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1. Let (@, +) be an additive abelian group of order n, 4,B, ..., C
% non-empty subsets of G, each containing m elements. Thesets 4, B, ..., €
are said to form a k-ary difference system in G if for each non-zero deG
the total number of solutions of the k equations

§=a;—dg, 0, 0zed,
8 =51"‘ﬁ2: fB1s 2B,
5

0 =y1—%a Y1 2€C
is the same number ¥, independent of . Clearly we must have
(2) (n—1)N = km(m—1).

For ingtance, if: G is the group of residues mod 5 then 4 = {0, 1}, B = {0, 2}
iz a binary difference system, with ¥ = 1. The number of solutions of
the individual equations (1) in of no interest, only the total number of
solutions of all % equations. Ordinary difference sets correspond to the
care b = 1,

Of particular interest arve binary difference sets 4, B ip a group &
of order # = 2m+41; in this case we say that A, B are complementary
difference sets, provided that at least one of the sets, say 4, has the prop-
erty that

{3) ged = —adA.

The number of solutions of (1) in a complementary difference system
is ¥ = m—1. Interest in complementary difference sets stems from the
fact that if they exist in some &G of order 2m -1, then there also exists
a, gkew Hadamard matriz of order 4(m-1) (see [5], Theorein 2).
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If there exists in & an ordinary difference set 4 of order m with
property (3), then there is also a pair of complementary difference sets,
namely A and B = A. Foy instance if m is odd and # = ¢ is a prime
power = 3(mod4) then we may take for G the additive group of the
finite field GF(g) and for A and B the set of non-zero quadratic elements
in GF(g) ([4], p. 30, Theorem 3). Similarly, if m = 2(mod4) and # = p¥El
is an odd power of a prime p = b{mod8), then

A=CuC, B=CuC(,

are complementary difference sels in & where G is the additive group
of GF(p”*), €, is the set of non-zero fourth powers in GF(p**+"), and
C; = o' C,y, 1 = 1,2, 3, where ¢ is & generator of the multiplicative group
G* of G‘r]i‘(_'g:vz’"+1 ((5], Theorem. B5).
The purpoge of this note iz to extend the result to even powers of p,
More specifically we shall prove:
THEOREM 1. Let p be a prime, p = 5(mod8), ¢ = p™, r >0, G the
additive group of G (g), C, the set of octic residues of GF(q),
Ciﬂﬂicm 1=1,2,...,7,
where o 18 a generator of the mulliplicative group G* of GF{q). Then
A=0CuCuvC,ul;, PB=CulC uvul,uc
are complementary difference sels in G.
As an immediate corollary we obtain from [5], Theorem 2:
THEOREM 2. Let p be a prime, p = 5(nod8). Then there existe a shew
Hadwmard matriz of order 2(p7+1) for all » > 0.

The special case ¢ = 26 of Theorem 1 was found earlier on a computer
by D. Blatt and the anthor ([1]). The present note uses the method of
cyclotomy, as worked out originally by Emma Lehmer ([2], [3]} for
ordinary difference sets. The author is greatly indebted to D. H. and
Emma Lehmer as well as to John Selfridge for helpful diseunssions. .

2. We shall mostly adhere to Storer’s definitions and notationy
in [4). Tet ¢ = 16k+9 be a prime power = 9(modls), ¢ a generator
of the multiplicative group G* of GF(g),

ci={08§+i§j=071ﬁ-“:2k}: be=0,1,.

The cyelotomic number (4, §) is defined as the number of solutions of the
equation

(4) vt =y, wel, el

These numbers are determined as follows: First we have ( (4], p. 28,
Lemma 2) -
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A4 =1(0,0) = (4, 0) = (4, 4),

B =(0,1) = (3,7 = (5,4),

¢ =(0,2) = (2,6) = (6, 4),

D =1(0,3) = ( ?5) (7,4),

E:(O:4)7

F=(0,5) =(7,3) = (1, 4),

G =(0,6) = (6,2) =(2,4),

H =(0,7) =(5rl)ﬂ(3;4)1
I=(1,0)=1(33)=(,1) =(4,5) = (3,0) = (7,7),
J=(1,1) = (3,0) = (4, 7) = (4, 3) = (5,5) = (7,0),
H = (152) ={2,17) 2(3r6) —(593) "'“(6:-5) :(7’1)5
L =(1,3)=(1,6) =(2,8) = (6,3) =(7,5) =(7,2),
M={(1,T)=(2,3) =(3,5) =(5,2) =(6,1) =(T,86),
N=(2,0)=(2,2) =(4,6) ={(4,2) = (6,0) —(6,6),
0=3,1)=(2,1)=(5,7) = (3,2) = (6,7} = (5, 6),

and the numbers 4, B, ..., 0 are given ([4], p. 79, Lemma 30) by the

following expressions:
644 =g—15—2x or
648 = g+ 14 20—4a+-16y
610 = g1+ 6xr+8a—16y
64D = g+ 14-2—4a—16y
64K = g+ 1—18a
64F = g+1+2e—4a+16y
4@ = ¢+ 1+ 62-1-8at-16y
64H = ¢+ 12— 4a-—16y
64 = ¢— 742240
64 = g—T-+2044a

g—15—10xr—8a,
g+1-+2x—40—165,
g--1—20+16y,

g+ 1-+2x—4a— 16D,
g+ 14 64240,

g+ 1+ 20—4a-+116b,
q+1—2x—16y,

g+ 1+2%—4a- 165,
g-— T+ 204 4a- 16y,
q— 7 2x4+ 40— 16y,

64K = g+ 1—6z+4a-+-16b g+ 12— 4a,
640 = g+ 1420 —4da q--1— 06+ 4da,
64 M = g-+1— 6+ 40— 16D ¢+ 14-2a—4a,
64N = g—T7—2x—8a g— T+ 6x,

640 = g4+ 1+ 206—4a g~+1-—6z-+ do.

The first column gives the expression when 2 is a fourth power in @,
the second column, when 2 i not a fourth power in . The numbers », ¥

are determined from

g = o*-+4y?,

# = 1(mod4),

(Q:'w) =1
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if ¢ has the form
g =p*, p=>5(mod8) or ¢ =p""", p==9{modls),

and from
# = 4p", x=ILmodd), y=20

if ¢ has the form

¢ =p", p=3mods);
the numbers a, 5 are defermined from
q = a*--2b?, @ =1(modd), (a,q) =1
if
g =p¥, p=3(mod8) or ¢ =2p""", p=9(modl6),

and from :

a=+p", a=1{modd), b=20,
if

=p¥, P =5(mod8).
We make use of the following Lemma, proved in [1}, Theorem 3:
IEmaA. With the previous nolations, let
A=Cul,uvC,ul, B=CuCul,vul,
Suppose further that the totel number of solutions of the squations
{B) L==a,—as g, aed,
1 =p—Fs P foeB

48 8k+3 = ¥{q—3)., Then A, B are complementory difference sets in G.
In ofher words, if the element 1 is represented the correct number
of times, then all other mon-zero elements & are repregented the same
number of times. Condition (3) iz frivially fulfilled since —1eC, and
—C; = C,;,, where the convention €, 4 = C; i3 used.
Now the number of solutiong of (5) is, by (4),

3 1 1
G+ Y D G

f=—2 fm—3

B

I

=0 §
= 24+2B+ 0+ D+ G+ HA I+ 4J 4 2K+ 2L+ 4 M + 4N 40
= ¥(qg—3—b),

irrespective whether 2 ig or is not _aJ. fourth power in G. Thus the condition
for A, B to be complementary difference sets iz fulfilled if and only if
b = 0. But this requires, by the definition of b, that ¢ = p*, p == 5 (mod 8)

?
and Theorem 1 ig proved.
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