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Thig last expression is positive since there are equally many terms
in each sum and those == 4(mod5) are pairwize larger than those
= 2(modj3) since =(y, 5, 4)—x(y, b, 2) is never positive for y < 10949,
Thus (12) yields

L, (0)

(13) Amuogyo)u@>236+(—1+z’>m+<—1—v:)

Ly(0) | L0
Ly(0)  L(0)

We want only to show that Am(.logyg)l/});>2 Yo = 209.97 ...
Any reagsonable sort of estimate of IL,(0) and L, (0) accomplighes this

;?,La(‘()) _ 5%,1,1(()) mlog;( ”*“'/“)]_

2

[L;(O) — T1(0), Ly(0) =

The result ig
THEOREM 6,
lim sup w(y,b,4)—n(y, b, 2) -
400 Vy logy

6. Concloding remarks. Now that we have seen Theorem 1 applied,
we may ask how easy it would be to apply it in other cages. As & and K
grow, there will be more values of g, and gy with small imaginary parts.
This should enable one to take smaller values of T and fewer.zeros into
the calenlations. In a sense, thingd should be even easier when & = K.
For large values of % and X, it might be possible to make the first one
or two zeros closest to the real axis do almost all the work. Alternatively,
one can use the exaect formulae (8) and (9) along with Theorem 3. While
this saves one from computing the complex zeros of L-functions, one
must now search for a value of ¥ that will allow Theorem 3 to work. Both
of these approaches have been illustrated in Section 5.

I would like to express my thanks to Robert Spira for giving.me
a table of zeros of IL-functions (mod5) before they were pllblfﬁh@d.
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The thinnest double lattice covering of three-spheres
by
R. P. BaMBAT and A. C. Woops (Columbus, Ohio)

1. Introduction. Let I be a lattice in three-dimensional euclidean
space such that the system of closed unif balls with centres at all points
of T forms a covering of R,. Bambah [1] proved thaf the maximum
possible value of the determinant d(L) of L is 32/5]/3, and several other
proofs have sinees been found (Barnes [2], Few [3]). It is still an open
question as to whether the density of any point set yielding such a cov-
ering can be smaller than that for the best possible lattice. In this direction.
it is proved here that if D is a double lattice, so that D is the union of
a lattice L and a single tranglate of L, which provides a covering of I
by cloged unit balls then

4{L) < 64/5V5.

Hence no double lattice can yield a thinner snch covering than the best
possible lattice. '

2. For an arbitrary point X of R, denote by S(X) the closed unit
ball with centre X.

Let L and L+ X be a lattice and its tranglate in B, such that
8(Y), ¥eL u (L+ X) taken together cover Ry. The objective is to prove
dILy< 645V 5. To this end we assume that d{L) > Gel-/::“)‘l/..’i and dexive
a contradietion.

LemMA 1. Let P be any plane containing & two-dimensional sub-lattice
of L. Then the collection S(X), X P N L does not cover L.

Proof. Assume the assertion is false so that P is completely covered
by such balls. By classical theory

(L n P)< 3V3/2.
Let the distance of P to a nexf lattice plane of T be d. Then
64/5Y'5 < (L) << 3V/'3d/2

21 — Acta Arithmetica XVIIY



322 R. P. Bambah and A. C. Woods

g0 that .
4> 128/15V/156 > 2.

There is thus a unique plane of points (PnIL)+ ¥ of L-+-X between
these two planes of L. Reselect if necessary the plane P ag the other pline
50 that the diztance of P to P+ Y is at least 1d. We assert now that the
part of space between P and P+ ¥ is covered by the balls

(1) 8(Z), Ze(PnL)u(P nI}+¥).

Tor assume that this assertion is false. Then there 18 an open set not
covered. We first ask which spheres of the whole covering can possibly
meet this open set. As d > 2 these are restricted to those whose centres
lie in one of the founr planes

P, PLY, P+Y¥Y—d¥ and P4+dnN

where & is the noymal to P of unit length drawn in the direction of P+- .
Thus the open set must be met by a sphere whose centre lies in. one of the
two planes

P+¥Y—dN and P+dN.

Suppose first that such a ball has its centre in P+ 4N and suppose that
it meets a point Z of the open set. Then the normal to P through Z meets
the houndary of the ball at a wnigue point T between P and P+ Y. Now
T must lie in another ball of the covering but since 4 > 2 the only such
candidates are those whose centres lie in P+ ¥. However in that case Z
would also be eovered by sach z sphere which iz imposgible. A similar
argument applied to P+ ¥Y—dN again leads to a contradiction and so
we infer that the part of space between P and P+ Y is covered by the
colleetion, (1).
It follows that the collection

S{Z)y, Ze(P nL)F+aY,
covers R, .aince the sub-collection
8(Z), Z<((PnIy+nX)v (P nL)+(n+1)Y)
covers that part’ of space hetween P-+-n¥ and P-4 (n4-1)Y. This is
therefore a lattice covering of E; by unit ballz of detetminant at least

$d (L) > 32 /51/5 contrary to the known result. This proves the lemma.
LeMua 2. There exist lineorly independent points A, B, ¢ of L such
that S(A), S{B), 8(C) all meet 8{0).
Proof. Assume by way of contradiction that the lemma is false.
For a pet of points K let §(H) denote the union of the bhalls S(Z), Z<K.
Then by Lemma 1, Ey—8(L) is a connected region of infinite extent

no=0, £1, 42, ...
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in every direction which must be covered by 8(L+ X) whieh is a discon-
nected region whose components are bounded in at least one direction.
This absurdity proves the lemma.

LEvmA 3. (a) If 0 s YeL is such that S(Y) N8(0) # @ then Y
is o primitive point of L.

(b} No three S(Z), ZeL have a point in common.

Proof. (a) Assume that this assertion is false so that ¥ is not & primi-
tive point of I. Then there is an integer n > 2 guch that (1/n) ¥ < L. Using
Lenma 2 let (1/n) ¥, B, € be linearly independent points of L such that
8{{1/n} X), 8(B), 8(C) all meet S(0). Then

A(L) < {det {1/m) Y, B, O} < 8/n < 4 < 64/5V5.

This sontradiction proves ().

(b} Suppose on the contrary that 0, 4, B are distinet points of L such
that §(0) N 8(4) N §(B) # 9. If X, Y are linearly dependent we arrive
at a contradiction to (a) hence they must be linearly independent. But
then by classical theory if P denotes the plane of 0, X, ¥ then

8(Z), ZePnL

covers P contrary to Lemma 1. Thiz proves (b).

Tet UeL be such that S(U) n8(0) # @ and such that U is the
furthest point from 0 with this property. Take rectangular coordinates
so that 0T iz the positive z-axis. The projection of L onto the wy-plane
parallel to the z-axis is a two-dimensional lattice I say. Further if we
denote the length of the segment 0T by 24 with & =1 then.

a(L) = 2da(l) > 64515

g0 that in particular @(1) > 32/5V5. _

Tor a point Z in the my-plane let ¢(Z) denote the closed unit dise
in the zy-plane centred at Z. By Lemma 2 there exist linearly independent
points A, B of I such that 0(4) and C(B) meet c(0).

LeansA 4. No three of the discs 0(Z), Z <l have a common pownt,

Proof. Assume the lemma is false so that there exist three digtinet
points @, %, Z, of I such that C(0) N 0{Z;} N O(Z,) # O,

Suppose that Z;, Z, are not linearly independent. By what has
already been said there exists a point X el such that ¢(0) N G(X) # @
and X is linearly independent from Z;. Assume without loss of generality
that %, is further from 0 than Z, so that the index of X, 7, in I is at
least 2, Then

A{l) < 3det (X, Z,) <2 < 32/5V5
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which iz a contradiction. Hence Z,, Z, must be linearly independent.
Thus the set C(X), X el covers the o, y plane. By classical theory it follows
that B ~

al) < 3V3/2 < 32/5/3

the contradiction that proves the lemma.
LEMya B, Aé most siz of the dises O(X), Xel, X %0, meet €(0).
Proof. Partition I into congrnence classes modulo 2. There are
exactly four such classes. One of these containg 0 and if another poing
Z in this class is such that G(Z) N 0(0) £ @ then also

C(Z) N O(LZ) N O(0) + O

and 37l contrary to Lemma 4. Hence none of the points we are looking
for can be in this class. If there are three or more of thege points lying
in another clags then at least two of these 4, B say are such that
}(A-B) 5 0. Hence the index of these two points in 1 ig either 0 or ab
least 2. X it were 0 Lemma 4 would be contradicted. Hence the index
is at least 2 so that

al) <2 < 33/5V5

the contradiction that proves the lemma. .

COROLLARY. Hwactly 6 or exactly 4 of the dises O(X), Xel, X #0,
meet G(0).

Proof. This follows from the symmetry and the preceding lemmas.

The part of the », y plane not covered by the collection of diges
0(X), Xel now eonsists of a set of disconnected open regions, Tet Y
be a point of such & region. Then the whole line of points throngh Y and
parallel to the z-axiz lies outside the collection of spheres S(Z), ZeL and
therefore must be completely covered by a tranglate of this collection.
Hence this line of points corresponds to a line of points ¢ say parallel
to this line and lying within the eollection.

Leywa 6. The spheres S(X), XeL for which 8(X) nt = €& may be
Unearly ordered '

< 8(XY < S(XWI) < S(XH_Q) < ...
so that :

(1) a2 least ome point of t N S(X,) lies in no other sphere S{X). XL
(H) S(Xy) 0 8(X,,,) Nt~ G
(]ﬁ) S(XI) Al S(Xi+2) Nt = ﬁ.

Proof. We first prove (i). Assume by way of contradiction that
¢ N N(X) 5= @ and ¢ 0 §(X) lies in a collection of sets

' tﬂS(X')nS(X)7 X 5 X'el.
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Mhen this collection can consist of only one set t NS (X'}, otherwise
three spheres S(X) must intersect which confradicts Lemma 3. Hence

fa8(X) et n 8.

Now ¢ 1 §(X’) is a closed line segment. If A is an endpoint then 4
must lie in another sphere 8(X') distinet from S(X) and 8(X'). Denote
by p(Z) the projection of a point Z onto the x, ¥ plane parallel to the
2 axiy, 50 that in particular O(p(X)) nC(p(X") N Clp (X)) % @. By
Lemna 4, p(X), p(X9), p(X’) are not all distinct. But p(X) % p({X")
ginee X = X’. Hence either p(X) = p(X"") or p(X') = p (X'}, Buppose
first that p(X) = p(X"). We have

SEYNSIX")ynt # G,

S(XYyntc SX'+X"—X)
so that
S(X) n 8(X") NnSX+X"'—X) # 5]

which contradicts Lemma 3.

Hence p (X*) = p(X"'). It follows that ¢ lies completely in the collection,
of spheres 8(¥), ¥eL for which ¥ lies on the line through X' parallel
to 1. Since these spheres are exactly 2d apart it is immediate that the
projection p(2) of ¢ onto the , ¥ plane is within a distance V(1—d?) of
p(X"). However U(p(X)) also contains p(f) so that the distance between
(X} and p(X’) is at most

14V (1— ).
Hence
A(T) < 4a{1+V(1—dm).

For 0< d< 1 this function hag 2 single local maximum at d = ]/"3:/2.
Therefore '

a(L) < 3V3 < 64/5V5

a contradiction that proves (i)

Assume now that S(X) nt % B = §(¥) nt with X, ¥ «L. Denoting
by 2(Z) the 2z-coordinate of a point Z we conclude that #(X) s =(X) for
otherwise S(X) nt < S(¥) nt or viee versa contrary to what we have
just proved. Therefore define S(X) < 8(Y) to mean 2(X) < 2(Y). This
yields a linear ordering of §(X) for which §(X) nt # @ and X L.
‘We may thus subgeript them as

e < B < BX ) < S(X'H-z) < .

It remains to prove (ii} and (ii).
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Assume that §(X;) N 8(X;,,) Nt = @. Then by (i)

S(X)nSX)ni=6 forall j>i.

The point Ze§(X;) Nt for which 2(Z) is maximal must lie in another
8(X,) so that ZeS8(X;) Nt for some j < . But then

S(X;) nt> 8{X;) nt

contrary to (i}. Therefore (ii) mnst hold.
Now assume that §(X,) N S(X;.) nt # @. The by (i)

S(X,) Nt e (8(X) ni) US(Xi) NY

contrary to (i) and so (iii) follows. This proves the lemma.
LeMMA 7. With the notation of Lemma 6 either
(i) Xy = X;4(0,0,2d) for all 4;
or
() p(Xpp) 7= 2 (X,) and then X, = X;-+(0, 0, 2d) for all 4.
Proof. We assume that (i) is false so that for some { we must have

P{Xy) # p(X).
It follows from Lemma 4 that for any P

either p(X;) = p(X;) or p(X)) = p(Xin),
g0 that
either X; = X;+n(0,0,2d) or X; = X;,+n(0,0, 2d)
for some integer #. It is however clear that for any integer # such points
are members of the sequence {X;} and the lemma follows.

Usi;:lg ‘I.Jemm‘aj 7 we classify the line ¢ ag type 4 it (i) holds and as
type B if (ii) holds. Let p{4) denote the projection of all the lines ¢ of
type 4 onto the @, y plane and p(B) similarly the projection of all lines
t of type B. - '

Luvma 8. If 8 denotes the projeciion of S(0) 0 8{(0, 0, 2d)) onto
the x,y plane then

) p(4) = 8+1,

@) (84+X) n{8+Y) = @ for all points X = Y of L

Proof. (i) is immediate whereas if (ii) is not true then thyree spheves
§(X), XeL have a common point contrary to Lemma 3.

In order to say something about p(B) we let T be the set of lines
of type B that are contained in a collection of spheres

- B, 8( &), 8(Xpp), ...
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as in Lemma 6 and 7 so that

p(Xiy) # p(Xy)  for any 4,
X;pn = X;4(0,0,2d) for all 4
and
2( X)) > 2(X;)  for all 4.

LeMua 8. (i) p(T) < p (S{X) N S(Xp) for all 45
(i) If 2(Xpp1)— 3(Xy) 2 2(Xypg) — #( X)) for some i then

P (S(-Xi) M S(.Xi-l-l))

is the elliptic domain bounded by the projection of the cirele of inder-
section of the surfaces of S(X;) and 8(X;y) onto the @, y plane.

Proof. (i) is immediate. For (ii) without loss of generality we may
assume that X, = 0. We claim that the cirele of intersection of S§({X;)
and S(X;y;) lies in the upper half-plane, for assume that this asgertion
is falge. We may then take coordinates so that the point (1,0, 08 (X1}
However by hypothesis 2 (X, ,)—2(X,) > dso that alse (1, 0, 2d) e S(X;1q)-
Thus if X,,, = (#,¥,#) we have

(1P y? L1
and
0 et 2d.

(—1)2+y2+(2d—z)2 <1  where

Hence {(w—1)*+y?<<1—d* so that ]/(_m2+ VRS 1-{»]/(1—&52). Again
it follows that (L) < -_Ld[lul—l/(_l—d?)) which leads to a contradiction
as in Lemma 6. This proves the lemma.

Tmyua 9. With the hypotheses of Lemma 8, p(T} is contained i the
projection € say of imiersection of the surfaces of S(X;) = 8{(0) with
8( X — (0,0, #(X;1)+ (0, 0, D), |

Proof. If € denotes the circle of intersection of the surfaces of S(X;)
and 8 (-Xi+1_ (0,0, 2(X; )+ (0,0, ) then it follows exactly as in
the Ingt lemma that with X; = 0 so C lies in the upper half-plave. Now
i X ) —2(X) 2 2(Xy0)—2(X;y,) then since ¢ iz in the upper
half-plane

8(Fipn) N 8K = B(E) 08X~ (0,0, 2(Xipn))+ (0, 0, d))

and the lemma is true. If on the other hand the reverse inequality holds
then by reversing the direction of the z-axis the same argument holds.
Thig proves the lemma,

LEMMA 10. p(B) is the union of disconnected open regions such that
each component lies inside an ellipse of the type described in Lemma 9 and
no such ellipse mests p(A).
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Proof. WWe have already shown everything except that no ellipse
meets p(A4). Suppose then that such an ellipse meets p{4). We may then
suppose that sueh an ellipse meets ;p(S(O) ' S((O, {),2d))). This implies
the existence of a circle ((X), Xel, X 520, X = (2,v,0) such that

a4y < 1V (1— @)

which leads to a contradiction ai before.
The proof of the main theorem iz now divided into two casoes.
Case 1: Exactly four civeles 0(X), Xel, X 0, intersect ((0).

The centers of these circles may be labelled and eoordinates chosen
so that they become

=+(2cosa, 0, 0) - (2cosceosd, 2eosesing, 0), 0<a,b, o< n/2.

The part of the z, ¥ plane not covered by the circles 0(X), X el is of the
form U1 where U7 is the open region bounded by the four circles (N
G((2cosa, 0, 0)), ((Zcosceosb Zcosesind, 0)) and € ((2cosa--2cosceosh,
2 eosegind, 0)) but lying in none of them. Now since a translation of the
system §(X), X<L must cover that part of the space not covered by the
system itself it follows that a translation of the lines ¢ parallel to the
z-axis covered by S{X), XL mmst cover U- 1. For this to be the cage
since U is connected it is necessary that a translation of § or of an ellipse
of the form in TLemma 10 covers T,
Subease (i): A tranglation of 8 covers U. It follows that the diameter
of § is not less than the diameter of . The diameter of § ig ev1dent1y
2y (1 @ @). Now U contains the four points

(cosa, sing), (eos(b—¢), sin(h— 6)},
{cos(b-+0), Sin(b+ o))+ (2 cosa, 0),
(cosa, —sina)+(2coscoosh, 2cosesind).
Hence if d* denotes the diameter of U then |
2d** > (cos (b ¢)— 608 (b—0) -2 cos a)?-+- (sin (b + ¢)— sin (h— 0))*+

+(2 cosecosd)?-f- (2 cososin b — D gina)?
= 8{1L—sindsin(a-t-¢)). '

Hence
d* < sinbsin{a+ ¢).
But
(L) = 2d2cosa-2cososind
50 that '
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A2 (L} < 64 cos®acos?esin®bsin(a+¢)
< 64 cosacos?esin(ate) = M, say.

Now §{(0, 0, 24)) iz the sphere furthest from 0 that intersects 8(0) b
construction hence

d2 = cos2e and 4% = cos¥e
which yields

(2) cos?a < gin{a+e) and cosfe<sin(a+to).

Holding a4 ¢ fixed we can make ¢ and. ¢ approach one another and thus
increase M ‘while not violating (2). Therefore

M < 64cos*asin2¢ = ¥ say,
for some a satisfying
cosa < 9sine  and 0 <a < n/2.

If & has a local maximum in the range 0 < a < w/2, cosa < 2sing, then
by differentiation for this & we must have sine = 1/6, cot®a = 5/6
which lies oufside the range cosa << 2sina and so a contradiction. Thus
for o maximum cosa = 2sing or cos?a — 4/6 so that

N < 64(4/3)2(4/5) < @*(L)

a contradiction which shows that subease (i} is impossible.

Subease (ii): A translation of an ellipse of the form in Lemma 9
covers U/, Such an ellipse must arise from the intersection of 8(0) with
8(2cosa, 0,d) or from the intersection of §(0) with S(2cosccosd,
2cosesind, @) or from the symmetric opposites of these in 0 or from
a lattice translate of one of these. There is thus no loss of generality in
asswming that the ellipse arises from the intersection of §(0) with
S((zcosa, 0, d)). The circle of intersection of the surfaces of these two-
spheres is given by the two equations

wrytte? =1  and (w—2cosa)-y i+ (g—d)* = 1.
Thege two equations Imply
{m— cosa)?- A2y /(d2+ dcos?a) = d*(48infa— d?)/4(d*- 4 cos?a)

which is the equation of the projection of the civele of intersection onto-
the z,y plane. Now a translation of this ellipse covers U. Hence the o
width of 7 does not exceed the # width of the ellipse. The ¢ width of the.
ellipse is evidently

9V d2(4sin2a— d2) [4 (A2 + 4 cos*a).
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Further, T contains the points
(cos(b—¢), sin(b—e¢)] and

s0 that the & width of U iy at least

(cos(b-+¢)+2cosa, sin(b—¢))

cog{b--e¢)—cos(b—e)+2Bcosa = Z(cosa—ginbaine).
Thus we obtain
4(cosa—sinbsine)? < d2(4sin%a— d?)/(d* 4 4costa)

< (dsina—d?) /(144 cos?a)
which implies that

dt < dsin?a~— 4 (14 4 cos?a) (cosa— sind sin c)?
and

a3 (L) = 64d*cos?asin?bcos?e < 64cos?asin?beosle X
xmin(1, 4 (sinfa— (144 costa) (cosa— sinbsinc)ﬁ)) .

Since @2(T)> 642/125 so we must have cos?a > %+ and cos?e > 4 and

thertaforpj also cosa > sine. This implies that cose—sinbsine decreases
as sind increases and so .

4*(L) < 64 cos®acoste min (1 , 4(sin%a— (14 4cos*a) (cose— gin c)“]) .

" tSubease {ia): 1< 4(si112a——(1—{—4005%)(&05@“sinc)‘-’). Thig implies
thay

(cosa—sine)? < (sina— }){(1 -+ 4 cos2a) = (34— cos*a) (14 4cos?a)
which increases as cosa decreases. Thus since cos?a > %,
(cosa-—sine)? < 1/12.

I .) 3 i [ 1
n this case @*(L) < 64cos?acos?e, g0 we look for the maximum of

‘fzosacosc subject to 0 < cosa—sine@l/l/ﬁ and cose > 1/|/§. This
Is clearly achieved when cosa—sine = 1/]/1_53 and then

cosacose = (1/¥ 12+ vine)cosc.

gv]ﬁz nmaximum of this function is found by differentiation to be attained

sine = (/97— 1)/4V12
and so

costacoste < (1/V/ 124 (/97— 1)/4Y 12} (94 +21/57) /192)
=.(1/192%) (11, 128 + 776/ 97).
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Hence .
d?(I) << 64(1/192%) (11, 1284 7761/97)

which. is a contradiction.
Subcase (ib): 1 > 4(sin®a— (1 4cos?a)(cos a—sin e)?). Setting

fl@) = a1l —a?— (L4 4% (@ — sine)?)
we obfain
F(2) = 2@ (1 —a*— (14 da?) (w— sine)?—a?— 4a? (@ —sinc)* —
— w(1+ 42?) (#—sine)) <O

if @>1/V2 and sine < 1V2.
Hence d*(L) < 236cos?c-f(cosa) decreases as cosd increases with

cosa>1/¥2 and cosc > 1/¥2. ¥ now

4(sin2a—(1+4cosza) (cosa—sinc)z) <1 when cose = 1/1/,54

this is an immediate contradiction so we must have
4(3—3(/V2—siney = 1.
But in this case we may decrease cosa to a value at least L /]/5 to obtain
£(sin?a— (14 4cos?a)(cosa— sing)f) =1

without violating the inequality on @*(L) and retaining the conditions
cos?a > §, cos*e > §. Thus we can apply without alteration the argmnent
of subcase (ia) to again obtain a contradiction. This completes the first
case,

Case 2: Bxactly six circles G(X), X ¢l intersect 0(0). By the clagsical
theory of the geometry of numbers the centres of these circles are of the
form 4P, +@, =(P+Q). '

Tet D denote the bounded region bounded by the circles €/(0),
C(P), C(P+Q) but external to all these civeles. Similarly let D’ denote
the bounded region bounded by C(0), (@), C(P+Q) but external to
all these circles. Then the set of points of the @, y plane not covered by the
collection of circles ((X), X el ig simply

(D+1) U (D' 1),
This set must then be covered by a translate of 8--1 together with
a translate of the ellipses specified in Lemmas 9 and 10.
Subease (i): (D+0) U@ +1) is covered by a tranglate of S+-{
alone. A translate of § cannot cover two connected members of J)4 1

since all S+ X, X<l are disjoint. It therefore follows that a translate
of & must cover both one member of D+ and one member of D'+ 1.
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Without Joss of generality we may asgume that thiyz tranglate covers D.
The projections C(0), O(P}, O(P+@) are of columng of spheres of the
form 8(P)+nZ, 8(P")-+nZ, S(P'"')-+nZ where Z = (0, 0,2d) and 7,
P, P'" project to 0,P, P4@ respectively and » is an integer. Suppose
for tlie moment that no §(P’)- »Z intersects an 8(P'"V+nZ. By Lemma 2
it follows that an S{P’")+nZ must meet an S (P"Y4-nZ and also an
S(Py4+nZ must meel an 8 (P""")+nZ. Therefore since Z is the Turthest
point of I from 0 such that S(0) N S8 (%) # 9, it follows that the (1Mim'neters
of O(P) N O(P+@) and O(0) n C(P+Q) are at least 2y (1—d?) which
is the diameter of §. Therefore Dy reselecting 0, P, ¢ if necessary we
may assume that D is bounded by €(0), O(F), (@) with J0) N C(P)
and (0} N C(Q) of diameter at least the diameter of §. ‘With this notation
we now assert that a translate of § must cover D together with the
vegion D" bounded by O(P), C(), C(P+¢} and lying external to all
of them. Let B denote the union of the sets

¢(0), O(P), 0(Q), 0(P+@), D, D"

Our assertion will follow if the distance from some point of D to the
complement of X is at least the diameter of S. Now F i bounded by four
civenlar ares A, d,, A3, A, where A, < 0(0), 4, < C(P), 4, = 0(Q),
A, = C(P+9Q). If the assertion is falze then the distance from any point
of D to a point X of A; U 4, U Ay U Ay is less than the diameter of S.
Now D n ¢(0) is a cireular are whose minimal distance to 4, is the smaller
of the diameters of C{0) N 0(@) and C{0) N G(P} both of which are at
leagt the diameter of 8. Hence X ¢A,. Further D n ¢(F) in separated
from 4, by €0) nC(P)} and C(P) n C(P+Q) both of which have
diameters at least the diameter of § and therefore as before X¢d,.
Similarly X ¢Ag. Thug Xed,. But any line segment drawn from a point
of D to P--Q meets the boundary of ¢(P-- ) in a point not in 4, since
the rays P-+ @, @ produced and P+ @, P produced do not meet D). Hence
the clogest point of 4, to D is one of ity endpoints and again we have
a, contradiction. This proves the assertion.

All the conditions of Oase 1, subcase (i) are now satisfied together
with the additional condition that C(P) N §(Q) == @. Since thig condition
does not affect the argument given in thig previous case we arrive at
a, contradiction in the same manner.

Subecase (ii): At least one of D, D’ is covered by the translate of an
ellipse of the form specified in Lema 10. Without loss of generalily
we mnay assume that D iz so covered and that D iz bounded by the circles

a(0), C(P), C(Q).

N?W if an ellipse of the right type arises from intersection. of §(0)-nZ
with §(R)+4-nZ then a translation of this ellipse arises from the inter-
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section of S(0)-+nZ with §(—R)+«Z. Hence the ellipse in question
arises from the intersection of two sets of S(0)-+nZ, S(P)+nZ, 8(Q")+nZ
where P’, Q' are points of L that project into P, @ respectively. By
relabelling the points 0, P, @ if necessary we may assume that the ellipse
in question arises from the intersection of the two collections S(0)--nZ
and S(P')-+nZ. Take coordinates ag before so that

P = (2cosa, 0,0) and

where 0 < & < =2, 0 < ¢ < =/2, and 0 < < nf2, the last following from
the fact that the three sides of the triangle 0.PQ are all at most 2 and

0 = (2eosccosh, 2coscsind, 0)

all at least /2 showing that it is acute angled. The ellipse in guestion
iy then given as before by

(#— cos a)2 -+ d2y?/(d?+ deos?a) = @2 (+sin?a—d?) /4 (d* 4 4 cos®a)
with @ width

2V d2 (4 sinta— d2) /4 (d2 -+ 4 cos®a)
and this must be at least the ¢ width of D say #(D). Hence
4(@2(dsin?a— d%)[4 (@2 + 4cos?a)] > #¥(D)

hence
(4sin2a— %) /(14 4 cosa) = 22(D),
whence
d® < 4sinta— (1-+4cos?a) (D},
Thus

dL) = 64d%cos?asinbcos®c
< 64.cos*asin?beos?o-min (1, 45in?a— (14 4cos?a)w?(D)).

In particular coste > %, cos?c > % and sin®*h > }.

It we call the angle 0PQ by b’ and the length P@ by 2cos¢’ then in
exactly the same way we get sin?b’ >} and cos®c’ > 4.

Also we must have 2coscsinb—1 > sina for otherwise

(1) < 2cosa(i+sing) < 3V/3[2

which ig too small,

AUXILLIARY LEMMA, Holding a and coscsind fived and denoting by ¥
the region corresponding to D a8 b, ¢ vary then x{D") is least when

2008ccosh = cosa.
Proof. With the notation as above

#(A) == 2cosa— cos(b—¢)—eos (b~ ¢').
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The variables are connected by the relations

(3} cosg = cose’cosb’ 4 cosccosh
and
() coRe’sind’ = cosesind == constant.

By symmetry we may assume that b3 " so that ¢z ¢
Set f = cos{b—c)+cos(b’'—¢'). By (3) and (4} we arrive at
df = }(sin2¢'8in2b— sin2esin2b’) de
and sinee w/4 < b <0 <C w2 and 0 < ¢’ < e nf4 It follows that
gin 2¢’ yin2h— sin2esin 2’ £ 0
50 that f decreases as ¢ increases in the range in question. Thus as ¢ decreages
so «{D") decreases and thiz proves the lemma.
It follows alt once from thiz lemma that

@2 (F) € 16 cos?a(4 cos?e— cos?a) X

Xmin{l 4 (sin2a¢— (1+ 4 cos®a)cos(h -+ c)))

subject to 2eoseccosdh = cose and 0 < @, ¢ < w/d, n/d <D< wf2. Thir
implies by our initial assumption that
64125 < cos?a(cos?e— fcosia) X
><min(1, 4 (sin?a— (1 + 4 cos?a)cos? (b4 c))) = I, say.

The function F proved somewhat diffienlt to handle so we resorted to
a computation to show that the above inequality is imposyible. We show
first that cos?e > .87.

Case (i): cos®o < 3/4. With ¢ = cos?¢ we must have cos?a(f— %cos?a)
> .512. The left hand side is a monotone increasing function of cos?a
in the range in guestion hence

3[4{t—3/8) > .h12

whenee
_ T > (41.768)/48 > .87,
Case (il): cos?e > 8/4. Again with ¢ = cos?e¢ we must have
cosa(t— feorta)4 (1 — cosla) > 512,
But in the range in question 4cos®a(l--cos’a) < 3/4 so that again

3{4(t—3[16) > .512 and we obtain the same bound as in case (i).
This proves that cos?e > .87.

To describe the computations suppose that within this interval we
further restrict cos?s by :

BT g o L oosteg o 1.
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Then it follows that

costa{c,— Teosia) > H12.

Thus with ¢ = cos?s we obtain

0 > 12— 40,1 2.048

so that ¢ > 20,—V 16— 2.048 > a,, say, where @, is chosen as u lower
approximation to this number and thus

afe— lag) < .512  and  costa > a4y > 5.

Now since 2eosccosb = cose, it follows that

cos{b-t¢) = }eosa—sinel [L— (cos?a/4cos?0))

p %] Cb1— (1" (1_01)) (]/(1— (31/402))) > by, say,

where b, is chosen as & lower approximation to this number, 0<<b <1
We then have

512 < F < cos®alea— teosta)d (sin?a—(L+ 4 cos?a)by).
With ¢ = cos®g this becomes
Flt) = t(dey—1){L—t— (14 42)b3) > .512.
The roots of the enbie f(7) are
0, (1—0/1-+4b]) <1 and 4e, > 1

hence i we can show that f' (%) < 0 and f'(1) < 0 then f(¢) will be menotone
decreasing in our range so that we could conclude that

fla,) > .512.
Now
f'(t) = 4deg(1—Bb7) — 2 {1 B2 dey (L -+ 4b)) 84 3 (L -+ 4BY) 1
g0 that
F11) = 4ey(1—b2)— 2 {1— Bl oo (14 407)] 4- 3 (1 + 43)

< 26,{1— B+ 3 (144 —6(1+4b) <0  sinee 3[4 < ¢yl

TFurther

F(3) = oy (1— 8 — (1 — b+ o (1 48D)) + (3 /4) (14 483)
< Bay (L— b3)+{3/4) (1 4 483) —do, (L4 4D7) < O
and so fla,) > .512 and therefore also
glay) = 4{1—a,—(L+4da)b5) > 1
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Now choosing ¢; and e, as in the following table we see that this iy
impossible therefore providing us with the final contradiction that proves

the theoreni.

R. . Bambah and A, C. Woods

6 Cy ty b1 19(y)
&7 88 74 014 29
88 39 73 011 24
89 9 703 0146 242
9 91 694 017 242
91 92 683 02 243
e 93 671 023 245
93 94 66 027 242
94 95 65 032 24
95 96 64 038 23
96 97 63 045 29
97 98 62 054 2
98 99 61 067 16
89 1 6 086 a1
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Euclid’s algorithm in algebraic function fields, 1l
by

J. V. Armvirace (London)

In memorvy of Havold Davenpor

1. Introduction. The theorem that there are only a2 finite mumber
of Euclidean algebraic number fields with one fundamental nnit is a core-
llary of Davenport’s work on the inhomogeneous minima of certain
quadratic, cubic and quartic forms ([61, [T, [8]).

In [1], I imitated his arguments and obtained analogues of his
theorems for the cage of function fields of transcendence degree 1 over
finite constant fields. Subsequently, I reforrnulated the guestion of the
existence of a Fuclidean algorithm, in function fields over arbitrary
congtant fields, in terms of the Riemann—Roch Theorem, [2]. The
reformulation led to the melution of the problem {with no restriction on
the units) for fields of genus 0 over arbitrary comstant fields and later,
[3](1}, for fields of genus > 0 over infinite constant fields. In this paper,
I show that there are only a finite number {in a sense which iz made
precise in § 3) of function fields, of given genus, over finite constant fields
in which Euclid’s algorithm holds.

The statement of the main theorem is given in § 3, after the notation
has heen established in §2. Tt is both appropriate and convenient to
express part of the argument in the langnage of the geometry of numbers
and the necessary vocabulary is set out in § 4, together with an outline
of the proof. The preliminary lemmas are proved in §5 and the proof
of the theorem itz complefed in § 6.

The resulity proved below are expressed in terms of the Buclidean
algorithm problem, though they can be extended to the case of the
inhomogeneous minima of certain forms. The methods ave the same as
those used here. One replaces a 5[#]-basis of the ring I defined in §2
by a set of linear forms with coefficients in the field L{s} defined in (17).

{1} There i8 & mis-print in the displayed formula on p. 5 of the Appendix., Tho
first part should read vy (V— ") > oy (1),
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