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1. Let @ be a real muliiplicative arithmetic function satisfying,
for some constant A4, > 1, the condition

1
(Q) 0 ——<«K I_I for all primes p;
1

and, on the sequence of squarefree numbers, define the related multipli-
cative arithmetic funection g by

w (d)

1. @) = ——t—, d) #0.
(1.1} 9(d) Iﬂ(p_w(m) u{d) #=
With{*) v > 0 and 22> 2 we form the mums
(1.2) G(z) = ) ut(@)g(d),

a<s
(1.3) G, 2) = D' g(@)

b

where
(1.4) P = []»,

and also the produet

(1.5) W (2) =H(1— “’(p)).

P

The sums @{z} and G{z,#) occur naturally in Selberg sieve theory. In
most applications of Selberg’s sieve the basic function w(p) is, on averags
over the primes, constent, and our aim in this paper ig to obtain, under

(1) The numbers x and z will saiisfy thess inegualities throughout the paper.
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a weak condition of this kind, asymptotic formulae (with elror terms)
for both these sums. To be precise, we shall impose on o the further
condition that

(Q) there exist constants » >0 and 4,>1, and o number L =1 suoh
that

— L= 2; o @) logp——zlog-z— Ay, 2 wels,
wEP<s ? . w !

While all constants implied by the use of the O- and --notations
may, throughout this paper, depend on 4,, 4, and x, dependence on L
will be everywhere explicit. This distinction between L and the constants
Ay, 4, may appear somewhat artificial, but the formulation of a sieve
problem. usnally involves several basic parameters and, while it mostly
turns out that 4, can be chosen independent of these, this is not always
the case with the lower bhound L.

We shall prove, subject to eonditions (Q,) and (Q,), the following
two theorems:

TozoreM 1. We have

e " min (L, logz)
(1.6 o) W ie) ( ).

B Flx+1) logz
where ¥ is Buler's constant.
THEOREM 2. We have

2nt1
(L.7) Gw,2) W(z) = a,27) + ( iogz ) if z<w,
where '
_ loga
(1-8) T logz

and o, is the solution of the differential-difference problem

6—1»: aw #
= w— 4 =l 2
a, () I’(z+1)(2) if 0= wsl?2,

(W™ o (w) = —wu™ o, (u—2) i u>2,
with o, continuous ot w = 2,

Although many parfial or special results of this type occur in the
literature, only Ankeny—Onishi [1] state results at our level of generality;
they give a theorem like Theorem 1, but without proof, and derive a result
similar to Theorem 2 by the use of Buchstab identities. We base the proofs

of both theorems on the fundamental lemma which is the subject of
Section 3; our method goes back to an idea of Wirging [4], and in this
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(important) respect is similar to Levin—Feinleib [3] (where sharper results
are proved under strouger conditions). Reference to Ankeny-Onishi [1],
or to the diseussion in Chapter IV.9 of Halberstam-Roth [2], indicates
the important part played in sieve theory by such results (%)

2. Some auxiliary results. The proofs of Lemma 3 {the fundamental
lemma) and of the two main theorems reguire some preparation. We
begin by remarking that, by (1.1),

L el 1 _
A T 7 VR W

8o that, by (Q,), ¢g{p)< 4;—1 and

21 L) gy < 4, 28
(2.1) 7 g(p) s
Moreover, g{p) :%@—)—]— w;p) ¢(p), so that, by (2.1),
0B oy 0@ L )
P » r

If we take w = p and 2 = p+¢ in (Q,) and then let & — 0, we obtain
at once

22) w(p)logp

p < A4,

whence also

23) o) w(p) @ (p)

——gglps——+ 4,4 .
p s, " plogp
LeMyA 1. If 2 < w < s, then
(2.4) _t < Z ﬂg_), .-xlo,g..l_(.’.g.z._gi,
logw et P logw ~ logw
" L 0 log# A, A,
28 — < — b i I -
(2.5) logw \wézg@) wlog logw  logw {1+A1(M+ logw )}’
_ W (w) log# "{ i } logz\*
2.t S |l—] 31
(2:5) Wi(z) (logw) +O(Iogw) <(10;3;@»::)
and
W {w) log= "{ L }
2, =/ .
2.7) W(z) (logw) 1+0 logw

(%) A comprehensive account of sieve theory is in course of preparation by us,
and will be published by Markham, Chicago.
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Proof. We have

o (p) ( w(p)logp)
w;z f ]Dgt w;t
1 Z w(p)logp f( 2 m(p)logp) d
e A—— p N ,
loge s P PR ¥ P flog?®t

50 that (2.4) follows by an easy calculation from (£2,).
We can show in the same way that

o (p) 1 A,
(28) wg;; plogp < logw (”_I— logw)’
and (2.5) then follows at once from (2.3), (2.4) and (2.8).

Finally,
W{w) ( ® (p))—1
2.9 = 1— = 1
@-9) W(2) wilz P wgz( o)
=exp{ D 10g((1+g(13))},
W<y

so that, by the right hand inequality in (2.5),

Z g(p)} < exp {1og(1°gz ) +0
logw

wEp<2

_(logz ”ex {0( 1\

~\logw P logw /|’

and from this {2.6) follows at once. Moreover, (2.9) actually implies (using
that log(l4-#) =a-+ 0% if x> —3%) that

117117((@:; = exp {w;mg(p) +0 (szg"‘(m)}
> s

ore) 21 aga) !
= exp 0 4+ 0
'(lng i logw WPz

by (2.B); and since, by (2.1}, (2.2) and (2.8),

) w(p)
(2.10) 2py < A2 Y 2 < 424
' 2 7o) ! pr UTE Z plogp logw

(s

W) o {
Wi ~ P

WEP<E wspss WPy
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W(fw)_(logz ueXJ{O( L }
Wiz) \logw L logw /§’
If Lilogw is sufficiently small, (2.7) follows at once; otherwise (2.6

a hetter result.
Levma 2. If 2 <

(2.11) ( 9 @) ) (1

W <2

we have

) gives

< w2, we have

) (
logw
and

- ERCICORY PO W Ll
o o T2 ok

the product in (2.12) is comvergent and uniformly positive — indeed,

) wniformly tn & 2= 0

(2.13) H (1— —(;')—) (1— %)_” > exp{— Ay Ay{1+xt Ag)} > 0.

Proof. It follows from (2.5) and a standard result from Mertens
prime number theory that

1
logw’

< (g@)—i)<
w;g P

"~ logw

and an easy caleulation of the kind uged at the beginning of Lemma 1
allows us to deduce that

( g@) =
:ps _,pl-}-s

L
@) - < Z

W P<E

1 .
)< Togw uzniformly n sz 0.

Hence the product on the left of (2.11) is equal to

(2.15) exp{ 2 (gg) ~m23~;‘-;; O(g“(@))—I—O(p‘z))}
WP <2
- () o)

WEP <
by (2.10). Using only the right-hand inequality of (2.14), this expression
1
is < exp {O(—lﬂ)} = 1—}—0(—»«), which iz better than (2.11) if
logw logw
Lflogw is not small. I Zflogw is small enough, (2.11) follows at once
from an application of (2.14) in the expression (2.15).
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We now take s = 0 in (2.11), allow z to tend to infinity and then
write z in. place of w; we obbain

[ [+ (1— ‘]5)” =10 ( lol;'z)’

fo ]

so that

vww=[]@%wfuflﬁ—mf“ﬁ*%yWL%ohéﬁn

pcz 2L

T2 b3 ook

<

and (2.12) follows at once from another well-known result of Mertens
prime number theory. ‘

Finally, taking 2 to be so large that ) ¢t > logloge (it is well known
pes

that this iz possible), we have, by (2.5) (with w = ¢), that

[J+swi (-2 <ol Do Y5}

s p<g Pz
< exp{g(2)+ A, A, Ay (wt+ A,)}
<e exp{d;+ A, — 14, 4,(+ A4,)}
< exp{A; 4,(1+ x-+ 45)}

since ¢(2)< 4;—1 and (4,~1)(4,—1)> 0; and thizx proves (2.13).

3. The Fundamental Lemma. We define

@
(3-1) T(, 2) = fG(t, ) it
’ 1
s0 that, by (1.3),
[ B d
APz

Our object in this section is to prove the following result.
Lzvna 3, We have

(3.3) Gz, 2)logx =_(~4+1)-_T(m, 2)— =T (fg-, z) + 0 (L& (=, 2)}.
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Proof. If we write

G‘D(w’ z) =

D 9d),

d<z
lPz)
(&, m)=1

and take p to be any prime divisor of P(2), then, by (1.3),

G@z+2

lilll’ -’5)

Gz, #) = =6, (, z)+g(p)ap(-§, ,,).

We multiply this formula by 1— —i()p-l and then replace @ by «/p; after

rearrangenient we obtain

O R Kb R et =

Now
M g(dylogd = Zy(d Zlogp = Z g(p)logp -Gy (—, z)
d<cc d< pd p<z
diP(e) diP(z}

and if we substitute from (3.4) on the right we have, after obvious in-
terchanges of summation, that

Zy(d)logdzzg(d) 2 w;p)logwr

a<x d=ax p<min{x/d,2)
Z\P{z) A P(s)
. L
+ E 7(d) AP0 @) 140y
as—ddan ¥ zid<p<min (z/p, 2) 4
»id

For the first inner sum. we uge (Q,) in the form

1\j ©®) —Llogp = xlogy+ O(L);

n a?l

but for the inner sum. in the second expression on the right, sinee all the
terms are non-negative, we are safistied, using (Q,) and (2.5) (with

W = ]/a?ﬁij # = w/d) to use
Z 9(@)w(p) logp < 2
v Vald<p<aid

Vald<p<min (w/d,s)
ptd
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&
Soaogi = 3 sfog s +0u0) = D r@ieiogs 00} +
()

+0 (G(.’L‘, z))

wlz

+ O (LG (@, #));

and if we now add

D g@og =
d

4iP(@)
to both sides and use (3.2), we arrive at (3.3).
If is clear from (1.2) and (1.3) that
(3.5) Gz,2) =CG(®) i
and, in particular, that
{3.6)

Hence, if we define

3.1 6) = [ 602,

it follows from (3.1) and (3.5) that T'(z, 2} = T(2) i # < 2, and Lemma 3
implies, since T(1, 2} = 0, that
CorOLLARY. We have

G(2)logz = (- 1)1(2)+ O (LG (z)).

4. Proof of Theorem 1. We set out from (3.8}, written for convenicnee
in the form

(3.8)

(4.1) G(2)logz = (#-+1)T(2)+ G (2)r(2)logz
where
(£.2) r(#) = O( L )

logz

Evidently

6 < g = [ [1+9w) = e,

| P{z) p<z

icm
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so that
(£.3) G(z) W) <1;

henee Theorem 1 contains new information only when min(L, logz) = L,
and then only if Ljlogs is sufficiently small. Thus we shall lose nothing
by assuming that

1
(4.4) L< T, logz

where B, (= 2) i a sufficiently large constant; large enough, in particular,
to ensure that
{4.5)

We write (4.1) ag

i<t H y=e

1 x+1
Gz) = —— T
®) 1—7(2) logz ),
g0 that
G (=) 1
4.6 = E
(4.6) log™z 1 r(2) exp B (2)
where
x+1
B =logl-—7—T .
() Og{log"“y (y)}
But,
, T'y) x+l @) xt+l
Ey) = - == - —,
T(y)y wylogy yTy)  ylogy
so that from above, if ¥ = 2,
, 1 x+1 x+1 r{y) =41 L
B (y) =

T—r(y)ylogy glogy 1—r(y)ylogy ylogly
using (4.2) and {4.5). Hence the integral

[ B dy
converges, and we infer that there exists a constant ¢ such thab
F L
expA(z) = oexp{- f E’(y)dy}m o{1+o(-ﬂ)—gv;ﬁ)};

the last step was justified by (4.4). It follows from (4.6} that

G) 7(2) L )} _ ( L )}
log*z m(}(l+ 1—1‘(z)){1+0(10gz O{1+O logz

It
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on nging (4.5) and (4.2) once again, and so we arrive afi the relation
(4.7) G(z) = Clog*s+-(Llog* '),

which, in view of (2.12), implies Theorem 1 if we can show that

w(p) 1y~
1— =) .
“rern [ 1= (3]
To prove (4.8) we argue as follows: if # > 0, then, by (4.7),
#“(d g(d &)
IT{+%) = 2 - f W
1

B
Clog*y + O(Llog" 'y)
= f 7+

(4.8)

dy

1

ST L I )
8 8

in guoting (4.7) we have assumed that (4.7) is true for all # > L; whereas
we were able to prove it only subject to 2 being large enough to satisty
(4.4) — however, by (4.3) and (2.6) we can assert that G(y) < log*y for
all > 1, and the assnmption was therefore justified.

Hence
1 g(p)
ST Den” ]p_[( e ) -

But if £ is Riemann's zeta-function, we know that lim s (s--1) =1, and
we niay therefore write f++0

1"(44»1) HMH(H’ i) )( - ;Lw )ui

this implies (4.8) in view of Lemma 2, (2. 13) and the proof of the theorem
iz complete. .

3. Proof of Theorem 2; the functions ¢, and 0,. To prove Theo-
ren 2 we ghall need some mformadnon about the function ¢, which was

defined in the statement of the theorem, ancl also about the related
function

(5.1) - G,() = [ o, (Hdt.
R

Mean value theorems for a olass of arithmetic 253

Tt can be proved.(®) that a,(u} is non-negative, increasing with w, and that

{5.2) lim o, () = 1,

U0

so that
e

- (2 7, (%) 22 i =2,
{5.3) 0,(2) = I(x—l—l) g u)l1l i wuz2
Then clearly o,(%) is also non-negative, increasing and

- 37

A (W) = - e ¥ i ST
{5.4) o, (1) j,(%+2)u ¥ 0Su?,
while

o, (u o, (u )

(5.8) o, (u) = (- 1) :{l ) —x U%(b ) it w2,

If we multiply (5.5) by «™*' and rearrange the terms suitably, we find
that o, satisfies the differential-difference equation
(™o () = —u ¥ e, (u—2), u>2,

and from thig we deduce that

%(27) _T(2w) f 5,(2t—2)

{5.6) . 7L - e Py

df, l1<u=r.

6. Proof of Theorem 2. We Degin with the remark (¢f (

2 gld) =1,

d1E(2}

4.3)) that
{6.1) Giw, 2) W) < W(2)
%0 that Theorem. 2 gives new information only if In***'flogz is sufficiently
small. Ag was the case with Theorem 1, we thervefore lose nothing by
asgnming from now on (cf, (4.4)) that

1 '
{6.2) Lt 5 logz,

2
where B, is o sufficiently large positive constant.
If @ == 2, Theorem 2 then, follows at once from Theorem 1, and we
may assume henceforward that « > #; in other words, that

_ logm
 logs

{6.3)

S »
(*) Ses {1]. Note that o,(u) = -j—;{—-a)mJ (-%) in the notation of [1).
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Lemma 3 provides the foundation for our argument. By (4.3) (with
t in place of 2) and (2.6) (with w = 2 and ¢ in place of 2} we have that

(6.4) G(t,%) < () <logt,
so that we may write (3.3) in the form (using ¥ in place of »)
(6.3) G(E, zHlogt = (»-+ 1) T8, &) — T {t/z, )+ (Llog™t).

We divide (6.5) throughout by tlog"**¢ and integrate with respect to ¢
from w to & to obtain
£

& £
G(i, 2) T(t, =) Titjz, 2) L
f‘_dt=(u+1) —*—a‘dt—xf 3 +O( )
#x+1 342 K- H
o tlog*™it J tlog"™¥s J tlog 2y logw
2 sws &
but since

i{ T(t, =) } G, 2) e 1) _.ﬁ_[’(t, 2)
8t |log* it | tlog”tis tlog* 2’

we arrive at the ‘reduetion’ formula

T(§,%) _ Tw,2) _xfT“/”""’) _O(_ L

6.6 =
(6:6) log*tte  log*tlw tlog 2

w

We now put

(6.7 T(&, 2} =4 040,21 ) log*™ 2+ R(£,2), 1,= log¢

where (cf. Lemma 2)

(6.8) O, = 6”"”( . c!)(_p))ﬁl (l__ ,:lm)“
p ?

n
Our object will be to prove that

(6.9) B(E,2) Lo log*e i &> 2.

We proceed by induction on the range of 7p; that i3, we assunie the result
to be true for v—1 < 7, < » (» 2 2) and derive it for » < 7y v41. To
carry out the inductive step we introduce (6.7) into (6.6) and make use
of (5.-6); we find that the leading terms disappear throughout and what
remains is & relation between the remainder terms oniy, namely

_ E(¢,2) Rw,z2) ER(t/ 2 L
(6.10) - — 18 [ EE ) <
) log"™t e Jog**ly %uf tlog 3y 0 logw/’ A
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We shall prove (6.9) by deducing from (6.10) that, for all integers » = 2,
[B(§,2)  BL
- =
log"tte — loge
since log £ == 7,loge, it is clear that (6.9) follows from the truth of {6.11)
for all » = 2. 1t we take » = 2, yo that 2 < § < 2%, we see that use of (6.10)

involves knowledge of R{f,2) for 1 <¢<z But in this range of { we
have, by (4.7), (4.8) and (6.8) that

(6.11) OEN N S | SRR, R AR H

du e L
— = bl —
Colog™™*i {1+0(10gt )} (t>1),

|1
i, 2) = ) mfG(u) " = Tt S
1

and, in view of (3.4}, this is congistent with (6.7) if we talke

(6.12) \R(t, )] < BaLlog"t, 1L <t<z.

We now choose w — z in (6.10) and apply (6.12) on the right of (6.10};
we obtain

[B{E, 2)]

logetie 7F

£
1 log*(t/2) B, 1 }

. A =

L{logz +A! tlog* %t + B, logz |’

where B, is the constant implied by the O-symbol on the right of (6.10).
Since we may choose By= B,, and

Flog(tfe) ., 1 [ (w—1)
tlog""%t  logz J

we have

|[B(£, 2} L
wg Ba(”+2) logz ’

which confirms (6.11) with » = 2 on taking B = By(x-+2).
Suppose now that » > 2 and that (6.11) is true. Let § satisfy

< Eg
and take w = 2" in (6.10). Then, by (6.11),

\R(£,%)| _ BL

. < di+-
log"tte  logz

tlog**t?¢ By

‘ e _B
{(v—l)“+1+x(v—1)“+1 log”” {i/2) ;},

am.l

T

0 _ 1yl i
= f ez 1) du <X —;3
¥

2 I +2

Flog  (1/2)
Rt
tlog™t*t

'l
1
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hence, using the fact that B > By,

B(g, 4 _ BL [ m(l _x_) }_}< BL 1,_1)»«—1—1(1,}‘ :/:_i-i)
log"H & logz l(y A Sy g logﬁ( v/

-1

»

and singe (v—1)**! (1+ )fgv““ (as may easily be verified), we

obtain,

B(, ) _ BL
log“*t¢  loge

and thereby confirm the truth of (6.11) with »--1 in place of »

This completes the proof of (6.11) and hence also of (6.9).

To complete the proof of Theorem 2, we substitute (6.9) in (G.7),
and use this composite relation, with £ =2 and & = a/¢ in twmn, to
evaluate G (x, 2) from (6.5) (with ¢ = 2): we oblain

= A
G, ) = (x+1) Go%ﬂlog"z‘—wo ol 3)

it o< £,

log*s-- O (L™ *og™ )

— (y0,(27)log"s 4 O (Lr*1og*12)

by (5.0). Theorem 2 follows at once from thin and {(2.12).
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A theorem on chains of finite sets, II
by

R. Rapo (Reading)

Dedicated lo the memory of Harold Davenport

1. Introduction. E. Harzheim [1] proved the following theorem:

THEOREM A. Given a positive integer n, there is a positive integer n*
such that the following statement holds, If § is a set of n* elements, and if
f(X), for every non-empty subset X of 8, is an element of X, then there
always are subsets X,, X,,..., X, of § sueh that{') Xyce X, = ... X,
and

F&) = (X)) = ... =[(X,).

The following theorem iz a generalization of Theorem A ([4],
Theorem. 3):

TumoREM B. Gdven a positive integer n, there is o positive integer n*
such that the following statement holds. If 8 i3 a set of n* élements, and if
F(X), for every subset X of 8, is a subset of X, then there alivays are subsets
Xyyoooy X, of 8 such that Xy < ... c X, and f(X,) = ... < J(&X,).

In the present note Theorem B will be further generalized. No
knowledge of the earlier papers [1], [4] will be assumed. In fact, the
proof of the still more general Theorem ( given below iz simpler than
that of Theovem B as given in [4], thanks to an application of an idea
nsed by 1, J. White [6] which makes it wonecessary to appeal to a theorem
of G. Higmamn, 3] which was needed in [4].

2. Notation and terminology. We put N ={0,1,2,...}. Lower
case letters other tham f, ¢, hy ¢, v, 1, = (lenote elements of ¥, and capital
letters denote subsets of N. If nothing is said to the contrary these sets
are finite. The cardinal of A is denoted by [4|, and for every §, finite
or infinite, we put _

8 ={X: X = 8; | X| =}

Algo, [0, m) ={0,1,...,m—1}.

Yy A = B denotos sat inclusion in ithe strict sonse.
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