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Addendum during proof correction (25.1971). Ag I Lave learn from
a latter by Dr. Morris Newman, Waghington, D. C., & simple argument, baged on
§ 27, (8), of wy monography quoted on. p. 275, allows to conclude that algo the
first sums in (2) are all different from zero, gimply because between themn and the
second sums in (2) the following elementary connection holde:

n k3
p2(®) X z(s) = (1—22(2)) Y sx(s)-
g=1 .

S§eal

Hence the answer to Chowla’s question i3 in the positive also for the lan-values.
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The “Farey sequence” of rational points with denominators not
exceeding some bound @ has many amusing properties (see [2], chapter 1IT).
We are concerned here with the uniform distribution of the sequence
modnlo 1 as @ tends to infinity. By Weyl's principle the distribution
is uniform if and only if certain exponential sums are small; for the Farey
gequence these exponential sums transform by way of Ramanujan sums
into expressions involving the Mobius function. Tn 1024 J. Franel [1]
produced o quantitative form. of this equivalence: he found an elegant
identity for the sum of the squares of the values of the discrepancy function
corresponding to our E(a) below at the Farey points in terms of the sum-
function of the Mobing funetion. In fact he showed that the infimum
of 8§ for which (In onr notation, for which see helow)

;
DB <@

was the supremwmn of real parts of zeros of the Riemann zeta-function.
(We use < to indicate an inequality with an unspecified absolute constant.)

Davenport proposed in his problems list that an analogous result
glionld hold. for the zeros of a fixed Dirichlet L-function. In this note
we supply the analogue by elementary arguments. We state our theorem.
with a general weight A(g), not necessarily a Dirichlet character, on the
Farey point a/g. First we introduce the notation.

Lot f1, ..., fr, where f; == a;/¢;, be the Farey sequence of order @,
that is, the sequence of ratiomals afg with (e, ¢) =1, 0 <ae<g and
0 < ¢ = @, arranged in ascending order. Let A(1), ..., A(@) be any complex
numbers, and for each integer wm write
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where p(d) is the Mébius function. We define a measure of irregularity

of the Farey sequence with weights A(g;). I 0 < a <1 we put

() Bla) = aG~f§’l(qi)—

$4(1),

where & is the total of the weights:
3) ¢ = Y AMgel)

=
and the dash indicates that if e = f; for some ¢ then the term A{g,) iy
replaced by $2(g;). Outside the range 0 < a < 1 we define F(a) by stip-
ulating that it be periodic with period 1. We can now state our result.
TeEoREM. We have

F
@ S’E(fi>lﬂ<@22 2O pme+ > @ret,
and i= m=1 klm | q<6)
Q
o e3> “H o 000 S highoge.
m=1 klm i=1" qé@

If further we have |A ()] < 1 for each g < Q, then

&
®) ¢ N 3D

m=1 klm

<Z1E(fm B+,

In the special case when A(g) is a Dirichlet character y(g), we can
write

L(m} = z(m) M(Q[m),

where for each integer »

. AN w(d)d
1) M) = X ztw) D205,
fES] aln
We see that for any 9 > 1 the bounds
{8) |M (@) €2° for each =,
and
Fal : .
(% ZiE( f)lE Q¥ for each @ and the corvesponding F

i=1

are equivalent. Since the infimum of § for which (8) holds is the supreniwm
of real parts of zeros of the Dirichlet I-function formed with the character
%, we have an intimate connection between the zeros of that F-function
and the distribution of Farey fractions a/q with weights y(q).
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We can also apply our theorem to the subset of Parey points with
prime denominators. Here A(g) = 1 if ¢ is & prime and 0 otherwise; L.(m)
is 0 if m is composite, 1 if m is prime and of order =(Q)if m = 1. By con-
sidering the possible denominators one at a time we see that O(n:(Q))
is a trivial upper bound for E(a); and (6) shows that

\E(f)) > =(€)

for a positive proportion of the Farey points f;, so that no better inequality
for F{a) can be true in this case.

In the second part of this paper we shall discuss a definition of
a Farey sequence for an algebraic nuniber field.

Tranel’s identity will generalise to allow a system of weights of our
type, but it then gives an expression for

x
2, Ma) 1B

which is of little interest unless the weights are real and positive. Landaw’s
ingenious argament in [3], VII, Kap. 13, which. gives an inequality from
the irregularity to the sum of the Mdbius funetion does not appear to
generalise at all. We argue divectly from the basic lemma underlying
Franel’s work, an expression of Weyl's prineiple.

Lemma. We have

1 @
1
10 IECREEPIE
0 =1 kit

Proof. Writing

%
g(B) = B-[B1—F = D 5o,

T=—00

where f is any real nuwmber, [#] is the integer part of § and e(w), e,(a)
denote for any real a the complex exponentials exp(2wia), exp (2nic/q),
then we have

B(a) qun gla—f) = Zﬁecwa)z P

Femm—0d g<Q  a=1
r#0 (@, q)=1

Alg) eg(—ar).

Using properties of Ramanujan’s sum, we see that the sum over g gives

2 1) S—‘d,u( ) ZdZ plg) Mdg).
a<g  g<Q/d

g dlg
dl+ al
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By Parseval’s formula we can now write

fllE(a)ﬂczé - 2Sﬁﬁ 3N waguto)|

dlr g<Qld

—ZZCZ d, 2 Adygy) pelgs) 2 AMdaga) p (92)22,:;,‘2

m<Qldr . th<Q/dy

where the last sum is over » which are multiples both of d; and d,, and
go is d/(12d%dy) where d = (dy, ;). We write d, = dhy, dy = dhy and
express the condition that (hy, h,) = 1 by means of the Mébiug function.
The whole expression above cam now be written as

TRPIIPEP)

L k”"l ik

Aldgyhy) plga) I(dgzhz)‘“(ge)-
a0/ (dhs)

UléQI (dh}

When we put m = dk, by = Ky, hy = ki, thiz becomes

yZMUcZ Z l(yllmy(glz 2

m o kini 71 h=0ilggmy) 1y L=/ azmz)

l(gzzam) “ 92)

By the definition (1) of L(m) we have proved (10).
To make use of the lemma we divide the unit interval [1/(@4-1),
(@4 2)/(@+1)] into F ares Iy,..., Iy, the point of division between I;

and I, for ¢ =1,2,..., #—1 being the mediant
A TR .
;T Qi
We note that the length §; of the interval I, satisfies
(11) (¢: Q)7 =< 8=l 4(g, )"

and that the interval J, = [f;—
Now if « is in oJ;, then

NE(a)—E(f;)| < §
and g0 we have

B < 302 1B+ 40+ 11620 ) do

L

< 3¢* flE(a |2da~+§12(g) 2+ 31G12Q .

*] lies entirely within I;.

?].'Q'—Br fi"!" '%Q—

| Ag0)+4161Q7F

We sum tlm mequa,hty over ¢ and note that Cauchy’s inequality
gives

' Q q
(12) G TF D el Mg <@ D 6la) Al
g=1 a=1
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Hence
(Q-2){(Q+1)

¥ Q
ZE(L)IB 39 [ 1B(a)lde+i Y e(g) 2@

1(@+1) a=1

The integral is now over a complete period of #(a), and so by (10) of the
lemma we have (4).
To prove (5) we must argne a little less erudely. We note first that

(13) [1B(@)rda <3 [(IB(F)P+ 81612+ 1 4(g) 7 do
I;

I;

<38 [|B(f)irda+ 38} (6|24 3 6;14(g) .
1;

We now digtinguish two cases. If ¢; < 1@, we let m/n be the fraction
next below a;/g; in the Farey sequence of order [$Q]. Then » > 1@ and
there are fractions of the Farey sequence of order ¢ which lie between
min and a;fg; and are of the form

Wt 10
(14) 41
R-F 1
with r < (¢ —n)/g;. Each of these must be in, its lowest terms, or it would

already occur in the Farey sequence of order [$¢]. We now see that there
are at least [1Q/q;]--1 other fractions of the Farey sequence of order ¢
within 4 (g;@)! of a;/q;.

If f; is any one of these, we have

41
B~ B < ] e+ el

@@ ’
the sum being over all f; of the form (14), and thus it has at most @ /g,

terms. We now deduce
30 48|G|*
A (g |2+ 57
3 Z)cj /E

[B(f:)12 < 31E(f)] 707

which we average to obtain

Gy 3¢ 48|62
B(f)lr < 21— A At
1B (f3) NE+ Z Ek, |4 (g:)1*+ 20

Using (11), we see thab

- . 4 L, 12 L, 1o2j@
w) [ 1BGre< Eg‘mm)w +E;M(qm t g
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Our second case is ¢;> 3G, so that by (11) 4,<16Q7" and hence

(16) [1B(f)lrde <1691 BFI
i

Tt remaing to substitute {15) and (16) into (13). We note tha;t. any
f; can be represented in the form (14) with #» < 3¢ and ¢, < 1@ in at
most one way. Hence

() ZF’ [
i=1 I
F =]

<o Y mpree Yol 3L 19213912 ot

g
1=1 <@ t; =1
a;<1Q

F

<100 N B(f)+1210gQ D 11(g)24+388 D A@L,

f=1 <@ 7<Q

where we have used the estimate (12) for |G| We note that in the special
case when |4(¢)| < 1 for all ¢ we can replace the second term by

2
P 12 9 < o4g,
4 4

QiiiiQ
and 0 we have
il xr
(18) N [ 1B(frda < 40Q72 3] (B(f)I*+408Q.
i1 Lé =1

We use (12) and {11) to sum (13}, so that

: F Fa
64 3 .
aey  Yatiers Do SMar<1ss Y

{=1 g<Q =9
angl

B
(20) Daagr< D@ M)

i=1 a=Q

We substitute (19), (20) and (17) into

1 ra
flE(a)Pda = 2 flE(a)lzda
0

=1 I

and use (10) of the lemma to obtain (5) of the theorem. Replacing (17)
by (18) gives (6).
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