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Here hesides (5) we have the other trivial relations

(6) a1n+ap—m =0 ['m’ < %p)'

Tt is reasonable to suppose that all the trivial linear relations between
the a’s in this special case are “derived” from (6), as (5) certainly may.

In the special case when both p and L4 are primes I proved this

in & letter to Prof. C. L. Siegel (1949). Prof. Biegel congiderably generalized
my result. Recently Prof. Hasse has found simple and elegant proofs
of such “tan-cot” theorems. See his paper in this Volume Ag one may

)

expect all the proofs rely on the non-vanishing of series 2———-—-— where
«(#n) 18 a character (modp).

§ 3. Recently Prof. Hasse and I have found the following result
which will appear in COrelles journal. Let x = u,(p), ¥ = ¥o(p) be the
smallest pogitive solution of the Pellian equation

—pyt = *1.

One may conjecture that there are infinitely many primies p sueh tliat

w) >pt

where 4 is an arbitrary real numher. We prove that this conjecture iiké
true if one assumes the “reasonable” conjecture that there are infinitely
many primes of the form #°+4-36.

For a superficial connection of this result with a Davis—Putnam
hypothesis concerning Hilbert’s Tenth problem, see & paper by me in
the Proeeedings of the Number-theory Conference at Boulder, Colorado,
in 1963.
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On a question of S. Chowla
by
Herymur HAsSsE (Ahrensburg)

To the memory of my friend Harold Davenport

0. 3. Chowla has raised the question whether for an odd prime
P = 2n+1 the n divizion values
re ¥
(1) tah —, e¢ot— (r=1,...,%n),
A
respectively, are linearly independent over the rationals.
I shall prove here:

TrHEOREM. Necessary and sufficient for the lineor independence over
the rationals of the n values (1) is thet the sums

n

@) DU=1rx(s) = 1@) X 28, Y (28— p)xs)

§=1 &=1 g=1

= 231(3)1

respectively, over the values of the n odd characters ymodp are all different
from zero.

Sinee the second wsums in (2) are known to be the factors of
—(—2p)"'h*(p) where A*(p) is the relative eclass-number of the pth
cyclotomic field O{p)(*), it follows from thia Theorem that the answer
to Chowla’s question for the cot-values 18 im the positive.

For the tan-values, however, I succeeded to answer it only in the
special cases where n is either an odd prime or a power of 2, again in the
positive (2). In these special eases I could mozreover give a proof of the
positive answer for the cot-values, which iz not based on the analytie
class-namber formula, but proceeds guite elementarily,

1. The valunes (1) belong to the cyclotomic field ((2%p) but can
be brought to C¢({p) by a factor ¢ which i irrelevant for Chowla’s question.

{1y Cf. the author's monography Uber die Klassensahl abelscher Zahikérper,
Berlin 1952, p. 12, (3b) and p. 68, Satz 23.
(?) Bee, however, the Addendum at the emnd.



278 H. Dasge

TFor arithmetical reasons it is thus preferable to consider the adapted
values

gt g
Er_fz__—g—'ﬁ?

5-r] 2 C—‘r.lﬂ P

e ' s
T T it =

3 7, = ttan— =
(3) 2

(r=1,...,n) in ((p). Here
- 2mi i _
— é-ll'ﬁ = QX e = —-—-C n,
¢ eXP—"—P ) P pt

We have first to find expressions for these values with only rational
denominators. In this respect observe the known facts that the {74~
are algebraic units, whereas the {™*— ™"/ are algebraic primes dividing p.
Therefore the tan- and cot-values can be expressed as polynomialy in ¢
with denominators 1 and p, respectively. It is, however, not necessary
here to know this beforehand

Since the 7,, 7, are odd functions of the residue cl&ss rmodp, ie,

’ ! 4
Tp—pr = Tr = — Ty Tp—y = T _Trr

it seems reasonable to represent themy by the odd part =, of the bagis
g = L m =00 (3=1,..,m)

of €(p), in which the ¢, and s, are bases of the real and purely imaginary
submodules of O(p), respectively, and are accordingly even and odd,
respectively, The fact that each of the two sets is linearly independent
over the 1atmna;ls iy 1mmed1a.tely ewdent from the irreducibility of the

pth cyclotomlc. squation 2 =0,

It suffices to find the Iepresanta,t.ion by the basis =, for the fan-
and cot-value with r =1, viz,

) I St S TP 5 o S
| T = gRf e T T 5’ To= AR T TR

respectively, from which the z,, z, are obtained by the autororphisis
£ —=I" of C(p). Let
. Hn
(5) T = Z agmy, T = Zbarma
. 8=} . 8==1
be this basis representation, with rational coefficients a,, b,. These can
be determined in virtue of the multiplication formulae

8,7y = nni-ﬂf Tp—g T Ty = Epis ™ Epg

= 1 Wy = 1 sy
obgerving the marginal values ‘
& =2, : : 7 = 0,
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and the cyclotomic equation

K
Qo= -
=1

as follows. By (4), (5),
n

n
. s
Tp = T 8T = — 5‘% Enlgy —PE,= TPT = E by 7w, 75
s © =1

Qg T3 s+ Za Tp—s = Eb LI T Zb Ens

S=1 8=1

kO]

n—1

= 2 (as+1+as) ﬂn«s_l_alnm = Z‘ (bs“f“l
g=1

8=1

-1
= Z (b1 —
=1

Comparison of coefficients yields the recurrent relations

o) &yt 0168,— 2D, &

b,+2b e, o+ (b1 +2D,) e,

Ggiq = —fg, bopy = b,—2b, (8=1,...,5%-1),
& =1, b, = —2b,—p,
with the explicit solution
@, = (—1), b, = 25— p,

and thus the looked for basis representation

e’ = D (28—p)m,
Be=1

2, By applying the automorphismsg ¢ — & to (6) we obtain the
following expressions for the adapted tan- and cot-values:

(6) = 3 (1,

g=1

7%

(M)~ =D (1, po =D (3—p)m, =1,..,n).

8=1

In order to investigate them ag to their linear independence, we have
to reduce the conjugates =, to the =,.
For this purpose we congider the familiar reduction

(8) rs = +r'modyp

of the products rs to their absolutely least residues 4 7'modp, where
the 7' are a permutation of the  which, as well a3 the signs, depends on
smodp. We write (8) as a matrix equation

(8%) 8= M(s)rmodp,
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where t denotes the column comsisting of #'=1,...,% and the M({s)
are monomial 7 xn matrices whose non-vanishing entries are +1. These
matrices conatitute an isomorphic representation of the {eyelic) prime
residue class group modp.

Now, application of the antomorphisms { — {° to the basis m, yields

Ty = = T

with the same #' and signs as in (8). Hebnee, letting p, denote the colunmn
consisting of the ., we have

Pes = M(8)Py
with the same matrices M (s) as in (8*), and letting further t,, t, denote

the columns consisting of the values 7,, 7,, We obtain from (7)

1

_t, == (Z‘(_1)8M(s))p,, pt, = (Zn’(Zs—p) M(S))vl--

=1 g=1

Since the =, are linearly independent over the rationals, the same
holds for the =,, 7, if and only if the matrices

1 K

(9) S—1yMis), > (2s—p)Ms),

8=1 8=1 )
respectively, are regular, i.e., have determinants different from zero,
or else, have all their eigenvalnes different from zero.

3. These eigenvalues can easily be determined by the main theorem
of representation theory, viz., that two representations are equivalent,
and hence have the same eigenvalues, if and only if they have the same
traces. By (8), (8*) the representation M (s) has

b M (5) = 4+n for ¢ = +1lmodyp
1o otherwise '

This trace is the same as that of the diagonal representation

D=1 e

where y runs through the odd characters modp. For, writing these g
a3 the odd powers o™ (v =0,...,n—1) of a generating character
emodp, we have

n--1 i-_'ﬂ,
D) = D x) =l Dwl =}

for ¢ = Jd1lmodyp

otherwise ’
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becaunse w(s)? runs through the nth roots of unity and »{s)? =1 only
for ¢ = 4+ 1modp.

Having thus verified that the eigenvalues of M(s) are the game as
those of D(s), viz., the odd character values y(s), we can conclude that
the eigenvalues of the matrix sums (9) are the corresponding odd character
swms (2) in our Theorem.

After what hag been said before, this proves the Theorem.

4. Let ns finally congider the two special cages mentioned at the
end of the introduetion.

I. nis an odd prime. In this cage, of the n character sums (2)
one is rational, viz., the one corresponding to the guadratic character

modp, which here is indeed odd sinee p = 2n--1 = —1mod 2% This sum
ki3 s 9 n s T 3 2 s
o Sor)-GISE S-S

respectively, is obviously different from zero, because its terms (in the
cot-case only those of the first form) are odd and in odd number.

The other n—1 sums constitute a complete set of algebraically
conjugate mumbers in the eyclotomic field ¢(2#n). Hence they are either
all zero or all different from zero. Snppose they were all zero. Singe addition
of all » synms yields the value

(11} — 1, (Z2—p)a,

respectively, the sum (10) would then have this value. But this leads
to a confradiction with its second form, as follows.

In the tan-case all terms would have to be —1, which is obvicusly
wrong for ¢ = 2.

In the cot-case, Bulers criterion would yield

n 2n
8
S 3(_) = E " = (2—p)n = 0modp,

§==1 p a=1

whereas thiz sum iy surely = 0modyp since the exponent n-41 < 2n
=p—1.

TI, # iz & power of 2. In this case all the = character sums (2)
congtitute a complete set of algebraically conjugate numbers in the
cyolotomic field ¢ (2n). Suppose they were all zero. Then their sum would
be zero, too, whereas this sum has the non-zero valnes (11). Hence all
those sums are different from zero.

We have thug proved by guite elementary means that in the special
cases I and IT the answer to Chowla’s question is in the positive.
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Addendum during proof correction (25.1971). Ag I Lave learn from
a latter by Dr. Morris Newman, Waghington, D. C., & simple argument, baged on
§ 27, (8), of wy monography quoted on. p. 275, allows to conclude that algo the
first sums in (2) are all different from zero, gimply because between themn and the
second sums in (2) the following elementary connection holde:

n k3
p2(®) X z(s) = (1—22(2)) Y sx(s)-
g=1 .

S§eal

Hence the answer to Chowla’s question i3 in the positive also for the lan-values.

Received on 15. 4. 1970
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The distribution of Farey points,
by

M. N. Huxzey (Cambridge)

Dedicated to the memory of
Professor I, Davenport

The “Farey sequence” of rational points with denominators not
exceeding some bound @ has many amusing properties (see [2], chapter 1IT).
We are concerned here with the uniform distribution of the sequence
modnlo 1 as @ tends to infinity. By Weyl's principle the distribution
is uniform if and only if certain exponential sums are small; for the Farey
gequence these exponential sums transform by way of Ramanujan sums
into expressions involving the Mobius function. Tn 1024 J. Franel [1]
produced o quantitative form. of this equivalence: he found an elegant
identity for the sum of the squares of the values of the discrepancy function
corresponding to our E(a) below at the Farey points in terms of the sum-
function of the Mobing funetion. In fact he showed that the infimum
of 8§ for which (In onr notation, for which see helow)

;
DB <@

was the supremwmn of real parts of zeros of the Riemann zeta-function.
(We use < to indicate an inequality with an unspecified absolute constant.)

Davenport proposed in his problems list that an analogous result
glionld hold. for the zeros of a fixed Dirichlet L-function. In this note
we supply the analogue by elementary arguments. We state our theorem.
with a general weight A(g), not necessarily a Dirichlet character, on the
Farey point a/g. First we introduce the notation.

Lot f1, ..., fr, where f; == a;/¢;, be the Farey sequence of order @,
that is, the sequence of ratiomals afg with (e, ¢) =1, 0 <ae<g and
0 < ¢ = @, arranged in ascending order. Let A(1), ..., A(@) be any complex
numbers, and for each integer wm write

1) d
2 A{man) }—‘P’(c)( ,

Y Lim) =

n= G m



