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Since by (21}

(2> 3),

Z A{n)® < z(logs)®

R

it follows thatb

@) > Fw Z )

e g

floo+it, Kot Xl

< (log M)
Now we introduce the integral function

H{g) = I_I n ” S C P Iﬂ))mq)

f4 g M qu‘l
CICIES Zpri

< (log MIHW,

where
e(xg) = (M) |v(x)

znd consider that any zero of (s, x,, xg) is also a zero (of at least the
same order) of the function 1— f2(s, x,, ze). Using (37) and (38) (which
are the analogues of [1], Lemmas 8 and 9) and arguing as in the proof
of [1], Theorem 5, we get (3).
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XVIII (1871)

Diophantine approximation and certain sequences
of lattices

by

Worrsane M. Scmaapr (Boulder, Colo.)

In wmemory of H. Davenpori

1. Introduction. The present paper iz a continuation of the joint
work [2], [3] by Davenport and the author, but most of it can be read
independently.

Let ay, ..., a, be real numbers. There are two forms of Dirichlet’s
theovem on simultaneous approximation.

{a)} For any positive integer N there extsi iniegers oy, ...,wn, Y, nmot
all zero, and satisfying

L) g+ .. ooyl <N,

(b) for any positive integer N there are integers ®y, ..., @y, Y, not all
zero, with

max (@], ...y 2]} S N

(‘9") mﬁx(lﬁy—"ﬂ?ﬂ, ey ]any—mn.l) <N_17 |?l| ‘<\Nﬂ"

Now let A(ay, ..., a,; N) be the lattice in the space of dimension
(3) =n+t+1
with basis veetors
gr=(¥N"50,...,0,a,¥",

go= (0, N7 ..., 0, a, 5™,
() e
gn= (0,0,..., N7 a,N"),

g =(0,0,..,0, N%.

Torm {(a) of Dirichlet’s theorem says precisely that A{ay,...; a,; N)
has a nonzero point (namely 2, 9,+...+@,9,--¥g;) in the cube defined
by &<, ..., 16, 1,8 <1. Dirichlet’s theorem in form (a) can
be improved for particulat a,,..., a,; N if the lattice A{ai,..., 0.} N
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hag a nonzero point in some smaller cube |£]<{e¢,..., |5 ¢ where
0 < ¢ < 1. Thus for given a,, ..., a,, to study refinements of Dirichlet’y
theorem: in form (a) it is natural to study the sequence of Iattices
Aoy, ..., 03 N) with ¥ =1,2, ...

Form (b) of Dirichlet’s theorem says that the lattice A*(a,, ..., a,; ¥)
with basis vectors

g: = (N:O: "'7070):
g: =(0,N,...,0,0),

.............

g: =(0!07"'?N?0)7
g? = (—uN, —a,N,..., —a, N, N°™

has @ nounzero point (namely =,¢7+...+2,95-+yg7) in the ocube
6] <3, .., 18] <1, |6 <1. The lattice A*(ey, ..., 0,3 N) is polar
to A(ay, ..., a,; N). To study refinements of Dirichlet’s theorem in form
(b} for fixed a,,...,a,, one has to look at the sequence of lattices
A {ag,y ooy u,3 N) with ¥ =1,2, ...

Given a point = = (@, ...,2;), write || = max(j@,|, ..., |«]). The
determinant . 4 (@, ..., %) of I points @, ..., ®, in I-dimensional space
B iy defined as the IxI-determinant with row vectors By = (T, veey By)
{1<4<1). We now recall that the lattices of determinant I in &' form
& topological space (see [1], § V.3.2). A sequence of lattices A, A,,...
is everywhere demse in this space precisely if for every s >0 and every
I-tuple of points @, ..., ; with determinant 1 there iz a lattice A4, n the
sequence with points h,, ..., By in 4, such that

|i1,‘,;—h1j<s (f- ml,-..,l).

It is easy to see that a sequence of lattices A,, 4,, ... is everywhere dense
if and only if the sequence of polar lattices A), A5, ... is everywhere
dense.

TusoreM 1. The sequence of lattices A(a; N) with N == 1,2, ... is
everywhere dense im the space of lattices with determinant 1 dn F2° if and
only if every block of positive integers cceurs infinitely often in the sepience
of partial gquotients of the expansion of a as a simple continued Sfraction.

Almost every o (in the sense of Lebesgue measure) has an expansion
a8 a simple continued fraction with the property described in the theoren..
‘We therefore have the following

COROLLARY. For almosi every a, the sequence Afe, N}y with N
=1, 2,... is everywhere dense.

When n > 1 an appeal to continued fractions iy not possible.
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TEEOREM 2. Let n 2> 1 and let N, N,, ... be real numbers which increase
lo infinity. Then for almost every n-tuple (ay, ..., a,), the sequence of lattices
dp = A{ayy ooy 0,3 Np) with & = 1,2, ... is everywhere dense in the space
of lattices of determinant 1 in E.

This result sharpens Theorem 3 of [3]. By & remark made above it
remains true if the lattices A(ay,..., a,; N;) are replaced by the polar
lattices A% oy, .vny @y; V).

Siegel [6] defined 2 measure on the space of Iathices of determinant 1.
Henee i is natural to ask whether a seguence of lattices is uniformily
distributed in this space. It is easy to see that the lattices A(ay, ..., a,; N)
change rather slowly as N varies, and hence A(ay,...,0,;N) with
N =1,2,... is not uniformly distriboted for any oy, ..., d,. On the
other hand it is likely that the lattices A(ay, ..., a,; 2y with k& = 1,3, ...
are wniformly distributed for almost every (a,,..., a,). Nothing in this
direction will be proved in the present paper.

2. The necessity of the continued fraction condition. We shall adopt
the notation of [4], chapter X, for continued fractions. Thus [a,, 4y, - .., €,]
iz the rational funetion of a, ..., s, defined mductively by [a] = @,
and by [ag, &y ...; 8] = ag-b[ay, .., 0.1t (B =1,2,...). Bvery irra-
tional number e has a unique expansion as an infinite continued fraction

a = [y, @y, G, ...] =lim[a,y, a;,..., a,] where a, iz an integer and
T
&y, (b, ... A6 positive integers. The numbers ag, @1, 4o, ... are the partial

quotients, and the rationals [ay, a., ..., &,] are the convergents of the
continned fraction. One puts [ag, &y, ..., a,} = p,/¢, where p,,q, are
in their lowest terms, and a, = [@,, Gpi1s ---]-

Suppose now that A(a; ¥) with ¥ =1, 2, .., is everywhere dense.
Then a must be irrationzl. Let &,, ®, be the points

&, = (28, —142sy), x, = (1,9)

where 0 <y < § and where £ > 0 is small. We have 4(®,,®,) = 1, and
hence there are lattice points k,, h,in some lattice 4 (a; ¥) of the sequence
with |h;—a;) << ¢ (i =1,2). We may write

(6) Iy = ag,-+bgs, . = ogytdgs,

where ¢, g, are giver by (4) and where the coefficients «, b, 0, d are

integers. Now ad— be = A{h,, h,), and this is close to A{x,x,) =1
if ¢ is small. Henee

{6) ad—be =1

it £>0 i3 small By virtue of () we have h; = (a¥N7%, eV} bN),
hy = (eN7Y, coN 4 4N}, and hence the ineqnalities ih,— x| <& (i =1, 2)
imply that :
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(N leN~1—2¢ <&, [aaN-+bN+1—2ay| <s¢,

(8) leN= 1| < &, |caN-+dN—y] <e.

In particular we have ¢ >0,¢>0 if >0 is small. We further
have alago-+b| < 3elV |aa-t-b| < 3:(1-¢) by (7), and hence alaa-+b| < 1
it ¢ is gmall. Tt follows from a2 well known theorem (e.g. Theorem 184
of [4]) that —b/e is a convergent to «, say —bja = p,/q,, . By (6), the
numbers a, b are coprime, and by (7) we have au--b < 0. Hence ¢ = ¢,
b= —p,, and % is odd. Similarly from (8) we obtain that o|ea+ d]
<1+ N|eat+dl < (L+e){yte} <F if ¢ is small, since 0 <y <}
Thus also —d/e is a convergent of a, say —d/c = p,/q.. Using (6) and (8)
one sees that ¢ = qy, d = —py, and that & is even. One sees from (7),
{8) that

gea— D) = lea+d| < |aatb| = |ga—pyl,

since 0 < ¥ < % and zince e is small, and therefore one has & > 4. Tinally,

G4, 05— 0Dy, = ad-—Dbe = 1. implies that & = k— 1. For otherwise we would
have b < k—1 and

(@n9:) " = (@) — (Prltr) > (Palan) — P /0-1)
1

2 @) > (@)™
a contradiction. Altogether we have

{9) & =qp 1y b= —py, ¢ =gy &= —P.
The inequalities (7), (8) imply that
(10) Gu1 /G = 8Jc < 3e(l—e)™t < de

if & is small. We also have

— o{aot d)— g} < |V (a6-t &) —g| - [¥ oot d]
< e+ Ne(y+e) N1 < 3e.

g (agy— P} — Y]

But. by [4], §10.9,
Gelade—25) = G{— 1 (o 1 gt @)™ = (B0 + (Gaoaf2e) "

Thus {6513 (ge-1/g)) " — 9| < 3¢, Whence gy, + (g i/an)—y 74 <4y™e
it 2 > 0 is small, and using this together with (10) we obtain
Iw;c+1“@l_1i < 10y%s.

Since &>>0 was arbitrarily small, the sequence &y, ds,... COMES
arbitrarily elose to.y~'. Since y was arbitrary in 0 < ¥ < %, the sequence
is everywhere dense on the half line # > 2. Since @, = o+ () 7", the
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sequence , s, ... is in fact dense on @ > 1. From this it follows easily
that every block of positive integers ocours infinitely often among a,, a,, ...

3. The sufficiency of the continned fraction condition.

LenawA 1. Swuppose every block of positive integers occurs infinttely
often among @y, @, ... Then the points

(@nln1s a’;:.—t—l) {n=2,4,6,...)

are everywhere dense im the quadront © > 1,y > 1 of the plane. The same
is true with n =3,5,7, ..

Proof, Let ¢ > 1, ¥y >1, and suppose &> 0 iz small. There are
integers by, by, by, ..., b, such that every number 2’ = [b, by, ..., b5,
Doyry -ooy O] with arbitrary ¢ and by, ..., b, satisfies |[#'—s| <& There
are integers ¢, ¢, ..., ¢, such that every number 3" = [0, ¢4, -
€1y ... With arbitrary ¢..q,...
is large and such that

b CT?‘
satisties |y’ —y| < & Now suppore =

@y s =bs: seny By g = blr &y, =b0}

{(11)

Qi = Oy Bppp = C1y -vvy Qyppyy = G

Since ¢,/¢,1 = [ty Gy -oey @] ([6], §11), Wwe then have |(g,/¢,—)—=|
< ¢, and similarly we have |a,.;—y| < e. But (11) happens for infinitely
many values of #. Since every block of integers occurs in @y, @, ..., there
are in fact infinitely many values of # for which (11) holds both for =
and for #' = a+42r4-2s—1. But «#, n’ have opposite parity, and hence
there will in fact be infinitely many even as well ag infinitely many odd »
with (11). This proves the lemma.

We now have to show that for any two points @,, 2, with 4(a,, &}
=1, there are lattice points hy, h, in some lattice A{e; N) with [h;— @
< & {# =1,2). We lose no generality by restricting ourselves to points
x,, &, which span a lattice 4 which has no points on the ccordinate axes
except the origin. Let y, = (wq, ¥;) be a minimal point in 4, Le. assume
that y, == 0 and that there is no point (z], %)) # 0 in 4 with | < |@al,
1] < lya). By replacing 3y, by -y, if neeessary, we may assume that
@, > 0. Let 4y = (2, ¥.) % 0 be a point with {»,] < a, and with lys| as
amall as possible. Then g, is again & minimal point, and in fact there
is no point (2, %) = 0 with
(12} 2] << lwal, Iyl <yl
We may assume that @, > 0. The point (@, y) = (&,-— &, ¥1—¥,) has
0 < @ < 1y, and hence by the impossibility of (12) it has ly| = 9 — Yy
> |ys|. Since |y,| << |y,|, thiz implies that y,, ¥y, are of opposite sign.
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Since there is no nonzero point in the region defined by (12), the triangle
0, y;, ¥y, containg no lattice points but its vertices, and

A(Yy, Yo} = @1 Ya— @Yy = £1.
One has

[yl (@ +@s) < |yl ot l9el &y = g1 @g—yay| = 1,

and therefore

1 zT’a 1_
I @y 1414] ~1.
2,94 &y |y 94

It will suffice to find points fy, f, of A(e; ¥) which are close to
Y1y Ys, zespectively. For sinee ¥, y, form a basis of 4, we have @; = ¢, y,+
+opY: (4 =1,2), and if fi, f, are close to Y, Y., then h; = ¢; fi+ Coffs
is close to &; (¢ = 1, 2). From here on, ¥, ¥, will be fizxed. Now choose n
even if ¥, > 0, and = odd if y; < 0, and such that

1(.%1,/!1%—1)_(.501]'502)] << 5, !a'i,?.-z-l — ( 1 . ‘:05’-) < (S,
i

1 94 &y

where & is some small positive gnantity. Let N he an integer with
1Nm2_ﬁ'_q“,——lf < [mzl - Then

{13) g/ N ) — @] <6

if » and henee N is large. We also have

@ x j
| Ny gy — —iuvwg—qn_IH-qM(w‘w — L) <obg, 10 <,
mz mz n—1
whence
(14) g/ V) —,) < 6.

o

{The constants in < depend only on y,, y,.) We note that by a formula
in [4],§10.9,

|
lN(ag?b_.pn)_yll = 1&(—39.'%_1011)%?]1 _l_ 'ql - I]agnu.pnl
&y Ly
- (—1)¢
1 n__ T N -1
< o a’;z+—-_1 PRI @Yy |1+ SN (418t Gut)

< ;(a’;z+1+(Qamw~1/Qn))d1m @4 H‘ 8.
But

I“:t+1+ (Qn—ll':'In) - |931y1|'1|
<t — {2927 — (@/00))| + | (@a—1/@a) — (@a))| <€ 6,

Diophantine approwimation and cerfain sequences of Iottices 171

and therefore
(10} \N (ag,— p)—Yaf <€ 6.
Putting
fl = 09— 2.9s = (6,57, g, aN —p,N) = (a,, by), say,

fo =tnrG1—Pn 192 = (¢, N7, @, aN—p, N} = (a5, b,), say,
‘we have

lar— 2] €6, a1 €3, [by—y. <8
by (13}, (14) and (15). Since
Grbs— by = — (@ Py 1—Prln—1) = (=1 = &1y2— &:¥1,

it follows that also |by—u. < 8. Hence we have |f—y;l <& (i =1,2)
provided 0 << & << 8(s).

4. The method of proof of Theorem 2. We ghall restrict ourselves
to the case when n == 2,1 = 3. Throughout the proof, 2, y, ... will denote
points in 3-dimensional space. We shall write A(e, f; N) instead of
Alayy az; N).

Let @, 2, @, be points with A{mw,, @, ) =1. Fuorther let
T(N; ®;, 2, Ty; £) consist of all pairs {«, §) for which the lattice A{e, §; ¥)
containg points h,, ke, hy with (k,—a) <& (0 =1,2,3).

PROPOSITION. There is o § = O{wy, s, @45 &) = 0 such that for every
square @ of the type

(16) la—ag) <7,  1f—Bol <1

and every N > N (Q; @, X, 2535 5) the dutersection of Q@ with T(N)
= T(N; ay, @y, E3; &) has measure -

(17) W@ A TII) = (@) = Odo?.

Thus the complement of

Ty, 2o, 25 2) :kbl T(Ny; 1, sy g5 £)
liag density < 1— 8 << 1 everywhere. Since a meagurable set has density 1
at almost all of its points, the complement: of T{w®;, ®,, ®;; &) has meagure
zero, and almost every point (a, f) belongs to T{x,, ®,, %,; 5). Since
thiz is true for every & >0 and every &, &,, #; with determinant I,
Theorem 2 follows. It remains to prove the proposition.

5- The set E(N)o Writ(:‘. mt' —_— (E‘il’ S‘:',ZJ E.l:a) ('il == 1,2, 3). “Te Iﬂﬂ:y

assume that a, ®,, &, satisfy ounly the equation A(w, #,, %) =1 and
equations implied by it, i.e. that &, ®,, ®; is a generic point of the surface
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in 9-dimensgional space defined by A(®y, ®,, @) = 1. From now on,
#,, &y, &y Will e fixed. The constants in < may depend on &, &,, o,
and on 8, but they will be independent of ¥ and of squares ¢.

Let Z(N) = Z(N;®;, %, &;; ) consist of all pairs («, f} for which
the lattice A(a, 8; N) contains points hy, hs, by with
(18) A (’ll? J';z: 17-3) = 1
and with

(19) [hy—xy) <8, [hy—&,] < 4, gy — Eazl < 8, |figa— &ga] < 0

where Ry = (Bar, Fgsy Rag). Since A(Ry, Iy, by) = A(®, 2,, 23) = 1, the
eight inequalities implicit in (19) imply & ninth one, namely |- £44| <€ 6.
Hence if § is sufficiently small in relation fto ¢ then |k;—ax) <«
(t =1,2,8), and Z(N; ®;, &, 4; §) is contained in T(N; ®,, @, &,; &).
Hence it will suffice to prove the proposition above with & replaced by § and
T(N) replaced by Z(N). It will suffice fo prove the proposition for 0 < §
< 8y, where &, = d,(m,, ®,;, ay) 18 arbitrarily small.
Recall that A(e,f; N) has the basis

(20) g, =(N"40,aN%, g,=(0,N"%8N", gs=1(0,0,%.
Any three points, h,, hy, by of A{a, #; N) may be written ns

Ry = ¢u 91+ G2+t C1a¥ss
(21) hy = o1 g1+ G292t 023 Fs5

hy = @nG1t a2 92095

with integer ecoefficients g;. For given integer points q,, 4., ¢; With

@ = (G G2y Gus) 0 =1,2,3), let F(N;q;, q» a3 6) be the set of

pairs (a, 8) for which h,, hy, by 28 given by (20) and (21) satisfy (18)

and (19). (#F also depends on &y, Xy, &, but these poinis are fixed.)
Now A(h,, hy, hy) =1 is equivalent with

(22) A(g1; 925 gs) =1
and six of the eight inequalities implicit in (19) are equivalent with
#3)  |gu~Né < N8,  lg—NEsl <Ns (i =1,2,3).

Thus F{N; q,, q., 43; 8) I8 empty unlesg (22) and (23) hold. But if these
inequalities do hold, then (a, p) lies in F(N; gy, ¢, Q,; ) precigely if

g1+ @128+ Gra— 'me_E[ < 8N"7,
G210 ua B+ Gag— Egg N 2| << 6N 2,

(24)
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(These are the remaining two inequalities of (19).} Hence in this case
(N5 4, Gsy Ga; 6) is the parallelogram H(N; q,, q.; ) defined by (24).
(Since ®, ¥y, ®, are generic, and by (23), we have ¢ ¢sn— Gl 0
if 6 = 0 is sufficiently small, which we may assume.)

LevmmMA 2. Suppose & >0 is sufficiently small, and the integer points
q. 9. satisfy (23) for i =1,2. Then E(N; qy, qs; 0) has area

p(H(N; gy, qz3 6)) > N°°
and diameter
A(B(N; qy, §o; 6)) < N2

Proof, This is Lemma 2 of [3].

LEMMA 3. Suppose N is large and suppose that integer poinls 4., 4.
safisfy (23) with 1 = 1,2 aend .

s s / oo Gao| < /4,
Gaz Gas Go1 G2 !

(25)
iz Gu / Gz Q12|m n
Gez G2 Qa1 Qoo o) <nft:

Then B(N; g1, Gs; 6) 15 contained in the square Q defined by (16).

Proof. This is Lemma 3 of [3].

Now let B*(N; q,, q,; 6) be the parallelogram of points (a, #) which
satisfy (24) with &4, .5 replaced by zero. Now if (23) holds, then
(@i ze— Qa2 laa} > N°, and B(N; g5, g5 0) is obtained from B*(N; 4, qz; 6)
by translation by a vector of length O(N3).

Levua 4. Suppose q, 4, are pmt of a basis and satisfy (23) for i=1,2
Make the same asmmmons on ¢y, q:. Then 'bf (Grs G2) 7 (905 G2), ihe
parallelograms E*(N; q,, q2; 8) and H*(N; gy, qz; 8) are disjoint.

Proof. Thig is Lemma 4 of [3].

LeMMA 5. Suppose N s large. Then a point (a, f) lies in <1 paralle-
lograms E(N:qq, g; 8) with gy, g, port of a basis and satisfying (23)
with 4 =1, 2.

Proof. Thiz i3 Lemma 5 of {3].

6. The number of certain integer points. Let Z(N) be the set of
triples of infeger points 91 Ay s with (22), (23) and (25). Suppose that
91, 92y G5 20d Qs, G, s lie In Z{¥). Then by (22) we have g = g+
L q, -+ vg,, with integer coefficients =, ». By (23) we have

lggy—NEgy} < Né  and gy —NEs| < N8,
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whence |gi— a1l = [4g1+v0s;] < 2N4. In the same manuer one finds
that |ugs, =+ ¢¢ss] < 2¥8. Now by (23) again one hag

max (gul, [quely [@a1ly 1geal) €N and  |gy1Gee—Gr1aGar] > NY,

and hence w, v satisfy |u| <8, |[v] <€ 4. Hence if ¢ iz sufficiently small
we have [u| <1, o) <1, whenee % =® =0, whence g5 = q,.

We have shown that if gy, q., q; and ¢, 9, q, are distinet triples .
in Z(N), then alveady the pairs ¢, ¢, and ¢q;, q; are distinct.

Let 2(¥) dencte the number of elements of Z (). By Lemma 3,
the set @ N Z(N) contains at least () parallelograms F(N; q,, q,; )
WACLe 4, Qs, ¢5 lie in Z (V). But these parallelograms need not be disjoint.
By what we just said, the pairs q., g, are all distinct here. Hence by
Lemma 5, any given point (a, ) lies in <€ 1 of these parallelograms.
Since H(N; q,, g;; 8) has area u(E)> N °* by Lemma 2, we obtain

ul@ 0 Z(N)) > N-%(N).
Therefore to prove (17) and thus Theorem 2 it will suffice to show that
(26) 2(N) > i NC.

7. Some further lemmas.

LEMMA 6. Let 8 be o bounded Jordan measurable set in G-dimensional
space. Then as t — oo, the number of integer points X = (@,, ®,) n 18
such that @y, @, is part of o basis of the integer lattice in 3-dimensional space
i asymptotically equal fo

@7 LY (8)(5(3)¢(2)7

Proof. This is the case m = 2,1 = 3 of Theorem 4 in [3].

Leyma 7. Suppose 0 <e <l and I = (I;,1,, ) are given. There is
o basis ¥y, vy, ¥y of the inleger lattice such that every point 2 with

(28) & = Uy P Uy Py g Ty
wliere

(29) a| << [y | g
satisfies

(3¢) |[ug2s] << &fael

and

(31) - ) = e A La+ Ta| < sl

Proof. We nay assume that I 5= 0, and in fact we may assume that
Hal+1lal+ I3l = 1. The equation Iz = 0 defines a plane P in . Let
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#y1, #s De two nonzero orthogonal points on P, and let o > 0 be small.
Let 8 be the set of pointg X = (@,, &,) in F° with

ey —e <o, ls— =] << .

Lemma 6 tells us that for sufficiently large ¢ there will Le points (@, @)}
in 8 such that @, @, is part of a basis of the integer lattice. Let (&, ®,)
be such a point, and choose @, such that ,, ®., ®; is a basis. Now let v
be a large integer and put

P, = 0% Xy, Py = VEy} Xy, T =&y,

Then »;, v, 13 are again a bagis of the integer lattice.

Now z, #, were orthogonal, and if ¢ is sufficiently small, the points
@, ¥, will be “almost orthogonal”, and if » is gufficiently large, the points
¥y, ¥y will be “almost orthogonal”. To make this precise, we may aseertain
that the angle between vy, v, lies between =/3 and 2x/3, say. Then

|9y Ty UsTa| 2 o[04 [ua)) min (4], |70]),

where ¢, >0 iz an absolute constant, and (29) implies that |uy?s!
<2 (g ]+ lagy]) gl . Now min(fry], 1]} becomes arbitrarily large for large v,
while !rg| is independent of v. Thus for large v 'we have

l2egry| < F&lury+ uamsl,
and hence the point ax given by (28) satisfies (30). Also
X = U (0@ Xo) + e (V8- ) Uz Xy = PY
where
P = vt 2+ 4 2y),
Y == Py By —121) + VU (B — IR} - U Lt U By Ug 4.

IHere p Hes in the plane P, and |p| == viey(|u,|+i%s]). On the other hand
|, —t2;] <ip (i =1, 2), whence |y| <€ vio(|%|+ ws])+2([ug] + |,]). Thus
if 4 ix sofficiently small and if v is suificiently large, then [y| < L=|p|.
But this yields (31), since

te| = ly| < [yl < e|pl—1yl < (] — 1Y) < s]x].

LEvva 8. Suppose &1 = (I, L, ly) are as in Lemme T, and assume
that I, == 0. There is a basis of the integer lattice such that the conclusions
of Lemma 7 are valid with (80) replaced by

(32) g rsl << e{loey[+ o[},

and such That 7y¥ee—T1a¥ay 7= O
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Proof. Since I, # 0, one may choose 2y, 2, in the proot of Lemma 7
such that 2, %.,— 232 = 0. There iz a constant ¢; > 0 such that for
arbitrary w,, %, one has

11078y~ Ug Zay | 1 {1 210+ Ua@as| 22 {2 [2a]) .

Now if ¢ is small and if o is large, the points #;/vf and »,/v
will be axbitrarily close to 2, #,, respestively. Thus one will have
Py Pas— F1a¥ey 7 0 and

91

[y P11 4 e ¥arf 4 |8y P 1gF UsTeg| 2 o ARSI

Hence

[+ [#a] = U713+ WaPar -+ UsTyy| 4 ]“17“12+uzf"22+ug?32
0
# ey ([1ey] ~+ l2to|) 0F— 26 2]

by (30), Since |#| << e;vt(|uy|+ [y}, we obtain |w,| - [uw,] = el if ¢ >0
is small. In eonjunction with (30) this gives

lug 75) < 8057 (@] + 1my]) .
Since ¢ > 0 was arbitrary, the lemma follows.

8. A lower boumd for 2(¥). There are numbers Iy,ls,l;, not all
zero, with ‘

115114‘12521‘{‘1353: =0: 11§1ﬂ+12§22+13532 = 0.

In fact, sinee a,, 2,, 2, were generic, the number I, == 0. The ineqyualities
(33) i — Néy| < Noj2,

| —NEul < N8/2 (i ==1,9)

are stronger than the cases ¢ = 1,2 of (23). There exists an & = #(8) > 0
such that (33) together with
FrguitTagar -+l ga| < emax(|gul, gols 1gal),
{34)
1 9ie+bafas+ laGaa] < emax (|13}, |Gaal; [gaa])
implies {23) for i =1,2,3.
Putting I = (I,, 1,, I;) and

(35) Gy = (f11y Qors Ga1)y Qs = {12y Qaoy G32), s = (Q1as Gous Gos)s

(36) g, < <lgul,
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we may rewrite the inequalities (34) as

lgs) << zlq.].

Let vy, ¥y, ¥; be the basis of Lemma 8. We may write
Gy = Uy Py Uay ot Ugr Pa,

(37) Qs = U P+ Uga ¥yt Usa Ty,
Qs = UgaPyF Uy Pyt Uga Vs

with integer coefficients uy;. By (31) of Lemma 7 and 8, the inequalities
(36) will be satizfied provided (29) holds, i.e. provided

(38) [thgy| << [t0gg| 4wt (8 =1, 2, 3)
holds for i = 1, 2. Define points
(39) @) = (G Qs Gor)s  Go = (Ghas Doos Goa)s Qs = (Zigs @oas &r)

by
r
@ = Uy ¥yt U1 ¥y

(40) Gy = UgaTy+Uge Ty,
Qs = UggPyF+ilogTs.
By (32) of Lemma 8 we have
g~ q;! < eflqugl+lgl) (@ =1,2,8)
provided. (38) Lolds. Thus (38) implies that
_ lg5— @) < ellgul+1gdl) (6,5 =1,2,3).
Thus if & > 0 is sufficiently small and if (38) holds, then

(41)  lga—NEul <NOM, |gu—NE| <Nojd (i=1,3)
will imply (38). Similarly, (88), (41) together with
T 9 / G Gun|_o | g
l T2 T3 G oz o /8
{42) .
¢x / G G |_ . < s
g2z m G2 9 Bo il

will imply (25).

Thus 2(N) > #'(¥), where ¢'(N) is the number of integer bhases
u,, Uy, ty With (38) such that the quantities gy defined by (39) and (40)
satisfy (41) and (42). The inequalities (41) and (42) with & =1 define
a bounded set in 6-dimensional space for {gli, Gizs Gas a1s oz Do) - This

12 — Acta Arithmetica XVIIT
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set has volume > 4% Now (u, Gias Qis) Gars Gaoy Gas) i8 Telated to (%, )
= (U1 Ugey Wasy o1, Usay tag) De the linear transformation (40) of deter-
minant (ry3#e— f1afyy)® 7 0. Hence (41) and (42) with N = 1 together
with (39) and (40) define a bounded set for {u,;, u,) in 6-dimensional gpace
of volume 2> % For arbitrary N we obtain the same get but blown up
by the factor &. Hence by Lemma 6 there are > 5?N°® pairs of points
Uy, W, Which are part of & basis sueh that (41) and (42) are satisfied.
There still are > 4?N°® such pairs wu,, u, all of whose components arc
different from zero.

It remains to be shown that for every such iy, U, one can find a third
basis vecetor wu; such that (38) holds. There certainly will be snch a vector
ug of the type wy = iu;+ d,u,+u,, where < % (j =1,2) and where
U, 18 the point with 4(w,, u,, uy) = 1 which is orthogonal to uy and u,.
It is easy to see that the coordinates of u, have absolute values at rmost 1,
and hence

(o] < F g+ hge] -1 [t3q] 4 [0

since we made sure that wy = 0, 4y, 7 0. Thus our u, does satisfy (38),
and we have z(¥)><'(¥N) > »2N°. This proves (26) and hence the
theorem.

(i =1:273)?
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Bounds for solutions of diagonal inequalities
by

JANE Prvan (Adelaide, South Australia)

In mbmory of H. Davenport

1. Introduction. In 1958 the following theorem was proved by Birch
and Davenport [17:

£ Ayy Agy ovny Ay ave Teal numbers, not all of the same sign, such that
|4 z: 1 for all 4, then for any § > 0 the Diophantine inequality

e+ ...+ Al <1
has & solution in integers =, ..., #;, not all zero, such that
A3+ - |4505) < Epldidy ... AgP'H.

A corresponding theorem on solutions of the diagonal cubic ine-
quality
B+ ...t Al <1
such that
A3l |2y 5] < Bl . 29O

wag proved in Pitman and Ridount [7]. In thiz paper I obtain a similar
theorem for the diagonal inequality '

(1) b+ ..+ 208 <1,

where k is an integer, k> 4, and 1, ..., 4, are not all of the same sign
if & is even. By a solution of a Diophantine equation or inequality I shall
always mean a solution in integers a,, ..., @,, not all zero. .

For the case when the 4;/4; are not all rational, Davenport and
Heilbyonn [4] found that the condition n > 2%41 is sufficient for the
existence of infinitely many solutions of (1); lafer Davenport and Roth
[6] showed. that n > cklogk iz sufficient if % =12, and Danicic [2] showed
that # = 14 is sufficient if & = 4.

In order to find bounds for solutions of (1) by analytic methods
similar to those of [1] and. [7], we must first deal independently with the



