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The least common denominator of the coefficients
of a perfect quadratic form

by
G. T.. Wargox (London)

1. Introduction. Let # be any positive infeger, and f & perfect n-ary
guadratic form, with minimom 1. Then, as iz well known, the coefficients
of f are all rational; we denote their least common denominator by g( I
and prove:

TaeoreEM 1. With the foregoing notation
(11) g(f) <y

where y,, 18 the Hermile constant.
1t is well known that y,/n iz bounded, so (1.1) implies

(1.2) logg(f) < ¥{L+ =)ntlogn

for >0 and n > my{e).

Theorem 1 seems very weak, and indeed it is so for small n. The
possibilities for f up to equivalence are all known for » < 6, see [4] and [1],
and by looking at them we see that ¢(f}) = 1forn < 4,9(f) < < 2 forn =5, 6.
Tf we restrict f further to be absolutely extreme, then ¢(f) = 1 for n < §,
see [2]. Direct proofs of these improvements, or of slightly weaker ones,
on {1.1) would be of interest; they might lead to easier proofs of the
results of Barnes and Blichfeldt.

I have however failed to find any useful numerical results of this
kind; so instead I show that for large » (1.1) is not as weak as it looks.
Defmmg g, 25 the supremum of g(f) for given n, we shall see that

(1.3) ntlogg, -~ c0 a8 n —> co.

The proof of (1.3) will be such as to suggest the con]ecture that the
exponent —% can be replaced by —1.

2, Lower bounds for ¢,. For n =1,2,..., we define Q(n) as the
(tinite) set of positive integer values assumed by g f), defined above,
for perfect n-ary f with minimum 1; whence g, is the greatest mernher
of @(n). We shall prove three theorems
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TaEOREM 2. For each odd n 2> 5, §(n—1) <@ (n), whenee g, = $(n—1).

TREOREM 3. Let (liy, ty), m =1, ..., 7, be any v=2 ordered pairs
of positive integers sueh that

{2.1) hop @, Jor some g, <@ (n,), m=1,...,7.
Then for every m with

(2.2) LI S

there ewigts ¢ with

{2.3) ge@d(n) and  lylg  for  om o= L, 7

whence, trivially, g, is not loss than the Teast common multiple of the I, .
By taking r =2, ny = 01,40y = 1, = g,.,, and by =1, 28 we
clearly may, we have:
CoroLLARY 10 THEOREM 3. ¢, = ¢,., for n = 2.
THEOREM 4. For ¢ > 0 and % > ny(e) we have

(2.4) logq, > (L— &)(¥nlogn)t,
implying (1.3).

3. Preliminaries for Theorem 1. Using the notation

{3.1) € =col{fy, ..., &)

for a columu. vector with # real elements, we define £*, with n* = Ln(n-}-1)
elementy & &, 1<i<i<n, by (3.1) and

{3.2) ‘ " = col{f], &, 6, .., £udy, 8, .oy £}
Ther more generally, if M is an » by s matrix, with jth column My, W6

define M* ag the »” by s matrix whose jth column is my. Now if 1 iy
any real non-gingular n by »* matrix, we need to know that

(3.3) (TM*y = UM*, with

where U = U(Z) is a veal »* by »* matrix.

If 7' is & diagonal or a permuutation matrix, or if premultiplicstion
of E by T iy equivalent to putting &, - £, for &, then (3.8) iy easily veritiod.
- .“ - . . " | X - ' '

E c\:(:LOIle?Ilg A" by elementary row operations, the general case (3.3) follorwy,
as in [B], from these wpecial ones,

1i f is & positive-definite n-ary quadratic form. we may, by eomplating
the wquare, write ‘

dot U = -} (d(‘ﬂi 11)2'&'-!-1 ,

&

(34) f(CB) =f(w11 ey wn) = . Wa‘i{wi"i“-z’i(ww-lr rary mﬂ,)}27

ey

—

‘where the &, ave positive constants and the I, linear formg (L1, indentically
0). The substitution
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(3.5) Byt Ty(yays ey @) = 074 (@0g .. )08 (=1, .00, 1)
takes f(e) into

(3.6) (@185 ... @) (84 4.+ &)

We now restrict f to have minimum 2= 1, that is, to satisfy

(3.7) fl®y =1 for integers wy, ..., o, #0,...,0.
From (3.4) and (3.7) we have

(3.5} Gylhy oo Oy 22 7"

this implication iz essentially the definition of y,.
Now clearly there isa T, with detT = 1, such thati (3.5) can be express-
ed as § = Tae, whence, see (3.6), (3.8),

2

(3.9 E=Tx and f(@) =1 imply E&+&+...+E5 <V,
And (3.3), with detT =1, gives
(3.10) idet M*| = |det(TM)*| if M is n by a*.

4. Proof of Theorem 1. Denote by a;; = ay; the coefficient of a,2; in f;
then since f is perfect, with minimum 1, there are s = »* = }n(n+-1)
CHNES
(4.1) > ayma; =1

lisi=<in
(with integers x,;) of equality in (3.7). And further, these s linear equations
in the a@; determine the a; uniquely. It is clearly possible to choose
a subset of precisely »* of the equations (4.1) which also determine the
@y uniquely; and to write these equations as

(4.2) (@415 Qpay -y By Bagy -I-'; a‘nn)X*(f) = col{l, ..., 1},

where X(f) is an # by »* matrix, with columns 2 each satisfying (4.1),
that is () = 1. X*(f) is »* by " and hon-singular, with integral ele-
ments, Bvidently (4.2) implies that the e; are all rational, and that their
Least. eomauon dencminator ¢(f) divides det X*(f) #0, so
(:.3) q(f) < |det X*(f)].

Tsing the T of §3 with the properties (3.9), (3.10), and putting
M= X(f), Y =TM, (43) gives
(4.4) g(f) < |det ¥*| = (det XY™ T,
where ¥* is the tramspose of Y*. By construction, each colwmn ¥ of
Y satisfies the inequality in (3.9); and we have deb ¥ £ 0.
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Now ¥* ¥* is a positive-definite matrix, and sgo its doteruinant
-does not exceed the product of its diagonal clemeonts. So from (4.4} we
have

{4.5) ¢ < [+ B8+ e 8,
£

where E ranges over the n* columns of ¥.
Crudely, (4.5) gives

(4.6) g < [[a+a+...+8),
g

‘whence since the § all satisfy the inequality in (8.9) we have (1.1) and
the proof of Theorem 1 is complete.

The argmment is crude at several steps, go presumably (1.1) is lrue
‘with a good deal to spare -— except when n =y, = 1. A little improve-
ment i3 possible if we replace (4.5) by

(4.7) () < " [ ot ofimi )
L

== i) H R DL T

with each v satistying

(4.8) B riepee bl = 1.

Then. it is not bard to see that the expression 4~ Yt in (4.7) nuy be
replaced by its mean over the sphere (4.8), which is (n~}5)/(2n-i4).

I leave the details of thisx argument to the reader, since it neither
improves on (1.2) for large » nor gives useful numerieal vesulfs for
n =8,7,8.

5. Proof of Theorem 2. We wiite n = 2k—1, i an integer 3,
sineo n 2= & iy odd. We write for hrevity

Jﬂ'}l -EO.P J;' = 1,
{6.1) Yo = @+ Fy for i =2, ..., 1,
l (Y1t Y, for 4o =a-l = 2k,

We define f by
{5.2) 2k(k—1) @y, .oy ) = y%”l" “i“‘?fgirm

and it guifices to prove that this makes f pertect, with minimum 1 and
with ¢(f) = k-1 = {(n—1). The 2; are all integers if and only if the v,
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are all integers and satisfy

(5.3) Yy = ... =Yy (modF)
and
(5.4) Yit oo tYy = 0.

We note that (5.3) implies ¥} =uj(modm), with m =15k it 2%,
m =2k if 21k So (5.3) and (5.4) imply
(5.5) P+ Ayl = 0(mod 2k).
We consider the ftwo cages
(5.6) Bty aon
and
(5.7) Yy = .. = O
with (5.3), (8.4), In either case.

(i) Clearly (5.6) implies that at least two of the |y;| are positive
multiples of %, whence 3 43> 2%k?% equality heing obviously possible.

(i) Tn case (8.7), ¥; it least when each ¥, is either % or h—Fk. But
then, by (5.4), y; takes these two values for k—1J, h values of ¢ respec-
tively, and so

Pyl = 2(h—R)RE1- 2R (k— R)® = 2RK(k— k) > hi?.

Yo =0y ..., 0

= h(modk), 1<Kh<3ik,

We therefore have
f‘h Tt yn =

with equality only when & = 1.

Now {(5.5) and (i), (ii) above show that (¥—1}f is an mteger-valued
and primitive form, with minimum k-1 (p111m131ve since by (i) it also
takes the value k). So we have proved all that is required, except that f
is perfect. We have also established that the only minimur points of f,
in terms of the y; but omitting the redundant ¥,,, are the permutations
of +eol{l,...,1,1—%k} and of Zeol{t,...,1—k,1—k}

To prove perfection, it suffices to show that any form which vanishes
at all these minimnm points must vanish identically. Let

= >bti, Ny

be such a form; with summation over 1 £ ¢ < j < » (but, for convenience,
with b(i, j) = b{j, %) when ¢ > j). Then the b(, j) have to satisfy a system
of equations got by permuting the coordinates in ¢(1,...,1,1—%) =0
and in g(1,...,1,1—%,1—%) == 0. And we must deduce that the
b(i, ) all vanish.

2% (k—1)

g = g(¥1s--3 Yn)

3 — Acia Arithmetica XVIII
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It we permute and add the two equations just written it ik not
difficult to see that }'b(i,4) =0 and } b(i, j) = 0. Then the two equations
s

ean be written more rimply as

(5.8) Eb(n,n) =b(1L, n)+...+b(n—1,n),

(5.9) Eb{myn)+kb(n, n—1)+kb(n—1,n—1) = Z {b{i, n)-- (¢, n—1)}.
(R 4

Interehange # and »—1 in (5.8), then add the result to (5.8} as it stands,

and subtreact from (5.9); this gives b(n—1, n) = 0. Now by symmetry

b, §) = 0 for 4 s j; (5.8) giver b{n,n) = 0, and gymmetry gives b(i, )

= (. This completes the proot.

6. Proof of Theorem 3. We notice first that 1eQ(1) (consider the
perfect form #7); so, by putting in n— Y'n,, ordered pairs (1,1), we see
that it suffices to consider the ease in which equality holds in (2.2); that
I8, 1 = Myt ue. Ty

We next note that if the case » = 2 has been proved then for r = 3
we can replace the two pairs (hy, %), (hy, %) by (B, 5-ny), with
8 common multiple of hy, #,. So the case v = 3 can be dealt with by
induction on ». We thevefore suppose r = 2. For convenience, we write
ny = v; the 0, =n—n; = n—». We choose two perfect forms fy, fu,
each with minimum 1, in », »—» variables respectively, with

(6.1) halglfs)y  Pelq(fa)-
And we congider the disjoint form _
(6.2) Filttrs ooy @) o (@piay ooy )

The following well known result iv proved in substance in [6],
PR LOB-=107:

Limmwia, et f = flwy, ..., @) Do @ positive-definite n-ary gquadratic
Sorin with snindmeon Lwhich ig not perfect. Then there exists an n-ary quadratic
form g such thal:

{3y [y és perfact, with minimum 1;

(1)  glm, .oy 2,) =0 whenever the o are indegers selisfying
Flay ooy y,) == L,

By definition, f, with minimum 1, is pexfect if every ¢ having prop-
erty (ii) above is identically 0. Now we take f to be the form (6.2), and
apply the Lemma. By (ii), ¢, = g(@y, . .5 s, 0, ..., 0) =0 for overy
seb of integers wy, ..., @, satistying fi(z,, ..., #.) = 1. 8o, by the definition,
of perfection, g, is identically ¢. Similarly, g, = ¢(0,..., 0) Bppny ey By)
ig identically 0.
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Hence we wmay write g = b(xy, ...y @0} @y, ..., @,), Where b ig
g bilinear form in the two sets of v, n—» variables. And the form f-tg,
which by (i) is perfect with minimum 1, is of the shape '
(6.3) fol@yy oo @) by, sy By 2y gy Tp) Lo Bpgrs ooy @)
Call this form @ and let a;; = a;; be the coefficent of #;#; in @. The theorem
follows, by (8.1), if we prove that ¢(f;) and g(f.) are divisors of g{®).
But this is trivial; we have g(f,)|¢(®) by considering only the a; with
i, § = », which are the coefficients of f;, and similarly for f,.

So the theorem is proved; and we observe that we might do better
it we had some control over the coefficients of b.

7. Proof of Theorem 4. We suppose e > 0 given (and < 1) and # large.
We denote the mth prime by p,, and note that

(7.1) P ~mlogm ags m = oo,

This (see [3], 10, Theorem 8%), is a simple consequenee of the prime
number theorem.
‘We choose a large r = #(n) so that

(7.2) N2 2Pt Pst TP

Taking r as large as we can, so that (7.2) becomes false if r is replaced
by r41, we find by (7.1} that (for « large enough) we have

(7.3) n << (14-%s&)rlogr,
whence
(7.-H) logr > L(1—~Le)logn.

Now by (7.2) and Theorem 2, the hypotheses of Theorem 3 can be
satisfied by taking %, = P,, B = 29,1, Then the least common
multiple of the %, is their produet, so Theorem 3 gives ¢, > p, ... .-
With (7.1) this gives
(7.5) logg, > (L—%s&)rlogr.

Frow (7.3)+7.5) we have
(loggy)? > (L—}e)(rlogr)?
> ${l—%e)r(logri(logn) > ${1—e)nlogn,
whence we have (2.1) and. (1.3), and Theorem. 4 is proved.
Now, by the remark at the end of § 6, we have, in effect, constructed

an n-nry perfect form, and of its 4n(n-+1) coefficients the nnmber we
have used iz

%Z Py, (P 4-1) ~ 2 Epfn

The ratio of this expression to $n{n-+1) is agymptotic to 2/3r <<n
This s the foundation for the conjecturs stated at the end. of § 1.

s-1j2
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Some elliptic function identities
by
J. W. 8. CAssELS (Cambridge)

Harold Davenport in memoriam

0. Introduetion. In the course of some ecaleulations about elliptic
curves defined over finite fields I was led to identities about the coeffi-
cients of classical elliptic functions. These appear to be new, although
they are entirely in the spirit of 19th century analysis. In this introduetion
I shall firgt enunciate the complex function identities and then describe
the application to finite fields. The proofs will be given in the remainder
of the paper.

I am grateful to Mr. A. D. McGettrick for some useful discussions
and in particular for his contribution to § 6.

As we shall want to specialize modp later, we must be rather more
pedantic in the discussion of the complex function identities than would
otherwise be appropriate.

Let @, A, B be independent indeterminates over some field % of
characteristic 0 and define ¥ by

{0.1) y? = 3 Ap+ B.
We regard y as a formal series in a2

(02) y =Pt Ao+ Bo PR =Bl Y (j) (Ao *+-Bo~*Y].

FEX

There i8 & sequence of polyromials

(0.3) L, ¢k[w,y, A, B]

uniguely defined by the properties

(0.4) Ly=1, L,=0,

and :

(0.5) Sr”(’f) LM = 0@)  (r=2,3,..)

f=o a



