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1. Introduction. The idea of a frieze pattern is most quickly con-
veyed by means of an example, such as the following pattern of order 7:

6o 0 ¢ o0 o0 0 0 00 0 0 0 0
i1 1 1 1 t 1 1 1 1 1 ..
T 2 2 3 1 2 4 1 2 2 3
i3 5 2 1 7 3 1 3 & .
2 1 7 3 1 3 5 2 1 T 3
1 % 4 1 2 2 3 1 2 4 .
i1 1 1 r 1 1 1 1 1 1
¢ o 0 0o O O 0 0 0 0

Apart from the borders of zeros and ones, the essential property 1s that
every four adjacent numbers forming a Rquare

b

¢

satisfy the “unimodular” equation ad—be = 1. Moreover, we ingist
that all the numbers (except the borders of zeros) shall be positive. The
surprising conclusion is that every such pattern ig periodic. More precisely,
it iy symmetrical by o glide: the product of a horizontal translation and
s horizontal reflection.

After giving some historical background, we shall prove this perio-
dieity and deduce some cyelic gequences based on continued fractions.
Finally, we shall give a necessary and sufficient condition for a frieze
pattern to consist of integers.

2. Frieze patterns of order 5. The story begins in 1602, 'when
Nathaniel Torporley (1564—1632) began to investigate the five “parts”
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a4, A,b, B¢ of a right-angled spherical triangle (right-angled at ).
According to De Morgan [7], Torporley anticipated by a dozen vears
the famous rules of Napier ([12], p. 32) which Gauss embodied in his
pentogrammea mirificum ([8], p. 484). Gauss used the identity

(149 (14— 0e)—~ 1+ B (L +y—ea) = s{(1+a—yd)—(1+ —af}}
to prove that any three of the four relations
l4a=ypd, 1+p =20 L1ty =e, 1+35=20af

implies the remaining one and alse 14 ¢ = fy, This remark establivhes
the perviodicity of the frieze pattern

¢ 0 0o 0 0 0 0 0

Fig. 1

The pentagramma mirificum (Figure 1) is a spherical pentagram
formed by five successively orthogonal great-circle arcs. The “core”
of the pentagram iz a pentagon whose vertices are (obviously) poles of
these five arcs; it is thus a self-polar peniagon. The whole figure can he
derived from the right-angled triangle 4BC (appearing at the top) by
extending the sides and drawing also the polar great cireles of the vertices
4 and B. Using a prime to indicate the complement

3 =4n—e,
we easily see that the sides of the self-polar pentagon are

A, B.b e, a
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while the remaining arcs and angles are as indicated in Figure 1. Cleaxly,
any equation conbecting the five “parts” (thus amended) remains valid
when they are cyclically permuted. This is Napier’s observation (except
that he used the alternated cycle a', B, ¢, 4, b').

Gause defined

a =tantd, f =tan?B, ¢ = tan?d’,

§ = tane, ¢ = tan?e’

and used one of tlhe clagsical relations (such as cose = cobd eot B, [B],
». 234} to derive

sec?d = 8, weclB = de, Bec?d’ = e,

secle = af, secta’ = fy.

He mentioned the “schone Gleichung”

34-a-t B4yt = afyds = V(1+a) 1+ L+ (1+8)(L4e)
and the related formula
(14+4Va) (L 3VB) (L+iVy) {1+ VL +iVe) = apyded®™,

‘where § = 2n— (44~ B-+-b+eot-a')
Incidentally, the obvious identity
1 gy

af By ea
yields the spherical analogue of the theorem of Pythagoras:
cos¢ = sing'sind’ = cosacosb.

Lobachevsky ([9], p. 18; [10], p. 36; [6], p. 281) showed that any
right-angled triangle ABC in the hyperbolic plane corresponds (in a special
wanner) to a spherical triangle with hypotenuse If(a)} and catheti B
and II(e) opposite to its angles 4’ and II(b). Recallng thal cot [f{a)
= pinha, so that tan If(a) = csch o, we obtain the following hyperbolic
interpretation for the frieze pattern of Gauss:

cot?d = a, osch?h = f, sinhle =y, csch®a =4, cot*B =,
cse? A = pd, coth®d = ds, cosh?c = ca, coth’a =af, o©se*B = fiy.
The revised notation
Uy == @y U =0, U=, Uyg=¢, Uy=7}
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yields the frieze pattern

0 0 0 0 0 0 0 1)
1 1 1 1 1 1 1 1
e Mg Uy Uy Uy Wy Mg W
Uy Uy Uy Uy Uy Uy Uy Uy
1 1 i 1 1 1 1
0 0] 0 0 0 0

and the relations

g = Ly, Uty = Lt atg, Ugly = L-bag, ...,

which are thus seen fo imply #,,.; = , for all » {provided u, s 0). This
d-cycle seems to have been transmitted in the form of mathematical
gossip for a long time. One published account iz by Lyness [11]. The
following straightforward proof has kindly been provided by Israel
Halperin. Given

Upthy = 1+,  ethy = 14Uy, gty = 146y, Ugls = L4+ u;

and wguy # 0, we have
Uy gty = (1 Up) sy = Uyt 14 3y

= gt Ly = U (L U;5) = Ugtytiy;
thercfore uwg = 264,
Any reader who is in a hwrry may now turn to § 5, where a notation
is proposed which will enable ug to establish, in § 6, the periodicity of
the pattern of order n. '

3. Continued fractions. A pretty variant of the 5-cycle u

- ; r—1Y%pia
= 1+u, can be obtained in terms of ¢, = 1+ u,:

Oy

[ S UL
r+1
1““?-—1

or, in the notation of continued fractions,

Op1 =1—0/1—¢,._,.

This suggests a possible generalization. Tet m—1 positive numbers

€1y «+y €y be given, and let the sequence {e,} be continned so that
{3.1) Ontr = 1= COpyp fl—... 6, ,/1— Cri1
for # = 0,1,... The sequence clearly has period 2 when m = 2, and

§2 shows that it has period 5 when m = 3. Iy if still periodic when
m>3%
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Pig. 2

Let X_,, X,, X, be three disinct points on a cirele (ag in Figure 2,
where m = 3), or on the real projective line. Let m—1 further points

X,, ..., X,, be chosen to form cross ratios
(3‘2) {Xr—-ZXr—l-l! Xr—lxr} = G (’J’ = 1! ] m—l) -

Applying a well-known, property of cross ratios ([8], p. 77) to the five
points X_;, X, ,, X, ,, X,, X,,,, we find
{Xr—‘l-Xr+1! -X'r—l X,.} = {Xr—zx—la Xr—lxr}{x—lxr-z-lr 'Xr—lxr}}
50 that
X, o Xy, X, K} ={X X, X, X}
=1—{X_, &, 4, Xeir X=1-{X, X ,, Xr-Xr-g-l}-
Betting r = m—1,m—2, ..., 2, in turn, and then using (3.1) with » = 0,
we have
{Xm—2x~1: Xm—lxm} = l_cm——lj{'xmuaxm—lr -Xm—zxmwl}
= 1'—'0.m_1/1“"cm__2/1"‘“*“ s GE/{XGX—]J XI-XE}
= l_' m__,l'/l.“‘“‘ nen agll—“‘al

O -

Thus, if we regard X, ., as an alternative name for X_,, (3.2) will hold
not only for r < m but also for r = m. By the same procedure, specializing
X, instead of X_;, we conclude that, if X, ., i3 another name for X,
(3.2) will hold also for »+ = m+1; and so on. Altogether, we have a cycle
of m+2 points X, and a eycle of m+2 numbery ¢,: the period ig m-+-2
for all m > 2.
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4. Schliifli’s orthoscheme. Figure 2 shows ares X X, X X,, ...,
orthogonal to the given cycle. If the point-pairs X, X, and X, X, separate
each other, one of the angles of intersection of the arcs X, X, and X X,
is twice the angle whose cosing is 4 {X,X,, X, X;}. This may be seen by
inverting the figure in a circle with centre X, so that this point becomes
the point at infinity, the remaining three become collinear, the arc X X,

X, X 9 0,
A
2
0
2 % : 4%
28
bac 4
4 ! Ay & G 0,
Fig. 3 Fig. 4

becomes a pemicircle, X, X, becomes a “vertical” straight line, and
{X,X,, X, X;} becomes the simple ratio X, X,/X, X, ([2], p. 123; [5],
. %76}

Figure 3 shows the result of inverting Figure 2 in a circle with centre
X_,. Now X,, X, ..., X, ocour in their natural order along a line, so
that, it r <5 <, X, ¥ 4- X X, == X, X,.

In & Euclidean. m-space, choose points 04, Oy, ..
line-segments 0,04, ..., 0, 0.
lengths

.y Oy so that the m
are mutually perpendicular and of

Oy 01 = ]/XGXM veey Om—-l Om = ]/melxm'
Then (by Pythagoras) we have (0,0,)* = X, X, for all », 35, the friangle
0,0,0, is right-angled at O, whenever r <s <, and the simplex
0,0; ... 0,, is the special kind for which Schlifli devised the name oriho-
scheme ([13], p. 243; [14], pp. 169, 240).

Figure 4 is an unfolded. net of a 3-dimensional orthoscheme O, 0,0,0,:
2 tetrahedron whose faces consist of four right-angled triangles. If its
size in such that 0,0, 1, the faces at O, determine, on the unit gphere
with its centre at that vertex, a right-angled. spherical triangle 4.BC with
A on 0,0, B-on 0304, 0 0n 0,0,. In terms of the “parts” of this spherical
trlangle, the face-angles of the tetrahedron are 4, a, b, ¢, as indicated

in Figure 4. The corresponding angles 24, 2a, 2b, 20 in Flgures 3 and 2
are derived from the relations
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cosd = ( 33) = (XX, T, X,
sintg = (g:g;) iﬂi; = {X, X, X_, X,},
sinsh = (gig:) - Xﬁ - (X, X_,, T, X},
oo = (5] = iz, = A0 B

The remaining angle B (which appears in the tetrahedron as the dihedral
angle at the edge 0,0,) ean then be inferred in Figure 2 from the fact
that @ and b are interchanged when the points X _, X, X, X, X, are replaced
by X, X, X, X,X_,, and then the 2B can be ingerted in the corresponding
position in Figure 3. Recalling that X, = X_,, X; = X,, and X; = X,
we deduce that, in the notation of (3.2),

¢, = 0824, e, = coNZB, ey = sin?b, ¢ = cos?c, ¢ = sinfa.
We have thng returned to Napier’s eycle from a new point of view. In
fact,

4, B, im-b, ¢ itn—a

can be deseribed as the angles between adjacent pairs in a eycle of five
planes such that any two non-adjacent planes are perpendicular. The
first four of these planes are the face-planes of the orthoscherme {(opposite
to the vertices O4, 0y, Oy, Oy), and the fifth is perpendicnlar to the “long"
edge ,0;.

It appears from the work of Wythoff [15] that all the angular prop-
erties of g four-dimensional orthoscheme can be derived by the analogous
procedure with m = 4. The m-dimensional case wasg described by Schlifli

([13], pp. 256-260; [14], pp. 174, 249) in terms of the determinantal
equation
1 l/e,..+1 ¢ ... 0 0
WVeor 1 Vepy .. 000
(1) 0 Vo 1 .. 0 olT%
0 0 0 .. Ve, L

which is eagily seen to be eguivalent to (3.1).
Figore b illustrates the cage when m = 5, The angles 26, of the inner-
most “heptagon” are given hy

cos?f, =0, (r=1,...,,7).
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In ¥meclidean 5-space, 6, appears as the angle between adjacent hyper-
planes in a cycle of seven, so arranged that any two non-adjacent hyper-
planes ave perpendicular. When any one of these hyperplanes is omitted,
the remaining six bound an orthoscheme whose acute dihedral angles
are five of the seven 6's. By drawing further ares, such as X,X,, we
exhibit the doubles of all the remaining angular properties of this ortho-
scheme {[2], pp. 125-134).

Fig, &

5. The two-digit symbols (r,s). To investigate the general frieze
pattern, we shall find it convenient to represent its elements by symbols
{r, 8} as follows:

{0, 0) 1,1) {2,2) (3,3) (4, 4)
(o, 1) (1,2) (2,3) (3, 4)
{—L,1} ' (0, 2) (1,3 (2,4) (3,5)
(—1,n—3) (0, n—32) (1, m—1) (2,m)
{(—1,7n—2) (0, 7n—1) (1, n)
(—1,m—1) (0, ») {1,n-41)

([3], p. 139 = [6], p. 204).
The borders of zeros and ones are given by the specifications

{ryr) =0, (r,r-+n) =0,
(Fyr-f1) =1, (r4-1,r4+n) =1.
We have also (r,s) >0 for + <& <r4-n, and the “unimodular rule”
(8.3)
‘which implies
(5.4)

(5.1)
(5.2)

(r~—1, 8){r, §4+1)—(r, 8){r—1,54-1) = 1,

(ryr—1) = —1, (r—1,r+n) = —1.
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Clearly, the whole pattern is determined by the elemenis in one
diagonal, such as

{0,0), (0,1), (0,2), seey (0, n—1), (0, n)

{beginning with 0 and 1, and ending with 1 and 0). For instanee, (1, 2) = 1,
and setting » = 1 in (5.3) we obtain

(1,2)(0,3)+1

_( (1,3)(0, 4)+1
(173) - (0’2) ?

(1,4) = 0, 3) ’

and so on. Accordingly, we adopt the auxilisry notation

{5.5) fs=(=1,8), g =(0,3),
s0 that '
Joa=g1=Ff =g =1,
Jaa=g=for=0. =0,
Jo =01 =Ffoes = ey = 1,
i 7 fi P Saa

‘We easily verify that, for the relevant values of » and s,

(r, 8} =frga'—fagr‘
In fact, this definition of (r, 8) (for all integers r and &) implies

(5.6)

(5'7) (.""a 3)(t7 '“‘)+ (7"7 t)(“} s)+("‘"a 'u') (87 t) =0,
(5.8) (8,7) = —(r,8),
and

(r—1,8)(r, s+1)—(r, §)(r—1, s+1) ~(r—1, #) (s, s+ 1} = 0.
The last relation agrees with (5.3), since (r— 1,7} = (s, s-+1) = 1.
This procedure was ingpired by D. 8. Mitvinovids proof ([1], p. L89)
that the general solution of (5.7} ir
(r,8) =f(r)g(s)—f(s)g(r}

for arbitrary functions f and g¢.

6. The periodicity of the frieze pattern. Using (5.4), (5.2), (5.7), (5.1),
in turn, we have

(6.1) (ry &)+ (r,8+n) = —(r,8)(s—1, s+n)+ (1, s-+n)(s—1, 8)
w= — (P, 3—1) (8, s+n) = 0.

20 — Acta Arithmetica XVIIT
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In particular,

(6.2) forn = =St Gspn = — e

Thus the values of 7, for the pattern in § 1 are
0,1,1,1,1,2,1,0, —1, —1, —1, -1, —2, —1, 0, 1, ...
From (5.8} and (6.1) it follows that

(6.3) (ry8) == (8, 7+n) = (r+n,s-+n).

These equations show that the frieze pattern is symumetrical by a glide,
and therefore also by the “asquare”™ of this glide, which is a horizontal
translation. Henee, if we define

(6.4) & = (r—1,r+1),
we will have
{6.5) Gpspon, == Oy

for all integers k. However, the n numbers ay, ..., @,_, are not independent.
It will soon be seen that, instead of deriving the whole pattern from
fir oo vs faoss we can equally well derive it from a4, ..., a,_,.

As Bithm remarks ([1], p. 189), since

(ry8) = (8—2, 8){r, 8—1)—(r, §—2)(8—1, )
= @y (#, 8 —1)—(r, §—2),
it follows by induction that

€ 1 0 ... 0 0 |
1 a4 1L ...0 0!
(6.6) 0

=
N
il
=
i__l
&
-+
]
=

...............

(2} p. 1345 [4], p. 160). In particular, (5.2) (with » = —2) shows thaé
;3 can be derived from @y, ..., a,_, by the linear equation

g1 0 ... 0 0O
1 a1 -...0 0©
(6.7) 101 a ... 0 0©

=1 (n>>8).

Frieze patterns 307

Accordingly, the periodicity (6.5) can be expressed as follows:
Let n—3 positive numbers a,, ..., &, _, be given, and lot the sequence
{a} be continued so that

e, 1 0 ... 0

1 &y, X 0

0 1 @, 0 (=1 (r=0,1,...}
0 0 0 ..l Gy

Then the sequence is Periodic: @, = ...,
7. Continued fractions, again. Another consequence of (5.2) and (5.7} is
{r—1,8) =(r,r+1)(r—1,8) = (r,8)(r—1, r+1)—(r—1,r)(r+1, )
= (r, s)a,—(r-+1, 8),
whenee
. =g,— L) —.
(ry8) (ry 8) (r+1,s)

r—1,8 _ (41,9 (r, 8)
Sinee thig result remaing valid when » is replaced by r41, it follows that,
if r<g<rtn,

o (r—1, s)
(7.1) """F(,;;";’)__ = a‘r—l/a’r-i«l_]-/"'—"l/a‘s—l'
In particular, by (5.5), if 0 <& < n,

o fs _
{7.2) = = gg—1ja;~1/...—Lla,_,.

9s

Setting ¢ = n—1, we obtain
(7-3) tyg—1ja,—1)...—1fa, = 0.

Similarly, since (r,s+1) = (r, s)a;— (v, s—1}, we have, for r <
< ¥+,

{r,s41)
N I T | -1/ =1 .
(r, 8) “.a [ag.,—1] (@i
In particilar, if 0 <8 <#-1,
(7.4) f-}ii = t,—1/@_y—1}...—1/a,.
L3

Setting s == #—2, we obtain

(7.5) Gyg— L]t y— 1) ci=1ftty = 0.
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The periodicity may now be expressed as follows:

Let n—2 positive numbers satisfying (6.7) be given, and let the sequence
be continued so thal

bypnon = L0 y—1f—1fa, (1 =0,1,..).

Then the sequence is periodic: &, = .y,

Notice that we have obtained two kinds of cyclic sequence: {c},
of period m--2, and {a,}, of period #. It is natural to ask whether they
are related by any more significant equation than % = m4-2. Comparing
(4.1) with

a 1L 0 ... 0 0

1 @,y 1 ..0 0
0 1 Guy .- 0 =0
0 0 0 s N AP,

fsee (5.1} and (6.6)), we find the precize connection

¢ = (G a’r)_l'
8. Frieze patterns of integers. If all the numbers (r, s) are integers
{as in the example chosen in § 1), the unimodular rule shows that each
{r,§) is prime to its four neighbours

{(r£+1,8) and (r,s£1).

In particular, for any six of the numbers arranged thus:

¢ and d are coprime. As in the familiar theory of Farey series, we have
ad—be =1 = of —de,

(8.1) (a+6)d = (b+f)e,

¢ divides a+-¢, and ¢ divides b--f. In other words, three consecutive entiies

on o diagonal are such that the middle one divides the sum of the other two.
Conversely, if, in a frieze pattern, a, b, ¢, d, ¢ are integers such that

¢ divides a--¢, then (8.1) shows that b is an integer, smd therefore f

%s an integer. Returning to the notation of (5.5), we infer that, if f,, ..., fo_s

is a sequence of integers beginning and ending with 1, and if :

(8.2) f, divides FomrtFous

icm

Frieze patierns 309
then all the g, are integers and therefore, by (5.6), all the (r, s) are integers.
In other words, a frieze pattern consists of integers if and only if the
generating sequence fo, ..., f,_, (beginning and ending with 1) congists
of integers satisfying (8.2).

For instance, fo, ..., fu_e May bel, ..., 1, or the sequence of nwmner-
ators or denominators of a Farey series, or a suitable subsequence such
ag the numerators of the first or second halt of a Farey series. Several
suitable sequences can be juxtaposed to make a new one; for instance,

1,2,5,3,1 1,2,3,4,1
can be combined to form
1,2,5,3,1,2,3,4,1,

and

and of course each 1 may be replaced by a string of any number of 1’s.
After ehoosing f,_, and f,, we can take f,,, to be mf,—f,_, for any integer
m > fo_1/fs- The only difficulty lies in making sure that, for a pattern
of order #, f,_, = 1.

The following example (based on the above sequence) illustrates
the fact that a pattern of integers does not necessarily include a diagonal
consisting entirely of 1’s and 2%:

o 0o ¢ 0 OO o0 0 ¢ 0 o0 0 O
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A problem in comparative prime number theory
by
H. M. Sraprx (Cambridge, Mass.)

In mewmory of Hareld Davenpor

1. Introduction. Let 7=(y, %, a) denote the number of primes <y
that arve congruent to a (modk). In a series of papers, Enapowski and
Turin [3] congidered among other questions the problem of whether
w(y, b, a)—m(y, k, b) changes sign infinitely often. The first result of
this nature is due to Littlewood who showed that =(y, 4, 1)—=(y, 4, 3)
changes sign infinitely often. Knapowski and Turin were able to handle
many other cases under the assumption that no L-geries with a character
modk has 2 real zero strictly between 0 and 1 (an assumption that has
heen checked for & < 24 and ig quite possibly true for all k). For example,
ynder this assamption they were able to ghow that =(y, k, 1)—=(y, k, a)
changes sign infinitely often. However the general problem iy still open.

The first unknown case is that of =(y,5, 4)—=(y, 5, 2). We prove
below (Theorem 2 and 6) that there are positive constants ¢, and ¢, such
that
7(y, 5, 4)—m(y, 5, 2)

liminf - < —¢
- vy logy Y

lim sup =, 5, 412—31;(3/, 5,2) >0,
oo Vy/logy

The first inequality is actually easy; the real difffeulty iy in the second.
The “correct” values of ¢, and ¢, axe undoubtedly -+ oo, but this remaing
unestablished,

More generally, one can congider sign changes of ¢(k)zwe(y, %, a)—
—q(K)x(y, K, A). We prove below a general result {Theorem 1) that
applies to this situation, Unfortunately most cages will require 2 numerical
calenlation to reach the desired conclusion. This will be discussed in
Bections b and 6.

2. Notation and other prelimjnaries. Throughout, k, K, a, 4 will
be positive integers and if ¥ = K, we will assume that a s 4 (modk).



