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1. Introduetion. A well-known conjecture of Artin, which remained
unsettled for many years, was that every homogeneous polynomial of
degree d in m variables over a p-adic field represents zero non-trivially
if » > d%. Ax and Kochen [1] proved by a very difficult method that
this is true when the order of the residue class field iz greater than a bound
depending only on d, but their method did not give an effective estimate
for this bound. An example due to Terjanian [16] shows that the conjec-
ture iz not true in general. The conjecture is always true when d =2
or 3, however, the proof of the quadratic ease being due to Hasse [9].
Proofs of the cubic case have been given by Demyanov [8] {except for
the case when the residue class field has characferistic 3), Lewis [11],
Springer [14], and Davenport [5]. Laxton and Lewis [10] have also given
a proof of the conjecture for d = 5, 7 and 11 (subject to the order of the
residue clags field being large enough) using the deep theorem of Weil
about the number of points on algebraic curves. (The case d =50 had
already been freated by Birch and Lewis [2] by a similar method.) The
work of Laxton and Lewis has been superseded by that of Ax and Eochen
except in so far as more effective estimates for the size of residue class
tield required can be deduced from the former.

The treatments of p-adic forms in [11], [14], [2], [5], [3] and [10]
have several features in common — in particular they all depend on
extending non-singular zeros over the residue clags field to non-singular
zeros over the p-adic field and on transforming the original polynomial
by multiplying eertain sets of variables by a prime element of the field.
The treatments in [5], [3] and [10] are simplified by the use of certain
invariants: Davenport introduced an invariant A(C) in [5], which was
generalized to forms of degree greater than 3 by Birch and Lewis in [3],
and in [10] Laxton and Lewis used an invariant (). In the present
paper a further simplification is achieved that avoids the use of such
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invariants or of reduced polynomials of any kind but retains the other
features mentioned. The method also gives some information about
non-singular zeros of p-adic forms of degrees 7 and 11.

Our main lemma it essentially an albernative account of the part of
Taxton's and Lewis's work in which they reduce the problem of finding
a pon-trivial zero of a p-adic form to that of iinding a non-singular zere
of o related form over the residue class field. Consequently this paper,
like [10], gives no information about forms of degrees other than the
ones mentioned, since for forms of other degrees it is possible for the
corresponding forms over the residue class field to have no non-singular
zeros. In § 5 we deal with forms over the residue class field in the cubice
case, when the use of Weil’s theorem is not needed.

2. Notation. We call two homogeneous polynomials, ¥, and F,
over a field o equivalent if there iz 2 pon-singular linear fransformation
T over A such that F, (@) = F,(Tx). (It iy not agsummed that the coeffi-
cients of 7 are integers, should # contain infegers of any lind.) The
order, o(F), of & homogeneous polynomial ¥ ig the smallest integer m such
that 7 is equivalent to a form that contains only m variables explicitly.
It is a consequence of a remark at the beginning of §2 of [7] that o(F)
does not change when the field o iz extended in any way. A form F in »
variables is called degenerate if o{F) < n. A vector 22, such that F(x,) = 0
is a non-trivial zero of F if its coordinates are not all zero, and is a non-
singular zere if “gmz{mo) 7= 0 for some 4.

4

We define 2(F) (%), for a form ¥# in % variables over a field 7, as the
smallest integer b for which F(a) is equivalent to a form of the shape
e Gy, oy ) oG {ey, ..., ), where &, ..., 6, are forms of
degree one less than the degree of F. This invariant was introduced for
cohic forms by Davenport and Lewis in [6]. An alternative definition
of B(F) is that »n—k(F) is the greatest dimension of any linear space
over " on which F vanishes identically(2). Clearly 2 (F) = o(F), and
F hag a non-trivial zevo over X it and only if 2 () < x. Unlike o F), A (F)
may decrease when the field 5" ig extended.

Throughout thiz paper K ig a field that is complete with respect
to a discrete non-archimedean valuation, o iz the ring of integers of X,
and 7 is 4 fixed prime element of K. We shall assame that the residune
class field & = o/mo i3 finite. We denote the order of an element « of K
by orde — so that orde is the largest integer » for which wexn’o {and
is related to the order of a form only in name). If F(®) is a form with

{) This is not related to the invariant & (C) mentioned in § 1.
() If & iz a finite field, to say that ¥ vanishes identically on the linear space
L asserfs more than merely that every point of I is a zero of F.
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coefficients in o we denote by F*(x) the image of F in the residue class
field.

3. The main lemma. The following lemma reduces the problem
of finding & non-trivial zero of a form F over K to that of finding non-
singular zerog over the residue class field %k of forms of the same degree
a8 F for which the invariant % is greater than the degree.

TeMMA 1. Let d be fived. If every form f over k of degree & with h(f) > 4
has a4 non-singular zero over k then every form & over K of degree d with
R > @ has o non-singular sero over K.

Proof Let Flax) be a form over K of degree 4 in » variables, where
% > @ that has no non-gingular zeros over J. There is no loss of generality
in assuming that the coefficients of F are integers of K. Noun-singular
zeros of F*(x) over the residue clags field % give rise to non-singular zeros
of I'(x) over K by the familiar process known as ‘Newton approximation’
or ‘Hengel’s Lemma’ (see Lemma 1 of [117], for example). It follows that
F*(x) has no non-singular zercs, and so h(F*) < d. Hence there is a non-
singular linear transformation @ = T*y over k taking F*(=x) into ¢(y)
== Yy g ()b Ye e (Y)y Where gy, ..., g, are forms of degree d—1.
T* can De lifted to a linear transformation @ = Ty over K, by choosing
the coefficients of T from the appropriate residve classes, and then 7T
takes F(a) into G(y), where G hag integer coefficients and G¢* = 4. Also
ord{det T) = 0. If we combine T with the linear transformation defined by

we, (E=1,...,4)),
¥ = .
EA (i =d+1,...,n),
we obtain a linear trangformation T, with ord(detT,) = d which takes
F(x) into =k, (=), where F, is a form with integer coefficients.

Since F has no non-singular zeros neither does F;, and 80 the same
rensoning applies to F,. Hence there exighis a linear transformation T,
with ord{detT,) = 24 such that F(T,z) = »2F,(2), where F, iz a form
with integer coefficients. The argument can be repeated to give, for each
positive integer », a linear transformation T, with ord(det®,) = »d such
that F(T,2) = a"F.(2), where F, is a form with integer coefficients.

By applying clementary row and column operations to the matrix
of T, we can cxpress T, as P,D,.Q,, where P, and @, are integral and
unimodular (i.e. their determinants have order zero) and D, is a diagonal
transformation of the type

w=aWy, ({E=1,...,n),
where

(1} o) o2} <. < o(n)
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and . .
{2) c(l)+eo(2)+...Fa(n) = rd.
On making the substitution z = @;'u, where
nﬂ(m%o’(‘i)wi (i=1,...,m),
0 (¢ =m+1,...,n)
for some m with I <m<n, we have

F(T#) = F(”lﬂd(M)p(lr)+ -t vmna(m)pg;)):
where pl? is the ith column of the matrix of P,. Hence F(v m"™p{?+
+ .ot o,2™py iy a form in v, ...,7, all of whose coefficients
have order at least », and so F{opP ...~ 2,0 isaformin v, ..., »,
all of whose coefficients have order at least r—do{m). It follows from (1)
and (2) that o(m) < rd/(n-—m--1), and so if we choose m = 2 —d® we
have ¢—do(m) = r{{d*+1).
Since p is compact with respect to the valuation topology of If, some

subsequence of the sequence {P,} of linear transformations tends to & limit
P. Then P is non-singular and

Uy =

F (.'vlpl_l_ K + ’U'n—«dzpn—dﬂ) =0 )

where p, is the ¢th column of the matrix of P. Hence F vanishes identically
on the linear space of dimension n-— @ spanned DY Py, ..., Pu 42, and
80 A(F)< &

The reduction of T, to diagonal form could have been avoided if we
were content with a single non-trivial zero of I instead of a linear space
of zeros; for some column £ of the matrix of 7, must have the maxinmum
order of its elements < rd/n, and then if w0 is & scalar multiple of #? the
maximum order of whose coordinates is zero we have

ord (F(w™)) < ord (F(#Y))—rd%jn < r(L—d2/n).

Then #F(w) = 0 and w 5 O, where w is a limit point of the sequence {tw"},

" In Lemma 11 of [10] Laxton and Lewis show by mneans of Weil’y
theorem about the number of points on algebraic curves thal a certain
type of form F* of degree d over a finite field %k has a non-singular zero
over ki d =2,3,5,7 or 11 and % has sufficlently many elements. The
only information about F* that is needed for their proof is that A(F*) > &
(the conclugion of Lemma 8 of [10] being an iminediate consequence
of this agsumption). (Birch and Tewiz had already shown ([2], Lemma 9)
that a form ™ of degree 3 or 5 over a finite field with sufficiently many
elements has a non-singnlar zero provided only that o{#*) > d.) Conse-
quently Laxton’s and Lewis’s result can be combined with our Lemma 1
to give the following slightly strengthened version of the theorem of [10].
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TeeorEM 1. If d = 2,3,5,7 or 11 and the residue class field & i
sufficiently large, then every form F of degree d over K with h(F) > @ has
& non-stngular zero over K.

This includes the theorem of [10], since if # > d* then either
h(F) > & or h(F) < n. For forms of degree 2, 3 or b the weaker hypothesis
o(F) > d* iz sufficlent to ensure that F has a non-singular zero (as is
proved in [2]), but this is not always trne for forms of other degrees —
a form of the shape F(x) = &(x)Q%(x), where & has no non-gingular
zeros and § iy a quadratic form of rank %, has order » but no non-singular
zeros. Clearly Theorem 1 mever provides non-gingular zeros for forms
in d*+1 variables, as & < @ for such forms.

4. Remarks. The reason why the method of Laxton and Lewis
works only for forms of the degrees stated is that the hypothesis of Lemma 1
is false for other degrees. Over any field " there are forms of any degree
= 2 with h arbitrarily large. Hence for a degree d that ig coruposite or
iz & sum of compogite numhbers there exist forms f that are produets of
powers of forms for each of which A is large. Such forms f have no non-
gingular zeros, and yet A(f) iz the minimum, value of b for any factor
of f and 8o i large. This example also shows that the conclusion of Lemma 1
and Theorem 1 iteelf are false for forms of other degrees.

The usefulness of Theorem 1 as a criterion for the existence of
non-gingular zeros of ¥ is limited by the fact that if ¥ is a form over the
rational numbers @, say, and K is a p-adic field then h(F) over K may
well be less than k(F) over Q. It is not even true that these two values
of i are equal for almost all p. In [13] Selmer gave examples of cubic
forms C in three variables that are soluble p-adically for every p and
yet insoluble over @: hence h(0) = 3 over Q@ bubt A{C) <2 over every
p-adic field. More recently Swinnerton-Dyer [15], Mordell [12], and
Cagsels and Guy [4] have given exampleés of cubic forma in four variables
that are everywhere locally soluble but are not globally soluble. Forma
in more variables or of higher degree (or both) having all the local values
of h less than the global value can be constructed from. these examples
in several ways.

If # iz a form over K of degree d in # variables such that(?®)
ord (F(T#z))—n~'dord(det T) is bounded above for all linear transforma-
tions T, then it iz not diffienit to show that F iz equivalent to a form
that is ‘weakly reduced’ in the sense defined in [3] (where ‘equivalent’
now has the extended meaning ugsed in [3]). The argument uged in the
proof of Liemma 1 then shows that a form with no non-trivial zero i
equivalent to a weakly reduced form. Although wealer than the resalt

¥} ord F(T'(z)) denotes the maximum of the orders of the cocificients of
F(T(=)), considered as a polynomial in =.
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that every non-degenerate form is equivalent to a weakly reduced form,
which. is proved in [3], this is sufficient to give the resilt in the last
section of [2] about the shape of forms that have no non-trivial zero.

The method of Lemmz 1 does not seem capable of being applied
to simultaneous systems of forms.

5. Cubie forms. When d = 2 or 3 it is not necessary 10 use Weil's
theorem to complete the proof of Artin’s conjecture. In the cabic case
the following lemma is useful. It does not appear to have been explicitly
stated before butb it is implicit in the proof of Lemma 2.4 of [5] and the
proof given here is Davenport’s.

Loyva 2. If @ non-degenerate cubic form over a field 2 has a won-
trivial zero over A then 1% has o non-singular zero over A .

(For a non-degenerate guadratic form it is well known that every
non-trivial zero is non-singular.)

Proof. The proof depends on the fact that a quadratic form over #
that is zero for all values of it variables is identically zero. This can be
seen by first choosing values of the variables with all but one variable
zero and then choosing values with all but two variables zero. The corres-
ponding statement for forms of higher degree is not frue in general —
for example, the cubic form xf®,-- 2,42 over the field with two elements
ig always zero. : :

Let €2y, ..., 2,) be a cubic form over o in % variables having
a non-trivial zero 2 but no non-singular zero. After a suitable non-sin-
gular transformsation we can suppose that = =(1,0,...,0). Then ¢
has the shape

{B%L(_-’Bﬁ, Ty mn)+m1Q(.m2e7 ML | mn)_I_G’(.mﬂ) Lers mﬂ)i

where I 18 a linear form, @ is quadratie, and ¢ is cubie. Since @ is a sin-
gular zerg L = 0.

Suppose that values of @, ...,2, could be found for which
O (29, ..., #,) 5 0. Then the point

| (——U'(ﬂ?g, o B} @, - D)y Bgy v ony mn)

would be a non-singular zero of C, since 00/dx, = Q (@, ..., ;) == 0.
Henece @ (22, ..., 2,) vanishes for all values of the variables, and so @ == 0.
Thus C is equivalent to ¢’, and so i3 degenerate.

Cororrary. Suppose that X and r are suoh that every cubic form
over X in r or more variables has a non-trivial zero over X¥. Then every
cubic form C over X with o(C) = r has a non-singular zero over A,

Proof. Suppose that o(¢) = s> r. Then ¢ iz equivalent to a form
G’ (@, ..., ) in s variables. 0" has a non-trivial zero over # and is non-
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degenerate when considered 2s a form in the s variables iy, ..., ;. There-
tore (/' hag o non-singular zero over o, by the lemms, and hence so does €.
Used in eonjunction with Lemma 1 this corollary gives Arvtin’y
gonjecture for cubic formis.
THEOREM 2. Hvery cubic form O over K with o(()
stngulor zero over H.

= 10 has a non-

Proof. By a well known theorem of Chevalley every cubic form
over kin 4 or more variables hag a non-trivial zero. Henece, by the corollary,
every cubic form ¢ over % with o(c) > 4 has a non-singular zero over I,
and it follows from Lemmau 1 that every cubic form over K in 10 or more
variables has a non-trivial zero over K. By a second application of the
corollary, therefore, every eublc form C over K with o(¢) > 10 has
a nen-gingular zero over K.

Every eubic form € in two or more variables over the field R of real
numbers hag a non-trivial zero over R, as can be seen by considering
a path avoiding the origin that joins a point where ¢ is positive to
a point where U is negative. Hence the corollary to Lemma 2 has the
following immediate consequence (which iz Lemyma 6.1 of [5]).

Buery cubic form over R that is not the oube of a linear form has a non-
stigular zero over R.
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1. Introduction. The idea of a frieze pattern is most quickly con-
veyed by means of an example, such as the following pattern of order 7:

6o 0 ¢ o0 o0 0 0 00 0 0 0 0
i1 1 1 1 t 1 1 1 1 1 ..
T 2 2 3 1 2 4 1 2 2 3
i3 5 2 1 7 3 1 3 & .
2 1 7 3 1 3 5 2 1 T 3
1 % 4 1 2 2 3 1 2 4 .
i1 1 1 r 1 1 1 1 1 1
¢ o 0 0o O O 0 0 0 0

Apart from the borders of zeros and ones, the essential property 1s that
every four adjacent numbers forming a Rquare

b

¢

satisfy the “unimodular” equation ad—be = 1. Moreover, we ingist
that all the numbers (except the borders of zeros) shall be positive. The
surprising conclusion is that every such pattern ig periodic. More precisely,
it iy symmetrical by o glide: the product of a horizontal translation and
s horizontal reflection.

After giving some historical background, we shall prove this perio-
dieity and deduce some cyelic gequences based on continued fractions.
Finally, we shall give a necessary and sufficient condition for a frieze
pattern to consist of integers.

2. Frieze patterns of order 5. The story begins in 1602, 'when
Nathaniel Torporley (1564—1632) began to investigate the five “parts”



