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The multiplicity of partial coverings of space
by
L. Few (London)

1. Let X be a convex body in #-dimensional space. Consider & system
of translates of K such that no point of space belongs to more than % —1
of the translates. This system is an (A 1)-fold packing. Yet the proportion
of space belonging to at least one of the bodies be §, and let

(1) ' k = —log(l— 4).
We prove that, provided n is sufficiently large, and
(2) nd™™ < 8 < L—e™ 0,
there is such # systen. with A—1 = [I], where
_ nlogd(n+1)—2ke—logd— flogn+tn
logn—log2ke

{3) l 1
and we alzo prove that the density of the system is greater than 2%
and ~ 2k, E '

These results are illustrated by examples in § 7. ,

This paper uses methods of Erdss and Rogers [1], and the notation
of that paper is used where convenient. '

2. In this gsection we take K to be a Lebesgne measurable set with
finite positive measure V, Let A be the lattice of all pointy with integral
coordinates, and suppose that all the distinet translates of K by the

veotors of /A are disjoint. )
Let the N points @, X,, ..., £y be chosen at random in the ecube

C of points o with _
' o<y <l (1=1,2,...,0).

Consider the system of sets
(4) E+atg

and, for 0 < &k < N, the set B, of points belonging to just & of the sets (4).
Then, given A and &, the density §(E,) of the set F, is a function of

(I<i< N, ged)
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2, ..., &y, and it has been proved by Erdos and Rogers [1] that the mean

value, # (8(Hy)), of this density over all choices of the points @, ..., @y
in Cis ,

'NI 7 N—h
(5) o (3(E)) = TH1— 7y

RN~ h)!

3. Now take K to be a convex body with volume V. By a result of
Rogers and Shephard [3] there is a lattice A, of determinant 4" T such
that the distinet translates of K by the vectors of A, are digjoint. Thus,
after applying a suitable linear tramsformation to K, we may suppose
that the volome ¥V of K iy 47" and that the distinet translates of K, by the
vectors of the lattice A of all points with integral coordinates, are disjoint.

Let F,, be the sef of pomts eovered by at least » boéhes of the system

,K—i—mf—i—g (1<'1, N, geA)

and let E, be the set of points belonging to no body of the system
(L-pEtxtg (L<i<N, ged), |

where 0 < % < 1. Then it follows from (5) that

N

N!
(6) A{3(F)} “Em PHL— VYNV
i=h

N-h

! RN —h)! oy
TR —R)! vra—pyr - (h+t)!((Nm~7)z—t)! (1— V) ’
and that
(7) M (3{By)) = (L (L~ V)Y,
4. It follows from (1)} and (2) that
(8) k<4n
g0 that
(9) logn—logdke > log83—1 == g > 0.
Let - '
{(10) Voe=da™, N* = 2%ed", = [V*]+1.
‘We have, by (1) and {2),
(11) k> d > nd™®,

so that, by (10),
{12) : N >n.
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By (3), (10) and (2)

(13) Z* < nlogl6e(n 41} 3
N k4™ (logn—log2ke)
et
f(&) = k(logn—log2ke),
&0 that

I (&) = logn—log2ke®.
Thus, i 247" < kb < n/26%, we have from (13)

[4 nloglée(n+1)

(14) N* T n{nlogs—log2e) o),
and, if n[2e? <k < +n, we have from (13),
1 6nlogliBe(n+1)

3 e 2T TV = (L
(15) _ N < T and” o(1)
where « iy defined in (9). Thus by (2), (8), (11), (14) and {15)

1
(16) = = otl).
Hence
L 1+1
(17) *N—§ i = o(1)

by (16) and (12). Hence, by (17} and (12),

{18) N——h=N(1——%)—>co a8 N> oo,

By (3), (2), (8) and (11),
nlogn— fne— flogn
nlogd—log2e

80 that
(19) h—+-0c0 ag @ > oo,
By (3), (10) and {2) 1)
nlogl6e(n
=p{l

v < T 0(1)
80 that
(20) RY < (I+1)V = e(l).

By (10), (3) and (8)
N*V - 2ke(logn—log2Fke)
h = nlogn— fne— 1logn

2
=
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The right-hand side of this inequality, treated as a function of % with
% fixed, is maximum when k = n[(2¢%). Hence

ry

< nf{e(nlogn—4ne—tlogn)} = o(l)

g0 that, nsing (10) and (19),

(N+1)V (N 2)V N'V 2V
2 = =
(=L il h R T = o
and, similarly,
NV
(22) == = o).

Also, since 1—V > 1 by (10), we have by (21),

@y _ 2N+ T
(h+1)1— V) h+1
for n sufficiently large.

5. In the sum in (6) the ratio of the (2-+1)st term to the fth term is

(N—b—0)V (N—-mV
D A—7) S Gt D=7 ~

(23) <1

by {23). Hence

N r :
A = M(5(F) < s T MFM}
B < Gy 7= {(h+1)(1 7)

(h+1)(1— T) }
h+1)—(N+1)V

Using Stirling’s formnla, which we may by (12), (18) and (19)

¢ I
T RUN—

Vh(l o5 f(

log 4 < (N~ &)log (1+ ) hlog —_— —I— (VN —h)log(1— V)~

1 I N+DVY 1 kd
— N —— Y
g log (1 N) lg(l L ) E«loghmglog%c—l—o(l).
Henee, by (20), {17) and (21),
(24 log A < F(h, N)— }log2x+o(1)
where

(25) FPh,N) = h-—h10gh+h10gNV——NV—%logk.
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Now,
oF o Nv 1 0
ah TR o <
by (22) and (19). Hence
F(h, N)< F(l, V).
Also
oF(l, N) 1
I A A

s0 that the error in replacing ¥ by N*in F(I, N) is at most l\% AT = o(1)
by (16) and (10). Hence, from (24), (25) and (10),
log A < I—Tlogl-+-llog2ke—2ke— tlogl—LlogZr+-0(1).
Henee, substitutmg for nlogd{n- 1)—~iog § from (3},
(26) logd—logd+nlogd(n+1) ‘
=< I{(1—logl+logn)+ 3(logn—logl—Ilog2=—2n)4-o0(1)

1 1
< I(l +—2—;;—10g1+10g%) +—5— (logn—1logl—2n—1) = g(l)

for n sufficiently large. Now

dy 1 1
89 _ 2 logl4-logh -
al on 8 +logm 9’

d?g
ar _'“Jr”é”z?

by (19). When I = n, dg/dl =0, so that g(I) < g(a}, and, by (26),
log A—logdé+nlogd(n+1) <g(n) =0.

Hence
(27) H{8(F)} < 8™V where ) = 1/{n-1).
With this cheice of % we hawve, from (7}, (10) and (1),
A N6(E NViL ! )ﬂ< Ny
log ( ¢ 0))<__ _—n—}—l &
% .
<H-N 14 = —2k =log(1— &}
¢
Hence
(28) A(8(Hy)) < (1—19)%,
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o)

and, from (27) and (28)

(1= 0) (ST + 1"V H (3(By) < {8(1— &)+ (1 — 8"V = (L—8)3" V.
Hence we can choose points @, ..., &y So that

(L= 8) 8(Fp) 1" VO(Hy) < (L— )7 V.

Thus, with this choice of @, ..., @y

{29) o) <1V
and
{30) d(Hy) <1—48,
6. We prove that the system of seta
(31) (—pE+otg (L<i<N, ged),

where 5 = 1/(rn--1) and ,, ..., &y are chosen ag in § 5, has the properties
stated In § 1.

Since, by (30}, §(#,) < 1—4, it follows that the proportion of space
belonging to at least one set of the system is at least 4. The density of the
system (31) is NV (1—n)" ~ 2k by (10). Also NV (1L—n)® > 2F.

Suppose that a point @ of space is covered A or more times by sets
of the system (31). Then each point of the set

K-z
is covered at least & times by sets of the system
Ktx+4g (1<t N,ged).
Henece F, containg the union
U {nE+x+gj.

oed

No two distinet sets of this union have any conunon point and the density
of the union is #*V. Hence 6(F) = 4"V which contradicts (29). This
completes the proof that the system (31) has the required properties.

7. We illustrate the results stated in §1. Tf 8 <1— exp(— 1/8¢?)
it is easily proved that A—1 < n. If # iz a constant and 6 = w7 then
h~af(l+p), and if § = 7 then k ~ (logn)/(logf).

It follows from (2) and (3) that

{32) 2k > (ne) (16me)—M®-1

By a result of Few [2] there are h-fold packings of equal spheres with
density at least

1f2
(33) 5 (__hi’ - )

icm

The multiplieity of partial coverings of space 219

where 4, is the density of the closest packing of equal spheres. Since
it is only kmown that §; > On2~", where € is a constant, the result (33)
ouly ensures that there i3 an h-fold paeking whore density 4§, satisfies

{ ) }”"2
34 0 > Cn .
{34) R # 2(h+1)

The density of the (h—1)-fold packing (31) is at least 2k, so that
there are {(A—1)-fold packings whose density is greater than the right-
hand side of {32). For large » this lower bound is better than that given
by (34), with » replaced by h—1 provided

2logléne

h—1
' - log2
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