y_1| \ll \delta.$$

Putting

$$\begin{split} f_1 &= q_n \boldsymbol{g}_1 - p_n \boldsymbol{g}_2 = (q_n N^{-1}, \, q_n \alpha N - p_n N) = (a_1, \, b_1), \text{ say,} \\ f_2 &= q_{n-1} \boldsymbol{g}_1 - p_{n-1} \boldsymbol{g}_2 = (q_{n-1} N^{-1}, \, q_{n-1} \alpha N - p_{n-1} N) = (a_2, \, b_2), \text{ say,} \\ \text{we have} \end{split}$$

$$|a_1-x_1| \ll \delta$$
, $|a_2-x_2| \ll \delta$, $|b_1-y_1| \ll \delta$

by (13), (14) and (15). Since

$$a_1b_2-a_2b_1=-(q_np_{n-1}-p_nq_{n-1})=(-1)^{n-1}=x_1y_2-x_2y_1,$$

it follows that also $|b_2-y_2| \ll \delta$. Hence we have $|f_i-y_i| < \varepsilon$ (i=1,2) provided $0 < \delta < \delta(\varepsilon)$.

4. The method of proof of Theorem 2. We shall restrict ourselves to the case when n=2, l=3. Throughout the proof, x, y, \ldots will denote points in 3-dimensional space. We shall write $\Lambda(\alpha, \beta; N)$ instead of $\Lambda(a_1, a_2; N)$.

Let x_1, x_2, x_3 be points with $\Delta(x_1, x_2, x_3) = 1$. Further let $T(N; x_1, x_2, x_3; \varepsilon)$ consist of all pairs (α, β) for which the lattice $\Delta(\alpha, \beta; N)$ contains points h_1, h_2, h_3 with $|h_i - x_i| < \varepsilon$ (i = 1, 2, 3).

PROPOSITION. There is a $\theta = \theta(x_1, x_2, x_3; \epsilon) > 0$ such that for every square Q of the type

$$(16) |\alpha - \alpha_0| < \eta, |\beta - \beta_0| < \eta$$

and every $N > N_0(Q; \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3; \varepsilon)$ the intersection of Q with $T(N) = T(N; \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3; \varepsilon)$ has measure

(17)
$$\mu(Q \cap T(N)) \geqslant \theta \mu(Q) = \theta 4 \eta^2.$$

Thus the complement of

$$T(x_1, x_2, x_3; \varepsilon) = \bigcup_{k=1}^{\infty} T(N_k; x_1, x_2, x_3; \varepsilon)$$

has density $\leq 1-\theta < 1$ everywhere. Since a measurable set has density 1 at almost all of its points, the complement of $T(x_1, x_2, x_3; \varepsilon)$ has measure zero, and almost every point (α, β) belongs to $T(x_1, x_2, x_3; \varepsilon)$. Since this is true for every $\varepsilon > 0$ and every x_1, x_2, x_3 with determinant 1, Theorem 2 follows. It remains to prove the proposition.

5. The set $\Sigma(N)$. Write $x_i = (\xi_{i1}, \xi_{i2}, \xi_{i3})$ (i = 1, 2, 3). We may assume that x_1, x_2, x_3 satisfy only the equation $\Delta(x_1, x_2, x_3) = 1$ and equations implied by it, i.e. that x_1, x_2, x_3 is a generic point of the surface

173

in 9-dimensional space defined by $\Delta(x_1, x_2, x_3) = 1$. From now on, x_1, x_2, x_3 will be fixed. The constants in \ll may depend on x_1, x_2, x_3 and on δ , but they will be independent of N and of squares Q.

Let $\Sigma(N) = \Sigma(N; \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3; \delta)$ consist of all pairs (a, β) for which the lattice $A(a, \beta; N)$ contains points $\boldsymbol{h}_1, \boldsymbol{h}_2, \boldsymbol{h}_3$ with

$$\Delta(\boldsymbol{h}_1, \boldsymbol{h}_2, \boldsymbol{h}_3) = 1$$

and with

$$(19) |h_1 - x_1| < \delta, |h_2 - x_2| < \delta, |h_{31} - \xi_{31}| < \delta, |h_{32} - \xi_{32}| < \delta$$

where $h_3=(h_{31},\,h_{32},\,h_{33})$. Since $\Delta(h_1,\,h_2,\,h_3)=\Delta(x_1,\,x_2,\,x_3)=1$, the eight inequalities implicit in (19) imply a ninth one, namely $|h_{33}-\xi_{33}| \leqslant \delta$. Hence if δ is sufficiently small in relation to ε , then $|h_i-x_i|<\varepsilon$ (i=1,2,3), and $\Sigma(N;\,x_1,\,x_2,\,x_3;\,\delta)$ is contained in $T(N;\,x_1,\,x_2,\,x_3;\,\varepsilon)$. Hence it will suffice to prove the proposition above with ε replaced by δ and T(N) replaced by $\Sigma(N)$. It will suffice to prove the proposition for $0<\delta<\delta$, where $\delta_0=\delta_0(x_1,\,x_2,\,x_3)$ is arbitrarily small.

Recall that $\Lambda(\alpha, \beta; N)$ has the basis

(20)
$$\boldsymbol{g}_1 = (N^{-1}, 0, aN^2), \quad \boldsymbol{g}_2 = (0, N^{-1}, \beta N^2), \quad \boldsymbol{g}_3 = (0, 0, N^2).$$

Any three points, h_1 , h_2 , h_3 of $\Lambda(\alpha, \beta; N)$ may be written as

$$\boldsymbol{h}_1 = q_{11}\boldsymbol{g}_1 + q_{12}\boldsymbol{g}_2 + q_{13}\boldsymbol{g}_3,$$

(21)
$$\mathbf{h}_2 = q_{21}\mathbf{g}_1 + q_{22}\mathbf{g}_2 + q_{23}\mathbf{g}_3,$$

$$\boldsymbol{h_3} = q_{31}\boldsymbol{g_1} + q_{32}\boldsymbol{g_2} + q_{33}\boldsymbol{g_3}$$

with integer coefficients q_{ij} . For given integer points q_1, q_2, q_3 with $q_i = (q_{i1}, q_{i2}, q_{i3})$ (i = 1, 2, 3), let $F(N; q_1, q_2, q_3; \delta)$ be the set of pairs (α, β) for which h_1, h_2, h_3 as given by (20) and (21) satisfy (18) and (19). (F also depends on x_1, x_2, x_3 , but these points are fixed.) Now $\Delta(h_1, h_2, h_3) = 1$ is equivalent with

$$\Delta(\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3) = 1$$

and six of the eight inequalities implicit in (19) are equivalent with

$$(23) |q_{i1} - N\xi_{i1}| < N\delta, |q_{i2} - N\xi_{i2}| < N\delta (i = 1, 2, 3).$$

Thus $F(N; q_1, q_2, q_3; \delta)$ is empty unless (22) and (23) hold. But if these inequalities do hold, then (α, β) lies in $F(N; q_1, q_2, q_3; \delta)$ precisely if

(24)
$$\begin{aligned} |q_{11}\alpha + q_{12}\beta + q_{13} - \xi_{13}N^{-2}| &< \delta N^{-2}, \\ |q_{21}\alpha + q_{22}\beta + q_{23} - \xi_{23}N^{-2}| &< \delta N^{-2}. \end{aligned}$$

(These are the remaining two inequalities of (19).) Hence in this case $F(N; q_1, q_2, q_3; \delta)$ is the parallelogram $E(N; q_1, q_2; \delta)$ defined by (24). (Since x_1, x_2, x_3 are generic, and by (23), we have $q_{11}q_{22} - q_{12}q_{21} \neq 0$ if $\delta > 0$ is sufficiently small, which we may assume.)

LEMMA 2. Suppose $\delta > 0$ is sufficiently small, and the integer points q_1, q_2 satisfy (23) for i = 1, 2. Then $E(N; q_1, q_2; \delta)$ has area

$$\muig(E(N;\,oldsymbol{q_1},\,oldsymbol{q_2};\,\delta)ig)\gg N^{-6}$$

and diameter

$$d(E(N; q_1, q_2; \delta)) \ll N^{-3}.$$

Proof. This is Lemma 2 of [3].

LEMMA 3. Suppose N is large and suppose that integer points q_1 , q_2 satisfy (23) with i = 1, 2 and

$$\left\| \frac{q_{12}}{q_{22}} \frac{q_{13}}{q_{23}} \right| / \left| \frac{q_{11}}{q_{21}} \frac{q_{12}}{q_{22}} \right| - a_0 \right| < \eta/4,$$

(25)

$$\left\| egin{array}{c|c} q_{18} & q_{11} \\ q_{28} & q_{21} \end{array} \right| / \left| egin{array}{c|c} q_{11} & q_{12} \\ q_{21} & q_{22} \end{array} \right| - eta_0
ight| < \eta/4 \, .$$

Then $E(N; q_1, q_2; \delta)$ is contained in the square Q defined by (16).

Proof. This is Lemma 3 of [3].

Now let $E^*(N; \mathbf{q_1}, \mathbf{q_2}; \delta)$ be the parallelogram of points (α, β) which satisfy (24) with ξ_{13} , ξ_{23} replaced by zero. Now if (23) holds, then $|q_{11}q_{22}-q_{12}q_{21}| \gg N^2$, and $E(N; \mathbf{q_1}, \mathbf{q_2}; \delta)$ is obtained from $E^*(N; \mathbf{q_1}, \mathbf{q_2}; \delta)$ by translation by a vector of length $O(N^{-3})$.

LEMMA 4. Suppose q_1 , q_2 are part of a basis and satisfy (23) for i = 1, 2. Make the same assumptions on q'_1 , q'_2 . Then if $(q_1, q_2) \neq (q'_1, q'_2)$, the parallelograms $E^*(N; q_1, q_2; \delta)$ and $E^*(N; q'_1, q'_2; \delta)$ are disjoint.

Proof. This is Lemma 4 of [3].

LEMMA 5. Suppose N is large. Then a point (α, β) lies in $\ll 1$ parallelograms $E(N; \mathbf{q}_1, \mathbf{q}_2; \delta)$ with $\mathbf{q}_1, \mathbf{q}_2$ part of a basis and satisfying (23) with i = 1, 2.

Proof. This is Lemma 5 of [3].

6. The number of certain integer points. Let Z(N) be the set of triples of integer points q_1, q_2, q_3 with (22), (23) and (25). Suppose that q_1, q_2, q_3 and q_1, q_2, q_3' lie in Z(N). Then by (22) we have $q_3' = q_3 + uq_1 + vq_2$, with integer coefficients u, v. By (23) we have

$$|q_{31} - N\xi_{31}| < N\delta$$
 and $|q'_{31} - N\xi_{31}| < N\delta$,

whence $|q'_{31}-q_{31}|=|uq_{11}+vq_{21}|< 2N\delta$. In the same manner one finds that $|uq_{21}+vq_{22}|< 2N\delta$. Now by (23) again one has

$$\max(|q_{11}|, |q_{12}|, |q_{21}|, |q_{22}|) \ll N$$
 and $|q_{11}q_{22} - q_{12}q_{21}| \gg N^2$,

and hence u, v satisfy $|u| \ll \delta$, $|v| \ll \delta$. Hence if δ is sufficiently small we have |u| < 1, |v| < 1, whence u = v = 0, whence $q'_3 = q_3$.

We have shown that if q_1 , q_2 , q_3 and q'_1 , q'_2 , q'_3 are distinct triples in Z(N), then already the pairs q_1 , q_2 and q'_1 , q'_2 are distinct.

Let z(N) denote the number of elements of Z(N). By Lemma 3, the set $Q \cap \Sigma(N)$ contains at least z(N) parallelograms $E(N; q_1, q_2; \delta)$ where q_1, q_2, q_3 lie in Z(N). But these parallelograms need not be disjoint. By what we just said, the pairs q_1, q_2 are all distinct here. Hence by Lemma 5, any given point (α, β) lies in $\ll 1$ of these parallelograms. Since $E(N; q_1, q_2; \delta)$ has area $\mu(E) \gg N^{-6}$ by Lemma 2, we obtain

$$\mu(Q \cap \Sigma(N)) \gg N^{-6}z(N)$$
.

Therefore to prove (17) and thus Theorem 2 it will suffice to show that

$$(26) z(N) \gg \eta^2 N^6.$$

7. Some further lemmas.

LEMMA 6. Let 8 be a bounded Jordan measurable set in 6-dimensional space. Then as $t \to \infty$, the number of integer points $X = (x_1, x_2)$ in t8 such that x_1, x_2 is part of a basis of the integer lattice in 3-dimensional space is asymptotically equal to

(27)
$$t^6 V(S)(\zeta(3)\zeta(2))^{-1}.$$

Proof. This is the case m=2, l=3 of Theorem 4 in [3].

LEMMA 7. Suppose $0 < \varepsilon < 1$ and $l = (l_1, l_2, l_3)$ are given. There is a basis r_1, r_2, r_3 of the integer lattice such that every point x with

$$(28) x = u_1 r_1 + u_2 r_2 + u_3 r_3$$

where

$$|u_3| \leqslant |u_1| + |u_2|$$

satisfies

$$|u_3 r_3| \leqslant \varepsilon |x|$$

and

(31)
$$|lx| = |l_1x_1 + l_2x_2 + l_3x_3| \leqslant \varepsilon |x|.$$

Proof. We may assume that $l \neq 0$, and in fact we may assume that $|l_1| + |l_2| + |l_3| = 1$. The equation lx = 0 defines a plane P in E^3 . Let

 z_1, z_2 be two nonzero orthogonal points on P, and let $\varrho > 0$ be small. Let S be the set of points $X = (x_1, x_2)$ in E^6 with

$$|x_1-z_1|$$

Lemma 6 tells us that for sufficiently large t there will be points (x_1, x_2) in tS such that x_1, x_2 is part of a basis of the integer lattice. Let (x_1, x_2) be such a point, and choose x_3 such that x_1, x_2, x_3 is a basis. Now let v be a large integer and put

$$r_1 = vx_1 + x_2, \quad r_2 = vx_2 + x_3, \quad r_3 = x_1.$$

Then r_1, r_2, r_3 are again a basis of the integer lattice.

Now z_1 , z_2 were orthogonal, and if ϱ is sufficiently small, the points x_1 , x_2 will be "almost orthogonal", and if v is sufficiently large, the points r_1 , r_2 will be "almost orthogonal". To make this precise, we may ascertain that the angle between r_1 , r_2 lies between $\pi/3$ and $2\pi/3$, say. Then

$$|u_1 \mathbf{r}_1 + u_2 \mathbf{r}_2| \geqslant c_0 (|u_1| + |u_2|) \min(|\mathbf{r}_1|, |\mathbf{r}_2|),$$

where $c_0 > 0$ is an absolute constant, and (29) implies that $|u_x r_s| \le (|u_1| + |u_2|)|r_3|$. Now min($|r_1|, |r_2|$) becomes arbitrarily large for large v, while $|r_3|$ is independent of v. Thus for large v we have

$$|u_3\boldsymbol{r}_3|\leqslant \frac{1}{2}\,\varepsilon\,|u_1\boldsymbol{r}_1+u_2\boldsymbol{r}_2|\,,$$

and hence the point x given by (28) satisfies (30). Also

$$x = u_1(vx_1 + x_2) + u_2(vx_2 + x_3) + u_3x_1 = p + y$$

where

$$\boldsymbol{p} = vt(u_1\boldsymbol{z}_1 + u_2\boldsymbol{z}_2),$$

$$y = vu_1(x_1 - tz_1) + vu_2(x_2 - tz_2) + u_1x_2 + u_2x_3 + u_3x_1.$$

Here p lies in the plane P, and $|p| \ge vtc_0(|u_1| + |u_2|)$. On the other hand $|x_i - tz_i| < t\varrho$ (i = 1, 2), whence $|y| \le vt\varrho(|u_1| + |u_2|) + t(|u_1| + |u_2|)$. Thus if ϱ is sufficiently small and if v is sufficiently large, then $|y| \le \frac{1}{2} \varepsilon |p|$. But this yields (31), since

$$|\boldsymbol{l}\boldsymbol{x}| = |\boldsymbol{l}\boldsymbol{y}| \leqslant |\boldsymbol{y}| \leqslant \varepsilon |\boldsymbol{p}| - |\boldsymbol{y}| \leqslant \varepsilon (|\boldsymbol{p}| - |\boldsymbol{y}|) \leqslant \varepsilon |\boldsymbol{x}|.$$

Lemma 8. Suppose ε , $l = (l_1, l_2, l_3)$ are as in Lemma 7, and assume that $l_3 \neq 0$. There is a basis of the integer lattice such that the conclusions of Lemma 7 are valid with (30) replaced by

$$|u_3 \mathbf{r}_3| \leqslant \varepsilon(|x_1| + |x_2|),$$

and such that $r_{11}r_{22}-r_{12}r_{21}\neq 0$.

Proof. Since $l_3 \neq 0$, one may choose z_1, z_2 in the proof of Lemma 7 such that $z_{11}z_{22}-z_{12}z_{21}\neq 0$. There is a constant $c_1>0$ such that for arbitrary u_1, u_2 one has

$$|u_1z_{11}+u_2z_{21}|+|u_1z_{12}+u_2z_{22}|\geqslant c_1(|u_1|+|u_2|).$$

Now if ϱ is small and if v is large, the points r_1/vt and r_2/vt will be arbitrarily close to z_1, z_2 , respectively. Thus one will have $r_{11}r_{22}-r_{12}r_{21}\neq 0$ and

$$|u_1r_{11}+u_2r_{21}|+|u_1r_{12}+u_2r_{22}|\geqslant \frac{c_1}{2}\left(|u_1|+|u_2|\right)vt.$$

Hence

$$\begin{split} |x_1| + |x_2| &= |u_1 r_{11} + u_2 r_{21} + u_3 r_{31}| + |u_1 r_{12} + u_2 r_{22} + u_3 r_{32}| \\ &\geqslant \frac{c_1}{2} \left(|u_1| + |u_2| \right) vt - 2\varepsilon |x| \end{split}$$

by (30). Since $|x| \leq c_2 vt(|u_1| + |u_2|)$, we obtain $|x_1| + |x_2| \geqslant c_3 |x|$ if $\epsilon > 0$ is small. In conjunction with (30) this gives

$$|u_3 r_3| \leqslant \varepsilon c_3^{-1}(|x_1| + |x_2|).$$

Since $\varepsilon > 0$ was arbitrary, the lemma follows.

8. A lower bound for z(N). There are numbers l_1, l_2, l_3 , not all zero, with

$$l_1 \xi_{11} + l_2 \xi_{21} + l_3 \xi_{31} = 0$$
, $l_1 \xi_{12} + l_2 \xi_{22} + l_3 \xi_{22} = 0$,

In fact, since x_1, x_2, x_3 were generic, the number $l_3 \neq 0$. The inequalities

(33)
$$|q_{i1} - N\xi_{i1}| < N\delta/2, \quad |q_{i2} - N\xi_{i2}| < N\delta/2 \quad (i = 1, 2)$$

are stronger than the cases i=1,2 of (23). There exists an $\varepsilon=\varepsilon(\delta)>0$ such that (33) together with

$$|l_1q_{11}+l_2q_{21}+l_3q_{31}|< \epsilon \max(|q_{11}|,|q_{21}|,|q_{31}|),$$

(34)

$$|l_1q_{12}+l_2q_{22}+l_3q_{32}| < \epsilon \max(|q_{12}|, |q_{22}|, |q_{33}|)$$

implies (23) for i = 1, 2, 3.

Putting $l = (l_1, l_2, l_3)$ and

$$(35) q_1 = (q_{11}, q_{21}, q_{31}), q_2 = (q_{12}, q_{22}, q_{32}), q_3 = (q_{13}, q_{23}, q_{33}),$$

we may rewrite the inequalities (34) as

$$|\mathbf{l}\mathbf{q}_1| < \varepsilon |\mathbf{q}_1|, \quad |\mathbf{l}\mathbf{q}_2| < \varepsilon |\mathbf{q}_2|.$$

Let r_1, r_2, r_3 be the basis of Lemma 8. We may write

(37)
$$q_{1} = u_{11}\mathbf{r}_{1} + u_{21}\mathbf{r}_{2} + u_{31}\mathbf{r}_{3},$$

$$q_{2} = u_{12}\mathbf{r}_{1} + u_{22}\mathbf{r}_{2} + u_{32}\mathbf{r}_{3},$$

$$q_{3} = u_{13}\mathbf{r}_{1} + u_{23}\mathbf{r}_{2} + u_{33}\mathbf{r}_{3},$$

with integer coefficients u_{ij} . By (31) of Lemma 7 and 8, the inequalities (36) will be satisfied provided (29) holds, i.e. provided

$$|u_{2i}| \leq |u_{1i}| + |u_{2i}| \quad (i = 1, 2, 3)$$

holds for i = 1, 2. Define points

(39)
$$\mathbf{q}'_1 = (q'_{11}, q'_{21}, q'_{31}), \quad \mathbf{q}'_2 = (q'_{12}, q'_{22}, q'_{32}), \quad \mathbf{q}'_3 = (q'_{13}, q'_{23}, q'_{33})$$
 by

(40)
$$\begin{aligned} q_1' &= u_{11}r_1 + u_{21}r_2, \\ q_2' &= u_{12}r_1 + u_{22}r_2, \\ q_3' &= u_{13}r_1 + u_{23}r_2. \end{aligned}$$

By (32) of Lemma 8 we have

$$|q_i - q_i'| \le \varepsilon(|q_{1i}| + |q_{2i}|) \quad (i = 1, 2, 3)$$

provided (38) holds. Thus (38) implies that

$$|q_{ii}-q'_{ii}| \leq \varepsilon(|q_{1i}|+|q_{2i}|) \quad (i,j=1,2,3).$$

Thus if $\varepsilon > 0$ is sufficiently small and if (38) holds, then

$$(41) |q_{i1}' - N\xi_{i1}| < N\delta/4, |q_{i2}' - N\xi_{i2}| < N\delta/4 (i = 1, 2)$$

will imply (33). Similarly, (38), (41) together with

$$\left| \left| \frac{q_{12}'}{q_{22}'} \frac{q_{13}'}{q_{23}'} \right| / \left| \frac{q_{11}'}{q_{21}'} \frac{q_{12}'}{q_{22}'} \right| - \alpha_0 \right| < \eta/8,$$

$$\left| \left| \frac{q_{13}'}{q_{23}'} \frac{q_{11}'}{q_{21}'} \right| / \left| \frac{q_{11}'}{q_{21}'} \frac{q_{12}'}{q_{22}'} \right| - \beta_0 \right| < \eta/8$$

will imply (25).

Thus $z(N) \geqslant z'(N)$, where z'(N) is the number of integer bases u_1, u_2, u_3 with (38) such that the quantities q'_{ij} defined by (39) and (40) satisfy (41) and (42). The inequalities (41) and (42) with N=1 define a bounded set in 6-dimensional space for $(q'_{11}, q'_{12}, q'_{13}, q'_{21}, q'_{22}, q'_{23})$. This

ACTA ARITHMETICA XVIII (1971)

set has volume $\gg \eta^2$. Now $(q'_{11}, q'_{12}, q'_{13}, q'_{21}, q'_{22}, q'_{23})$ is related to $(\boldsymbol{u_1}, \boldsymbol{u_2}) = (u_{11}, u_{12}, u_{13}, u_{21}, u_{22}, u_{23})$ be the linear transformation (40) of determinant $(r_{11}r_{22}-r_{12}r_{21})^3 \neq 0$. Hence (41) and (42) with N=1 together with (39) and (40) define a bounded set for $(\boldsymbol{u_1}, \boldsymbol{u_2})$ in 6-dimensional space of volume $\gg \eta^2$. For arbitrary N we obtain the same set but blown up by the factor N. Hence by Lemma 6 there are $\gg \eta^2 N^6$ pairs of points $\boldsymbol{u_1}, \boldsymbol{u_2}$ which are part of a basis such that (41) and (42) are satisfied. There still are $\gg \eta^2 N^6$ such pairs $\boldsymbol{u_1}, \boldsymbol{u_2}$ all of whose components are different from zero.

It remains to be shown that for every such u_1 , u_2 one can find a third basis vector u_3 such that (38) holds. There certainly will be such a vector u_3 of the type $u_3 = \lambda_1 u_1 + \lambda_2 u_2 + u_0$, where $|\lambda_j| \leq \frac{1}{2}$ (j = 1, 2) and where u_0 is the point with $\Delta(u_1, u_2, u_0) = 1$ which is orthogonal to u_1 and u_2 . It is easy to see that the coordinates of u_0 have absolute values at most 1, and hence

$$|u_{0i}| \leq \frac{1}{2}|u_{1i}| + \frac{1}{2}|u_{12}| + 1 \leq |u_{1i}| + |u_{2i}|$$
 $(i = 1, 2, 3),$

since we made sure that $u_{1i} \neq 0$, $u_{2i} \neq 0$. Thus our u_3 does satisfy (38), and we have $z(N) \geqslant z'(N) \gg \eta^2 N^6$. This proves (26) and hence the theorem.

References

- [1] J. W. S. Cassels, An introduction to the geometry of numbers, Springer Grundlehren 99, 1959.
- [2] H. Davenport and W. M. Schmidt, Dirichlet's theorem on diophantine approximation, Rendiconti convegno di Teoria dei numeri, Roma 1968.
- [3] Dirichlet's theorem on diophantine approximation II, Acta Arith. 16 (1970), pp. 413-424.
- [4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 3rd ed., Oxford 1954.
- [5] O. Perron, Die Lehre von den Kettenbrüchen, Band 1, 3rd ed., Stuttgart 1954.
- [6] C. L. Siegel, A mean value theorem in the geometry of numbers, Ann. of Math. 46 (1945), pp. 340-347.

UNIVERSITY OF COLORADO Boulder, Colorado

Received on 25. 2, 1970

Bounds for solutions of diagonal inequalities

by

JANE PITMAN (Adelaide, South Australia)

In memory of H. Davenport

1. Introduction. In 1958 the following theorem was proved by Birch and Davenport [1]:

If $\lambda_1, \lambda_2, ..., \lambda_5$ are real numbers, not all of the same sign, such that $|\lambda_i| \ge 1$ for all i, then for any $\theta > 0$ the Diophantine inequality

$$|\lambda_1 x_1^2 + \ldots + \lambda_5 x_5^2| < 1$$

has a solution in integers x_1, \ldots, x_5 , not all zero, such that

$$|\lambda_1 x_1^2| + \ldots + |\lambda_5 x_5^2| < K_\theta |\lambda_1 \lambda_2 \ldots \lambda_5|^{1+\theta}.$$

A corresponding theorem on solutions of the diagonal cubic inequality

 $|\lambda_1 x_1^3 + \ldots + \lambda_9 x_9^3| < 1$

such that

$$|\lambda_1 x_1^3| + \ldots + |\lambda_9 x_9^3| < K_{\theta}' |\lambda_1 \ldots \lambda_9|^{(3/2)+\theta}$$

was proved in Pitman and Ridout [7]. In this paper I obtain a similar theorem for the diagonal inequality

$$|\lambda_1 x_1^k + \ldots + \lambda_n x_n^k| < 1,$$

where k is an integer, $k \ge 4$, and $\lambda_1, \ldots, \lambda_n$ are not all of the same sign if k is even. By a solution of a Diophantine equation or inequality I shall always mean a solution in integers x_1, \ldots, x_n , not all zero.

For the case when the λ_i/λ_j are not all rational, Davenport and Heilbronn [4] found that the condition $n \ge 2^k + 1$ is sufficient for the existence of infinitely many solutions of (1); later Davenport and Roth [5] showed that $n > ck \log k$ is sufficient if $k \ge 12$, and Danicic [2] showed that $n \ge 14$ is sufficient if k = 4.

In order to find bounds for solutions of (1) by analytic methods similar to those of [1] and [7], we must first deal independently with the