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The average of the least primitive root modulo 2
by
D. A. Buraess (Nottingham)

1. In 1968 Dr. Elliott and I [37] obtained the estimate

(1) a(X)™ 3 g(p) < (log X)*(loglog X)*

P X

for the average over all primes p < X of the least primitive root g(p)
to the modulus p. Professor Heilbronn proposed to me the problem of the
similar estimation of the least primitive root k(p) to the modulus p=
The argument of [3] remainy applicable with slight medifications but
vields only the weaker estimate

(2) m(X)™ Y Ip) < (log X} (loglog X)°.
. X

The argument of [3] was baged on the Large Sieve ineqmality which
may be stated as

m N N
(3) 33 Y elanjg)a, (X))l
msX =1 =1 n=1
(a,'m.)ml

where ag usual elo) = 6™ In the estimation of g(p) m in (3) ranged
over the primes. In the estimation of k{p) however m ranges Over the
p? < X (together with the p < X*) and it is this decrease in the mizo
of the set of m that gives rise to the loss in effectiveness seen on comparing
(2) with (1). The purpose of this paper iy to regain in part this effectiveness
by producing a moditied form of the Large Sieve which will reflect such
restrictions on the set of sieving moduli m. The regultant estimation for the
average of h(p) is contained in the following theorem: '

TurormM. For large X
(X)) hp) < (log X)? (loglog X)°
peX

the swmmation being  ewtended over prime numbers p.
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2. The Large Sieve.
Tzuvnia 1. Let 8 be a set of positive integers. Suppose that

§< 1, X]
and that the cardinalily of 8 is §. Then we have
. [ N ) N
(4) 1Y X1 Y aetanig)’ < xQ(¥+ X@) 3 ja,2.
eS8 a=1 wn=l n=1
(=, @)=1

Proof For each pair ¢, ¢ in the summation on the left-hand-side
of (4) let M({q, a) denote the number of pairs ¢', a’ satistying

() g'«S, 1l<a'<gq, (d¢,¢)=1,
a o' 1
8 _—— "
( ) g q, = 42-@ ’
{where [l¢]| denotes the distance of » from the nearest infeger). We write
q N

(7) D 2| D aelanjg)| = £+ 5,

ge8 a=1 fq=]

(@)1

where 2, contains those pairs for which M (g, a) =1 and X, those for
which M (g, a) > 1.

The estimation of both X; and X, is based on the beautiful ine-
guality due to Davenport and Halberstam [4] that:

If @, ..., &5 are veal numbers and

6 = 1min |z — &
e

then
R N N
(8) D1 Y wetna)f < (F+ 67 Y.
r=1 n=1 n=1

To estimate 2 from this we put the z. equal to those Farey fractions

a/q corresponding to the summation conditiong of 2y, Thus in thig appli-
cation of (8) we have

1
R —_—
£ XQ and = iX0 ,
and so
B N N
@ BB Yoo <RE+ 87 Yo,
r=l n=1 ) n=1

N
< XQ(N +XQ) ) ia, 2.

=]
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To estimate X, we assume (without loss of generality) that X iz an

integer, and we write
2 N
—
T(w) =2{ Y 2D wetangg).
aes (a‘?;il 1’=¢(mﬂdxla) n=l
Mia,0)>1 |E—y|g-—l—
] 8XQ
Clearly we have
1/XQ
f Fx)de =

0

1
4XQ Zar
Thus we can choose & such that
(10) F(x) = 12,

We write for this choice of «
I{w) =220)|§ane(mn/q)i
Z & =l

where YV denotes a summation restricted to those pairs g, ¢ which
contribute to F(w). Two pairs ¢, « and ¢, ¢’ in this summation satisty
(6) if and only if they correspond to the same y (mod1). For each y(mnodl)
choose that pair ¢, @, associated with y, to be included in the summation.

3'® for which
N
| 3 auelanie)
n=1 )
is maximal. Thus

N
Fo)< ¥ 39 mig, )| Y a.elanja).
a &

n=1

The summation 3 is thus over a collection of pairs g, @ for which the
corresponding Farey fractions are at least 1/2XQ apart (modl). Hence

N
(11) ry <| 3 S, 0% 3 37| 3 aotanja)f
q a n=l

7 a

N
< 3 VMg, aP (N+XQ) D)0

q o =l
by (8).
However we have

(12) 3 Y, ar < Y 3V Ui, 0
q @ ¥ a
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where 3@ is restricted to those pairg that contribute to Z,. For ench
pair ¢, ¢' there are at most(%)

X ’

pairs ¢, e’ (for which ¢, ¢ and ¢, &’ both satisfy (5)) for which

ga'—qg'a =n

when # is divisible by (g, ¢') and none otherwise. Thus there are at most
85X /¢ such pairs a, ¢’ for which

lga’— ¢ al < q/Q.
Only such pairs can satisfy

sy 1

q X’

from which we deduce that < XQ such sets g, ¢, @, o’ satisfy (6). Bub
this latter collection is counted hy the right-band side of (12) so that
from {10) and (11) we obtain

-‘2 <-‘1Q(-N+1Q) l il’z'

[\ﬂ 5

Y
._.

This together with (7) and (9) completes the proof.

For problems concerning primitive roots the Large Sieve is required
in a character smn form. A convenient connection between character
and exponential sums for owr investigation is the following:

Lieywva 2. Tet S be as in Lemna 1. Let O, be non-negutive niumbers.
Then we have
.' [ N
{13) 3 , / (n - | Ve elan
_ 3; P pert ok g;;q (2/ ) g; = ¢, 6( /Q)’

(e, @)==1
where the summation over 7 is over primitive characters mod ¢.

Froof. We use the well-known identity that if yx is a primitive
character mod. ¢ then
1 L
w2 E@e(anf)

2=}
(z,q)=1

x(n) =

where
(] = 2.

{(*) {a, b) denotes the highest common factor of a and b,
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Thas the left-hand side of (13) iy equal to

: N
> 3o q“”ﬁ\ yaﬂ zlae(anjg)| < Y [ 37 0,) j }2 Jeln]g)]
qf»‘a‘ % (a?5=- 7 ges % ((&?Si . =1 '

a5 required.

3. The argument of DBurgess and El]lotl:. Fundamental to the
argument in [3] is the existence of a suitable bound for g(p). Similarly
we require a bound for %&(p). This can be obtained by substituting iy
egtimatos for character sums modp? of [2] into the argmnent of my esti-
mation of g(p) in [1]. The result obtained is that

(14) h(p) = O(p***).
Now the argument contained in the firgt five lemmas of [3], with
the obvious modifications, shows that if
8, = {p < X {p—1)N (p) < (logX)®}
whore &' (p) iz the least 'prime primitive root modp? then
3 hip) < X (logX)*.

péxm
S

We 1equi1e this inequality which cannot be deduced from Lemma 1
gince (14) is not sufficiently sharp for this.

4. Analogue of the argument of Burgess and Elliott.

Lmyma 3. Let S be a set of g for which

o, <k
x*

Then we have

(YZOI X

geN % .
where (as j1 [3]) we follow the comvention thai w is always restricled To be

Hrime.
Proof. Let 8 be the subset of § for whlch

¥ <¢g=2Y
and let the cardinality of 8" be @'. Ag in Lemma 1 of [3] we have

Zx(n

< ria(H)Y.

<1?,2@(H*+XQ "Y' '1ogx

)
W H
where

(15) | oD e

naH"
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Thus we have

PN

geS' X

by Lemma 2

y (15}, Since & can be divided info <€ logX such subsets S’ we obtain

2

HT
RPPNCIPRICE
qes’ n=1

"o

< Jr(S0) 3| Y wetonty)

qu % n=1

==
{2, a)wl

. But by Lemma 1 the latter expressmn ig

< lesz(YQf)llz(Hr_l_ YQ!)I]E (Zlanlz)lm

n=1

<RQ11/2(Hr+XQ)l]2 (7'1 %(H)T)lm

2t Y Y @) <@ iogxe

which completes the proof of the lemma.
We write

For any pair of parameters 1 and R, both greater than 1, we define

to be the set of primes

T, =;*0x 2

and o) =30,

8y = 8:(4, B}

o) <B and T,> 1" =(H).

LevwmA 4. Let

Then if H s

2 < H < X,
sufficiently large we have

logH

1/4 P -
card 8, < X (1"_@3) oxp {log(x H)log (1* B*log X)

4log H

the constant being absolute.
Proof. By Holder’s inequality if ge8, we have

‘ng (Zx:* Gx)r-l Z*Gx P
¥

Thus by Lemma 3 we obtain

and go gince

we have

Z_T-r< Rer(Hr-{— XQ)”’(?:(H)" flog_x)lrz

qelSg
Q <€ X" [logX

card 8, < B" XM (H"4 XV 207 (H) 1% (p )2,

P < X' and squares of such primes for which

|
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Now we choose

[ 3logX] [ log {X** H) ]
¥ o= Al = |
2log I logH

go that
HT ~ Xa,lz’
and obtain (by applying the prime number theorem) that
card 8, <€ R (p)3 (L4 8y (log H)"2 ar XM

provided that H ig sufficiently large (in terms of §). Finally by Stirling’s
formula for »! we deduce that

logX)”‘ X {10g(X”2H)10g (R R%log X) }

card S, <(

logH ZlogH
a8 required.
We write .
V = (loglog X)2.
Let
P=Pg = []s
. sm(fr)

the product being extended over primes s. Define
plordy)™ i 1 <ordyx{P(q),
oD = .
* 0 otherwise,
{ordy)™" if ordy it a prime >V,

0 otherwise.

Then as in Lemma 4 of {3] we have that if(¥)
V 2 4o (p(@%) Plo(F),

m (H) (—P)
&

TO+ T8 < and. T4 T8 < == n(H),

where P = P(p?, and if H iz sufficiently large
Kip)< H.

Let S5 denote the subset of the set S, of primes < XY and their
squares, for which

(16) W (p)z(p(»?) < (log X)*

(%) »{n) = the number of distinet prime divisors of n.
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Lo
e
o=

and .
p{p—1)
‘ D chs( @ 2yt o2 (p __M)
3 (p) < D(log X)* | oV (0%)+ ¢ (27) 9’(9"(132))
where D is an absolute constant to be determined later.
Lenwa b, We have
D) ) < X [log X)*.
QES4w83
Proof. We denote by S;(E,, By, W) the sobset of 8 s:mtisfying:
(18) and '
W< PlpP) < W,

1B, < Q(i)(Q) < R;, 1 =1,2,

79 > I7'%(H) for some i =1 or 2
wihere
andl

=8 g = 8.

We note that for §; to be nen-empty we have %, B, both
< (log X)®.
We choose . |
H = B{log XPmax (i Bf) < (log X}"*573,

=12
Thus since
8; < 89 L 8,
we have by Lemma 4 that

Tog B
card B; <€ X (log X)"*exp {11‘2 log (X" H) (1_ Toe )}

logH
; ' loglog X log |
< X (log Xy {11 'X(l 0(——” ))(l_w = |
< (log X Texp glog L1030 (12B Dloglop X)|

and so if B is sufficiently large
card 8, € X2 (log X)Bts.
From this we deduce Lemma § by the argument of Lemma 6 of [31.

Proof of Theorem. The proof of the theorem follows by the
argmment of {37,

[4]
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