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A problem in comparative prime number theory
by
H. M. Sraprx (Cambridge, Mass.)

In mewmory of Hareld Davenpor

1. Introduction. Let 7=(y, %, a) denote the number of primes <y
that arve congruent to a (modk). In a series of papers, Enapowski and
Turin [3] congidered among other questions the problem of whether
w(y, b, a)—m(y, k, b) changes sign infinitely often. The first result of
this nature is due to Littlewood who showed that =(y, 4, 1)—=(y, 4, 3)
changes sign infinitely often. Knapowski and Turin were able to handle
many other cases under the assumption that no L-geries with a character
modk has 2 real zero strictly between 0 and 1 (an assumption that has
heen checked for & < 24 and ig quite possibly true for all k). For example,
ynder this assamption they were able to ghow that =(y, k, 1)—=(y, k, a)
changes sign infinitely often. However the general problem iy still open.

The first unknown case is that of =(y,5, 4)—=(y, 5, 2). We prove
below (Theorem 2 and 6) that there are positive constants ¢, and ¢, such
that
7(y, 5, 4)—m(y, 5, 2)

liminf - < —¢
- vy logy Y

lim sup =, 5, 412—31;(3/, 5,2) >0,
oo Vy/logy

The first inequality is actually easy; the real difffeulty iy in the second.
The “correct” values of ¢, and ¢, axe undoubtedly -+ oo, but this remaing
unestablished,

More generally, one can congider sign changes of ¢(k)zwe(y, %, a)—
—q(K)x(y, K, A). We prove below a general result {Theorem 1) that
applies to this situation, Unfortunately most cages will require 2 numerical
calenlation to reach the desired conclusion. This will be discussed in
Bections b and 6.

2. Notation and other prelimjnaries. Throughout, k, K, a, 4 will
be positive integers and if ¥ = K, we will assume that a s 4 (modk).



312 H. M, Stark

We will let y and X denote characters (mod %) and (mod K} respectively.
The prineipal characters to these moduli will be denoted by y, and X,.
Real characters (other than the prineipal characters) will be denoted
by 4. and X, respectively. The combination

= (k05 K, 4) = D Xi(4)— le
-"1
will be of great imporfance; when + == 0 things are much simpler. We
have already introduced =(y,%,e); the related function

vy, kya) = D' logp
PRy
P =a{mod k)
will be useful (here > means that if p™= ¥, only }logp should be included
In the sum).
Ag usual we write s = o4 it. The Divichlet L-functions

Lis, 1) = D alm)n™*
n=l
and Riemann zeta function £{s) are natural tools in this sort of problem.
We will use g, = f#,+1y, to denote a zero of L(s, y}; o, is said to be trivial
if f, <0, otherwise it is mon-trivial,
Nexf, for rveal « rmd positive 7, the following related sums will be
used,

Ap(u)y = Ap(u; k, a; K, A)

= 2 Z X(A glex—thu__ 2 2 2ty *})u

X£Xg ex 2y
B0, ly < >0, W,CI-:T

ww) = Ap(u; by a; K, 4)

=r+ S‘ 2 X(A ( b’;ﬂ)e(.ox—i)u_

x#xo
Bx=>0, ivx|<i"

2 X

( _ _|7’_x_.l_) oy
LHE L . T '

By>0, |1Jx|<i"
The relation between them is easily seen to be

g
* 1
) o A=y 0f A, ()t
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Wherever the limit exigts, we will define ‘
A (u) = A (us &y 05 K, A) = ImAz(u; &, a; K, A).
00

Lastly, for convenience we will nse the notation f,(s) (« real) to
denote an analytic function of s for ¢ > a; even with the same value
of o it will usually denote different functions in different appearances.
Any function fi,(s) will be slightly better behaved: fi,(s) will also be
analytic for o = 4.

LemMA 1. For o> 1,

[ [ (R) (e, b, 0)— (K )mwle®, K, A)] 6™ du

\‘ "( log I (s, x)— Z X(S-A) 1ogL(s,X)m—2%log(8--‘é»)+fm(s)-

A#xg Ay,
Proof. For ¢ >1,
log L(s, 7) _\_J D

;.._J

)p -+ Hlog L(2s, 1) +fi;5(5)-

Hence if o > 1,

plky D) = Y 7(@)[logL(s, x)— tlogL(2s, x*) 1+ fijs(s)
= a(morl!) %
= log(s)— logZ(28)+ D, x(@log L(s, 1)+
XEKy

+3 D zalo)log(s— 1)+ Fiale)-

The lemma follows since for o> 1,

<
2 1 N
[omate &, gy i = 2ot > 97
[ § pwage (mod i)
LeMma 2. Suppose that none of the L(s, x) and L(s, X) have réal zéros
strietly between L[2 and 1. Suppose further that

pR)my, ky a)—g (K ly, K, 4)

inusuy - e 00
71+m] l/y lom;
If o =p4+iy, >0 is such that
() > ST D D ila) # 0,
XAXNg ax x7xp ey

ex=e eyt

then p = }. Thus the right side of (2) 48 analylic for o > 1/2.
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Proof By hypothesiz there iz @ constant ¢ > 0 such thal for
4 > log 2,
6“’,2

{(4) glu) =¢ "

—[p(k)m(e®, by o) — @ (K)m(e*, K, A)] > 0.

But [ g{u)e ™ du is analytic for real s > 4 by bypothesis and Lemina 1
log2
and now, thanks fo (4) and Landau’s theorem on Laplace transformg

of pogitive functions, f g(u)e™* du is analytic In the half plane ¢ > 1/2.
log2
Hence the right side of (2) is analytic for ¢ > 1/2. The lemma now follows

for 82 1/2. Finally if 0 < < 1/2, we note that the expression on the
left of (3) is unchanged if g is replaced by 1—pg+dy. Thus again § = 1/2.
Lemna 3. The function

S g1, n— 3 E M 1015, )

§ s
474 ErX,

has o singularity in the half plane o2 1/2 (if the hypotheses of Lemma 2
arve satisfied, any such singularity is on o = 1/2).

It would be amazing if Lemma 3 were not true; we defer the proof
to Bection 4.

3. Application of a Tauberian theorem. Ingham [2] proved a Tau-
berian theorem. about functions whose Laplace transforms have simple
poles. This theorem has been generalized in [5] to include other types of
singularities. For convenience, we state the special case of this generaliz-
ation that applies here.

TaEoREM. Let
Fs)
8

= f A(u)e " du,
Q

where A (w) 45 real valued and absolutely integrable on every inarval O < v = U,
and the integral is absolutely convergent for o > 1. Set

N
Fi(s) = X a,log(s—3—iy,)
ne—N : '
where a_, = a,,y, is veal, y_, = —y, . Suppose that for some T >0,

%‘i” (8)—TFi(s) is continuous in the region o > 1/2, =T <1< T and analytic
n the interior of this region. Then for AnY Uy,

- A :
limsup u. u/(: J = — a”‘ (1 _ Il ) gt
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In fact this particular result follows from Ingham’s theorem (with
glightly more general hypotheses but the same preof) applied to the
derivative with respect to s of

N
F(_S‘) _ --wcﬁL-—-]. r(8— F— i o 5
5 Z F i, ¢ (s—3—tyn) +F-wls)

o - N
~ L ad a
: it | o— 8 T,
=f Ay = E T gl ]e dac.
1 [ Lfins ¥ T+

An immediate consequence of thig theorem and Lemmas 1 and 2 is our
main result, N

TaporeM 1. If nowe of the L(s, x) and L(s, X) have real zeros stricily
between 1/2 and L then for any T' > 0 and any i,

. (k) (Y, ky, a)—p(K)m{y, K, 4)
limgup

— = A(o).
-, Vy/logy

The rest of this paper will consist of applications of Theorem 1.
As our first example, we have the simple corollary, -

TrmorEM 3. Suppose that nome of the fumctions L(s, x) end L(s, X
hawe real zevos in the range 0 < s < L.

(i) If r(k,a; K, A) =0, then there is a consiant 0> 0 sueh that

. ph)my, b, a)— )=y, K, 4)
limsup

- = o.
yorco Vyflogy

(ii) If 7(k, a; K, A) > 0, then the result of (i) 4s true with ¢ = 7.

Proof. Part (ii) follows from Theorem 1 with any value ‘of o and
very small 7. Part (i) comes by picking 7' just larger than the_ imaginary
part of the first singularity on the line ¢ = 1/2 represented in the sum
A% (). Such o singularity exists by Lemmas 3 and 2' (othermge .o = 00
is already correct). A%(w,) is now of the form. Re(as”™) and it 7 cany
to pick a value of w, that makes this positive. _

The reagon for separating parte (i) and (i) of Theoyam 2 i tha;t‘ 1;]1@
condition of (i), » = 0, is symmetrie in %, o; K, 4 while the condition
in, (if) isn’t. Thus for example, it follows from. (i) that =(y, 3, 2)— (¥, Eri, 3)
changes sign infinitely often while (ii) tells us only that w(y, 0,8)—
—a(y, B, 4) is positive infinitely often. Thus we see that the real ohallenge
iy to derive the result of (i) when » < 0. This has not yet been done 1n
general. Incidentally, Theorem 2 can be derived solely from Landaw’s
theoren.
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4. An application of some exact formulae. There is an exact formula

for yoly, &, @) {1] for ¥ > 1,

(B) g(klyoly, &, @) —?/—Zx(a Z———Zz(w re»s[L(S 7)) %8]

Here the sum over o, is over both the frivial and non-trivial zeros of
L(s, ), other than s = 0. When. y{—1) == 1, the sum over the real negative
trivial zeros is

o, oy 1 21
(6) ST N e )
ﬁ =0 & = —20 2 ¥
while when y(—1) = —1, this som is
- . 1"? oy il 1 —
(g) > J _Lm_=~—log(u)'
R —2n+1 2 ¥y+1

ﬁ<n

There are algo certain imprimitive characters y(modk) for which
Li(s, x) has other trivial zeros. These come from the presence of factors
in L(s, 7) of the form 1L— ap~® where p iz fixed and |e| = 1. The zeros
of 1—ap™* are zeros of L{s, y) and are on the line ¢ = 0. If we sum over
only the zeros, p, of 1— ap™? then we get for ¥ > 1,

Zg@i = (logp) [a%‘l + n;a“] (e # 1),

i<y
1 7

Y logy+ (ogp [—~+ ”] = 1).
o<y

. _Pjroof of Lemma 3. If Lemma 3 were falge, then all of the non-
trivial zeros of all the L(s, ) and L(s, X) would cancel out in the exaet
fo,mm'la. for o{k)wo(y, %, a)—@(E)w,(y, K, A). But thiz function has
occasional jumps on the order of logy while the sums over the trivial
zeros of L(s, y) and L(s, X) cannot produce such jumps. |

The exact formula (8) shows us that for w > 0, A, () exigts and can
be found in other terms. In fact if ¥ > 1, we have

(8) Vyd,(ogy;k,a; K, A) = o(k)o(y, &, &)— (K ), (y, K, 4)+

+yx(a 2 A)ZW

fpo 91 e @

O R N %

=0 Lis, X) =&
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Another exact formula to be given in (9) will show us that 4, () exists
for w << 0 also.

TamoREM. 3. Suppose that none of the functions L(s, x), Lis, X) have
real zeros strictly between 1{2 and 1. Then for any u, 5+ 0,

limsup p(lym(y, k, a)—p(K)u(y, K, 4)
yo Yy logy
Proof. This follows from Theorem 1 and (1). As an application of
Theorem 3, we have
TROREM 4. Suppose that none of the functions L(s, x), L(s, X) have
real zeros strictly between 1/2 aend 1. If a 3£ 1L(modFk) then
s PP T 0= (Kwly, K1) _
00 Vy/[logy

; T“l_ Am (?A’tu) .

Proof. The trivial terms from the characters X in (8) give an infinite
contribution, as ¥ — 1% when A =1 while those corresponding to the
characters y remain bounded when @ s= 1(modk). Hence when a ==
1(mod k), we see from (8) that lim Ag(u; b, a; K,1) = co. The result
follows from Theorem 3. w0t

TEEOREM 5. Suppose that none of the fumctions L(s, x), L{s, X) have
real seros strictly beiween 1/2 and 1. If A s 1(mod K) thew

lim sup qo(k)“('y?kf1):97(K)n(,y,1{, A) _
Yo -'/yllogy
Proof. This follows from the exact formula for

oty D EE- )TZ (@25 10go

pué”*I pt
ap™ =l (mod k) ey L
where 0 <y < 1:
 logp —1 T QO L' (s1, 1) ¢
v (k) 4}..1 " ~ omi f > {(¢-+1, x) s
gyl Lm0

apTas) (mnod k)

1, ) v Z Ty
""‘1‘”21( Tis, p) s—1 4 x(w) P

= yx( Za;x+2 {a) 211_:;
'ﬂZ>0

et

I(s @1“3
__reSZ?C (s’j:) /

ol
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Thiz shows ns that for # < 0, 4 (u) exists and can be found in other
terms. For 0 <y <1, we get

(9) Vyd,(logy;k, e; K, 4)

X 1
= 3 R em 3 i+

sy ! plcy™ 1
o™ ==1{mod k} Apt=l{mod K)
1—ax yl—QX
+ D Y= M) P
Z Byt 1_91 X Ayt " —0x
L'(s, 5) yl_s] Z [L’(SJX) y1--3]
— (@) reg| ————= .= X(d)res | ——=l Z——. .
;j( ) s=1[L(ssx} s—1 * 5 ( ) a1 L(S, .X) 8§—1

The trivial terms from the characters y in (9) give an infinite contribution
as y +17 when & =1 while those corresponding to the characters X
remain ‘bounded when A4 = 1({modK). Thus

Iim 4 (u; %, 15 K, Ad) = oo,

u->0"

Theorem 5 now follows from Theorem 3.

3. The case of n(y,5,4)~=(y, 5, 2). Theorems 2, 4,5 (and more)
are already confained in the work of Knapowski and Turén. They have
been briefly included here to show the application of Theorem 1. In this
section, we specialize to the case K =k, a prime number. Theorem 2
applies unless ¢ is a quadratic residue of % and 4 a non-residue. Even
in this latter case if 4 = L(mod%), Theorem 5 handles the situation. Thus
for the rest of this section, we assume that

a 4 .
(I) =1, (T) = —1, @&z 1l(modk), & prime.
Here

(10)  A%(us; &, a; k, 4) _

=—24 2 2 Z(A);E(a‘) (1—- h;fi)g(l?x"i)u.

x* Ay 2y
By, (v, <2
Spira [4] kas given all the non-trivial zeros of all @(k) L-funetions (mod k),
3 < k<24, in the range |y,| < 25 (in each cage #y = %). There are enough
zeros in this region for & = 5,4 = 4, 4 = 9 that if their imaginary parts
were linearly independent, we would have

(11} C supdy(u;5,4;5,2) > 0.
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A computer search would undoubtedly yield a value of # to demonstrate
(11}, but this would be rather tedious by hand. A brief hand survey turned
up a value of % == 9.34 which does a very good job on the first seven
zeros (measured up fron the real axis). Had the value of 7' been larger,
these seven zeros would have contributed more than enough to cancel
out the r = —2 term in Ay. In fact, had Spira furnished more zeros of
the L-funetions (modf) (so that larger values of T eould be used), we
could have suceessfully applied Theorem 1 with w, ~ 9.34.

In this sort of problem, a large value of Ay (w) often means that
something interesting s happening near y = ¢* In fact at y = 10949
= &%, e (y, B, 4) iy as large as w(y, 5, 2) for the first time since y = 27.
Set y, = 100490%. Qur exact formula is then

(12)  ViyoAe(logyy; 5, 4; 6, 2) s
— - L'(s, %) %o
= 4 [pe(Yor By 4)— oWy, 5, 2)1+ ;(xm)wx@))l;ii[_—u—(_mT + @
. X=X

where
0] < 1073,

Let the 4 characters (modBb) be given by

n(2) =1, 1) =-1, xn@) =1 p2)=—t
and let
Li{s) = L(s, x)-

The second term on the right of (12) is

. Ly (0) . L3 (0)
R AT AR AT
Tt is o pleasant surprise that the logy, works for us rather than against us.
The 18.40 ... that it contributes to (12) lets us be quite sloppy in esti-
mating the first term on the right of (12) (this being nseful since the esti-
mate was done by hand).

Since l/:/':, < 104, there ave relatively few powers of primes greater
than the fivst power contributing to (12); if we take these and first b
printes == 2 (nodp) and the first B prinies == 4 (modf) then we find that

, L (0)
+2 108?/0+m .

Pollloy By 4)— (Yo, B, 2)
= log (271 10%-23-20-43-53-59-67-73-79-83-89-97- 103}
== Do ABY L.
The reason is that the right side has omitted from the left side the ferms
. .
2 logp — L logp.

Jiszd (1001 5) e (MO 5)
90 < 10949 AR L pl10049
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Thig last expression is positive since there are equally many terms
in each sum and those == 4(mod5) are pairwize larger than those
= 2(modj3) since =(y, 5, 4)—x(y, b, 2) is never positive for y < 10949,
Thus (12) yields

L, (0)

(13) Amuogyo)u@>236+(—1+z’>m+<—1—v:)

Ly(0) | L0
Ly(0)  L(0)

We want only to show that Am(.logyg)l/});>2 Yo = 209.97 ...
Any reagsonable sort of estimate of IL,(0) and L, (0) accomplighes this

;?,La(‘()) _ 5%,1,1(()) mlog;( ”*“'/“)]_

2

[L;(O) — T1(0), Ly(0) =

The result ig
THEOREM 6,
lim sup w(y,b,4)—n(y, b, 2) -
400 Vy logy

6. Concloding remarks. Now that we have seen Theorem 1 applied,
we may ask how easy it would be to apply it in other cages. As & and K
grow, there will be more values of g, and gy with small imaginary parts.
This should enable one to take smaller values of T and fewer.zeros into
the calenlations. In a sense, thingd should be even easier when & = K.
For large values of % and X, it might be possible to make the first one
or two zeros closest to the real axis do almost all the work. Alternatively,
one can use the exaect formulae (8) and (9) along with Theorem 3. While
this saves one from computing the complex zeros of L-functions, one
must now search for a value of ¥ that will allow Theorem 3 to work. Both
of these approaches have been illustrated in Section 5.

I would like to express my thanks to Robert Spira for giving.me
a table of zeros of IL-functions (mod5) before they were pllblfﬁh@d.
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The thinnest double lattice covering of three-spheres
by
R. P. BaMBAT and A. C. Woops (Columbus, Ohio)

1. Introduction. Let I be a lattice in three-dimensional euclidean
space such that the system of closed unif balls with centres at all points
of T forms a covering of R,. Bambah [1] proved thaf the maximum
possible value of the determinant d(L) of L is 32/5]/3, and several other
proofs have sinees been found (Barnes [2], Few [3]). It is still an open
question as to whether the density of any point set yielding such a cov-
ering can be smaller than that for the best possible lattice. In this direction.
it is proved here that if D is a double lattice, so that D is the union of
a lattice L and a single tranglate of L, which provides a covering of I
by cloged unit balls then

4{L) < 64/5V5.

Hence no double lattice can yield a thinner snch covering than the best
possible lattice. '

2. For an arbitrary point X of R, denote by S(X) the closed unit
ball with centre X.

Let L and L+ X be a lattice and its tranglate in B, such that
8(Y), ¥eL u (L+ X) taken together cover Ry. The objective is to prove
dILy< 645V 5. To this end we assume that d{L) > Gel-/::“)‘l/..’i and dexive
a contradietion.

LemMA 1. Let P be any plane containing & two-dimensional sub-lattice
of L. Then the collection S(X), X P N L does not cover L.

Proof. Assume the assertion is false so that P is completely covered
by such balls. By classical theory

(L n P)< 3V3/2.
Let the distance of P to a nexf lattice plane of T be d. Then
64/5Y'5 < (L) << 3V/'3d/2
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