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1. Introduction. Let L., L., L, be three homogenecous linear forms
in %, v, w with real coefficients and determinant 4; and suppose that the
lower bound of |L,L,L,| for integer values of a, v, w not all zero is 1.
In a series of papers written somme thirty years ago, Davenport investi-
gated the values of 4 for which this is possible. In the fourth and last
of these [2] he showed that

(1) A=T7 o A=9 or 4>91;

and he showed that in the firgt two cases L, L, Ly must be the norm form
associated with the totally real ecubic field of diseriminant 49 or 81
respectively.

The corresponding problem for the product of two linear forms is
much easier, and was esgentially completely solved by Maxrkov. There
are countably many possible values of 4 less than 3, each of which has
the form

A = (9—dn "2

for some integer n; the first few values of » are 1,2,5,13,29, ... and
there is an algorithm for comstructing all the permissible values of .
Moreover, after multiplication by suitable constants, L, and L, are a lineax
form defined over a real gquadratic field and its conjugate over the ra-
tionals. On the other hand, there are forms Ly, L, with 4 = 3 which
do not satisfy this lagt condition; and in any neighbourhood of 3 there
are uncountably many distinet permissible values of A.

Tt is natural to ask whether there are any analogous phenomena
for the present problem, and in particular whether the permissible values
of 4 have a finite point of accumulation. Tt follows from ytandard tech-
niques in the Geometry of Numbers that there is such & finite point of
accumulation it and only if there is an admissible form L, L, Ly such that
(even after multiplication by suitable constants) L,, L, and L, cannot
be written as a linear form defined over a totally real eubic field and ity
two conjugates over the rationals. These guestions seem very difficult
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to decide. The results of Cassels and Swinnerton—Dver [1] tend to suggest
that the answers are negative; in particular they show that what appears
(by analogy with the case of two Linear forms) to be the muost natural
way of construeting such products Ly Ly L, cannot gucceed. If the answers
to these questions are indeed negative, then the methods of Davenport [2]
can be used to obtain all permissible values of A less than uny preassigned
bound. Conversely, if one finds all the permissible values of 4 less than,
a large enongh bound, the behaviour of the sequence of values of 4 will
strongly suggest what the answers to these two questions ave. I have
recently written programs to implement Davenport’s method on u com-
puter, and have thereby determined the eighteen permissible values of 4
less than 17, one of which arises from two ensentially different products
L, Ly Ly These values of 4 are

7,9, V148 = 12,1655, 63/5 =12.6, 13 (twice), 14, 351/25

— 14.04, 189/13 = 145385, 133/9 = 14.7778, V229 = 15,1327,
(2) 259/17 = 15.2353, 659/36 = 15.9714, V257 = 16.0312,

273/17 = 16.0088, V(539/2) = 1641603, 117/7 = 16.7143,
V(29736/81) = 16.7539, V(2597/9) = 16.9869.

The associated products are described in detail in § 5. In my opinion
these results provide overwhelming evidence that the answers to the two
questions posed at the beginning of this paragraph are negative; but
they give no clue to the methods that would be needed for a proof.

One consequence of this coneclusion is of particular intervest. It is
well known that if K is any algebraic number field other than the rationals,
then each ideal class in K containg a non-zero ideal whoge absolute norm
ig less than |d[*%, where 4 is the discriminant of K. Indeed, for any fixed
7,8 (in the standard notation), there is a constant €, , <1 sunh thatb
each ideal class contains a non-zero ideal of abgolute norm ut most
0, ,\d'"?; for example Davenport’s result (1) shows that the least value
of €y, is 3. Because this theorem ig central to the only known way
of computing the class number of an arbitrary K, it is important to obtain
it in ag strong a form as possible. If the conjecture made at the end of the
last paragraph is true, it follows that, at least for totally real cabie fields,
each. ideal class of K contains a non-zero ideal whose absolute norm is
o(ldM); and presumably this will happen whenever #-4s > 2. If one
is looking for empirical evidence, it is natural to ask for each n > 0 what
is the totally real cubie field K, of least discriminant d, with the property
that there is an ideal class of K, containing amn ideal of abgolute norm #
but no ideal of smaller absolute norm. I am indebted to Professor
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H J. Godwin for the following table, which is derived from his tables
of class-numbers of all totally real cabic fields with 4 < 20000.

TABLE L Fields K, with d, < 20000

7 l dy ndy 12 I
] 40 | 00420 1
2 1957 1 0.0452 2
3 2597 | 0.0589 3
4 4312 | 0.0609 3
5 ‘ 3069 ‘ 0.0704 3
7 8281 : 0.0789 3
o | amess | 0.0879 3

This table is too short to provide any clear indication, but the
irregularities which it displays are interesting -— especially in view of the
missing entry at » = 6, which must have d;>20000 and so nd M2
< 0.0425. (But it should be noted that K, and even more K, must have
fairly large class nwmber, and it may be because of this that they have
large disgriminants.)

When 2 theorem has been proved with the help of & computer, it is
impossible to give am exposition of the proof which meets the traditional
test — that a sufficiently patient reader should be able to work through
the proof and verify that it is correet. Even if one were to print all the
programs and all the sets of data used (which in this cage would occupy
some forty very dull pages) there can be no assurance that a data tape
has not been mispunched or misread. Moreover, every modern computer
has obscure faul s in its software and its hardware — which so geldom
canse errors that they go undetected for years — and every compiter
ig Yable to trangient faults. Such errors are rare, but a few of them have
prohably occurred in the course of the caleulations reported here, How-
ever, the calculation consists in effect of looking for a rather small nuinber
of needles in a six-dimensional haystack; almost all the calculation is
concerned with parts of the haystack which in fact contain no needles,
and an error in those parts of the caleulation, will have no effect on the
final results. Despite the possibilities of error, I therefors think it almost
certain that the list of permissible 4 < 17 in (2) is complete; and il is
inconceivable that an infinity of permissible A < 17 have been overlooked.

Nevertheless, the only way to verify these results (if this were thought
worth while) is for the problem to be attacked quite independently, by
a different program written by someone elge for a different machine.
This corresponds exactly to the situation in most experimental seiences.
Tt seerns right therefore to describe this work in the way one would describe
an experiment — that is, to give the results and an account of the methods
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used which ig detailed enough to enable the work to he repeated and
(I hope} to convince the reader that the problem has been attacked in
a sensible and competent way.

The methods of the present paper are those of Davenport [2], which
such modifications as are needed if the calenlation ix not to involve
intelligent choice. I am deeply indebted to Professor Davenport for his
advice and encouragement during thizs work. I am also grateful to Pro-
fessor M. V. Wilkes, the Director of the Cambridge University Mathe-
matical Laboratory, for making available to me the sabstantial amount
of machine time needed for the calenlations.

2. The division into eases. It ig desirable to normalize the linear
forms L; as far as possible; and here there is a complication becunse we
cannot assume in advance that L, L,JDs attaing its minimum. It is
esgential for what follows that |L; L, Ls| should take the value 1, and there
are two ways to engure thig:

(i) We congider in the first ingtance only those formw |L, L, L4
which. attain their minimum. By a general theoreni, to each pernissible
value of J there do correspond such forms; and if for a given value of A
the only forms of this type which occur are ones which are isolated in
the sense of Lemmd 2 below (as happens for 4 = 17), then for this value
of A there are no forms |I,LyL;| which do not attain their ininimunn,

(ii} We choose a small constant &> 0 and replace the hypothesis
that the minimum of |L,L,L,| is 1 by the hypothesisx that | L, L, L, does
take the value 1 and that

| Ly Ly Ll > 1~

for all integers u, v, w not all zero. The machine calculations remain
unaltered, since the factor (1—e) is swallowed up in the allowance made
for round-off error; but the theory becomes more complicated becanse
some of the formulae acquire additional terms O{s).

Davenport [2] adopted the second of these methods, because ab

that time the general theory had not heen developed; however the first
method iz simpler and we adopt it here.

After a nnimodular integral transformation on u, v, w we may thore-
fore assume that |LyLyLs| =1 at (1,0,0); and by multiplying the I,
by suitable constants whose product is 41 we can further assume that

(3) L =utaotfiw (i =1,2,3).
Consider now the positive definite guadratic form
(4) (Ly— Lol H{Iy— L) 4 (Lg— L,)* = 2 (4w 4 Bow -+ Cw?)

$ay, whose determinant is
440—B* = 34°,
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By applying @ suitable integral unimodular transformation te », w we
can further assume that this quadratic form is redwced, so that [B]
< A = . Write

S(y) = %{(?1—?’2)2+(V2_73)2+(?’3—?1)2}

wo that 4 = 8(a) and ¢ = §(8); then it follows from what we have just
done that 4 -5 A, = 17 implies
(") S{a) & Ay,

S(B) < L{8(a)+ 3458 ()}

Tt i only through this pair of conditions that we shall nse the fact that
the quadratic form (4) is reduced. The second condition does nppose an
upper bound on 8(8), for it will be shown in Lemma 1 below that §(«) = 7.

None of the u;, #, can be rational, because none of the L; can take
the valne 0. For any integers i, #y, 1 denote by {n, %z, 7y} the set of
points (yy, ¥z, ¥a) such that

(6) [(m—+p, 1) (M- pantim— pgin)| 2 1
for all integers n, 1 not both zero, and also

wo> oy >me—1 0 (4 =1,2,3).

Clearly each of o and 3 is in just one such set. Reverting to (3), writing
—uv for v replaces each «; by — «¢;, and writing u-+nv for  replaces each
a; by a;+n; and neither of these action essentially alters L, L,Ly nor
Affects the reduction conditions (5). To each {n, #,, %y} We associate
a4 region type, which is the union of {n,, ,, #;} and all the sets that can
be derived from it by permuting the %;, adding the same integer to all
of them, and possibly changing the sign of all of them. Clearly this induices
a partition of the union of all {n,, ny, 0} into digjoint region types; and
any y satisfying (6) belongs to just one {n,, %, 7y} and to just one region
type.

LeMmMA 1. 8(y) 22 7 for every v saiisfying (6). Moveover, the only bypes
coniaining & point v with 8(y) < 33 are those in Table II below; and for
each such type the mwumber in the third colwmn is a lower bound (N0t nec-
essarily best possible) for 8(y).

Proof. For any given type it is enough to look at the points in an
axbitrary one of the components {m,, ng, 7). Without loss of generality
We Gan assume %, < s < fy; and (6) certainly implies wg—#q > 2. Thus

) = &(ys— i)+ {2y, — - yg)¥ > F(Hg— Py 1)%,

s0 that 8(y) < 33 implies ny—n, < 8 and hence there are only finitely
many types that need to be considered.
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Suppose fitst that 7, < %y < 95 and define 7, s, ! by

(m pi b pe) (- yan) = mP-rmEa -t smint - in?;

thus S(y) ==rt—3s. The six conditions obtained from (6) by sefting
m =n; or m;—1,n = —1 are linear inequalitier on 7, 8, ¢ and define
5 convex polyhedron in {r, 8, 1) space; and to find the minivvum of +*— 3¢
in thig polyhedron is a matter of standard technique. This method was
used by Davenport ([2], Lemma 11) to prove that S{y) 2 7 slways and
to obtain lower hounds for S(y) in region types A, B and U, and a detailed
account can be found there. Because of the number of cases to be considerad
(and the possibility of a more elaborate subdivision which turned oub
not to be worth while) it was implemented om a computer, giving the
resalts shown in Table IL.

TABLE II. Region types compatible with & (y) < 33

Region type Typical set Loyer bound for § ()

A {—1,0,2} 7

B {—9,0,2) 8.5
¢ {—2,1,2} 10.11
D {—2,0,38} 13.56
E {—3,1,2} 15.75
¥ {~3,2,2} 21

G {—3,0,3} 19.95
“H {—3,1,8) 20.44
I {—3,2,3} 23.56
J i {838 29.67
K : {—3,0,4} 28.01
L I8, 1,4} 20.36

If say g = 0y, the argument becomes more elaborate but is essentinily
of the same kind. This concludes the description of the proof of the lemma.
§ We use henceforth the region type names of Table IT. It follows from
() with 4, = 17 and from S(y) = 7 that J(#) < 33; so the only types
that have to be congidered are those of Table TL. We shall say for éxufnj;le
that a set of forms (3) i of type BC if « is of type B and ﬁ‘ iy of type C;
then by (5) and Table II the only tiypes that need to be considered '«'nre AA
‘bO‘AL, BA to BL, CA to CI, DA to DE and BA fo BE. Having reached
:t]llﬁ conclusion, we make no further use of (5); henceforth therefore thero
18 symmetry between ¢ and §, and we need not consider for exarplo
both type BC and type CB. - |
Now suppose, as a typical case, that we are looking for forms of
type A(L. ].By means of the linear transgformations mentioned above, and
the possibility of permuting the I, we can without logy of geneéa.lity
assume that « iz in {—1, 0,2} and that fix in {—2,1, 2} or ome of the
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gety derived from it by permutation of coordinates. Each type therefore
breaks up into six cases (or less if there is any symmetry). Not all these
cases need to be examined in detail. For example, if « is in {—1,0,2}
and § in {—92,1,2}, then ¢—f is in {2, —1, 0 or {2, —1, 1} since the
other possible {n,, n,, ng} are empty; and since each of these regions
for a— 3 is of type A the resulting set of forms (3) will already have been
found. (with a change of variables) in the investigation of type AA.
Similarly with type AB, if « is in {—1, 0,2} and § in {0,2, —2}, con-
sideration of a--f shows that we can further assunme a;+f; < —2 and
@+ 2 > 1. In this way we have vedreed our problem to « finite number
of cases, some of which have extra conditions. There turn out to be
fiftv-three such cages; this enuwmeration was done by hand and, since
it iy the part of the work most liable to error, was checked by Professor
Davenport.

3. The investigation of individual cases. The next part of the in-
vestigation, which accounts for almost all the wachine time used, consists
in reducing these fifty-three cases to subecases; the aim is to come
down to @ limited number of subeases, in each of which the o and p;
are so tightly bounded that the methods of § 5 can be applied.

At any moment in the caleulation, an individual case or subcase
ix described by means of three convex polygons Iy, R,, By; here E; is
w polygon, in the (a;, §;) plane and the conditiong so far imposed on o, f; -
are equivalent to requiring the point (a;, B, to lie in E,. Because of the
wachinery of §2, B, it initially a unit square — or & half-square or
quarter-square if there are supplementary conditions. In the course
of the calenlation the B; are reduced in size by the two processes of refine-
ment and subdivision deseribed below. The object of the calculation is
for each eventual xubcage either to reduce one of the B; to the empty
set or to reduce all the R, to sets of very small diameter, so that one can
puess an admissible associated. set of f0‘1‘111HL3- and then use Lemma 2
to prove that this is the only admissible set of forms asgociated with
this triplet of R;. Rmpirically, each triplet of very smnall R; produced
by these caloulations ix associated with such a set of forms L;; had thig
net heen so, the proot of (2) could not have been completed, but instead
one would have found a swmall region of very great interest. In the programs
ay originally written, ‘small diammneter’ was taken to mean diameter less
than 10°7; some definition has to be built into the program becanse this
is one of the eonditions for stopping the iteration in the refinement.
However, examination of intermediate results showed that in a few cases
the program wag vefining an already small region in a highly inefficient
manner; and in these cases the program was gtopped when the E; had
diameter about 10~° and the caleulation was finished by band.
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An individual step of the refinement works as follows, where to
simplify the notation we assume that we are refining E,. Choose suitable
integers u, v, w in a way that will be described below; here v and » are
not hoth zero and # iz the integer nearest to either the upper or the lower
bound of —a,2—f#,win B,. Let M, be an upper bound for |4+ uyv - Ay
in R,, and define M, similaxly. (The R, arve described inside the computer
by keeping lists both of their sides and of their vertices, each 0_1'(1e1*ed
in the obvious way. The M; are now easy to compute becanse each of
them is attained at one of two well-defined vertices of R,;.) Hince | L, L, L,|
= 1, we must certainly have

{7) [ 4- a4 Brw| = (1—107%) /MM,

where the factor (1—107%), instead of the natural 1, is included so as to
overcome any errors caused by round-off. (The computer used worlks
To 13 significant figures in the decimal scale, and a detailed exanyination
of the programs and the upper hounds for », w implicit in them shows
that this allowance is more than adequate. An earlier version of the
program corrected for round-off at each step, but this was very slow.)
It follows that (a,, f,) cannot lie in the strip 8, defined by )

(L—10"%/ MM,y > -+ av+frw > —(1—107%] M, M,.

There are now four possibilities for the relation between B, and &,:

. (i) R, rloeg no@ overlap 8,. In this case (7) is of no value; and it is

unlikely .that this triplet u, v, w will ever again be useful for refining B,.

In f‘ai'ct it can only be useful if subsequent refinements of R, and B,
sufficiently diminizh M, and M,.

. U—‘E) 8y completely covers R,. Now the case being considered is
impossible.

(iii) §, overl'c}ps 'Rl, and R \GS; is connected. Now we can replace
B, .by E\\8y, which is a strictly smaller convex polygon; thus we have
refined R,. ‘

(iv) 8, overlaps R, but R,;\S, is not connected. Now (7) ix not

immediately useful, but this triplet w, , w may become ugeful when R
has been further refined. ‘

At first sight, it would seem that (iv) should be used to subdivide
cagey; but t_}his would lead to difficulties in the b_rganiza,tion of storage
space, and In any cage it iz essential not to let subeases prolifera,te' too
ra,pld.ls‘r. Indeed, experience shows that one should only subdivide when
there is no further scope for refinement.

. A reﬁnenglent of By or R, may diminish M, or M,, and therefore
increase the_mze of the strip 8, for given u, v, w; this is why refinement
must be an iterative process. To obtain a worth-while improveinent in B,
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the strip S; must not be too narrow — thus either » and w0 must both
be small infegers or u, v, w must be such that one of M, and M, is
substantially smaller than the magnitudes of w,v, w would suggest.
Even with the most favourable choice of w, v, w, M, will not be substan-
tially smailer than

{Max (Jv], w|)} {Diameter of I,}

and o combination of theoretical and empirical arguments suggest that
one should eonfine oneself to triplets u, », w such that MM, <100 and

o], lw| < 2{largest of the dinmeters of the R;} .

The two processes of refinement and gsubdivision are earried outb
by the same program. On starting to consider a case or subcase, the
program sets up for each 4 2 list of triplets w, v, w which are likely to e
useful in refining R,; these listy are based on criteria gimilar to those
of the previous paragraph, but more complicated. These lists remain
tised throughout the calculations om = given case or subcase. After these
lists have been set up, the program alternates hetween & refinement mode
and a subdivigion mode, starting in the refinement mode. At any given
motnernt the program has four data lists, each item In any ligt being
a triplet of regions R;. The lists are

(iy R*, the triplet of regions R; currently being worked om;

(i) &, a list of triplets which will be further processed, as part
of the present case or subcase;

(iii) #,, a list of triplets which cannot usefully be further processed
a3 part of the present case or subcase, bub which will have to be processed
in later rons of the program with new lists of useful u, v, w;

(iv) %, a list of triplets which are so small that they do not need
to be further refined by this program.

Of these lists, R* congists of ome triplet and 2, containg at 1most
six triplets; both these must De held in immediate access store. £y s
being built up to Le used as data in & subsequent run of the prograin;
it may contain several hundred triplets but can be held in backing store.
2, wust be printed. out, but is very short and usually empty. Initially,
R* is given by the data which determine the case or subease being con-
sidered, and %y, %, and £, are all empty.

During = refinement stage, the triple R* is progressively refined
in the way described some paragraphs ago, using in turn each. of the triplets,
%, v, w in each of the three lists. (There are modifications to ensure that
triplets 4, v, w which are almost certainly not ugeful are not used.) This
refinement is repeated until either the set of R, involved is shown to be
impossible or the improverent in R; obtained by going through the list
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of w, v, w once more is negligible — this being defined to nmean that none
of the upper or lower bounds for a; oL B; in R, is improved by as much
as 10~% When either of these two events ocours, the program shifts into
the subdivigion mode. If at this point there is a friplet R, the program
subdivides it; if not, it goes straight into the “4idying up’ step.

The process of subdividing R* works as follows:

(i) Tf all three E; in R* have diameter less than 1077, put this triplet
into the list &, and proceed to the ‘tidying up’ stage.

(if) Otherwise, for a preassigned integer N, which is fixed thronghont
the consideration of a given case or subease, let Maxa, denote the least
upper bound of ¢, in B, and similarly for Mina,, and write

» = Integer part of (N, Maxa).

If » > N, Mina,, put the triplet defined by R, N (e <n/Ny), Ky, By
into the list &#,, take the triplet defined by R; N (ay > n/Ng), Ry, B
to be the new triplet ¥, and return to the refinement phase. We ghall
call this process ‘splitting on a,’.

(iif) Tf it is not possible to split on o;, try successively to split on
Prs oy Bay tay Ps

(iv) Tf none of these are possible, put the current triplet B into &,
and proceed to the tidying up stage.

The tidying up stage is reached whenever the current I* has been
disposed of in any way other than by splitting. Tt works as follows:

(i) Tt %, is not empty, take as the new R* that triplet in #; which
was most recently put into .#;; and delete it from .#,. Then return to
the refinement stage.

(i) T #, is empty, consideration of this case or subease is complete.
The program now either terminates or takes a new case or subease from
the data tape.

When the program ends, one is left with the two lists %, and ;.
In practice, %, may contain up to a thousand triplels (each of which
corresponds to o subcase of the original case), while %, containg two
or three triplets at most. The Wa,y of dealing with &, ix deseribed in § 4.
Each. friplet in &, represents a new subcase, which iz fed back into the
program again with a new and larger value of ¥,. The values of ¥, used
were 12, 24, 48, 96, 200, 500 and 1000; it is not economical o increase
N o too rapidly, because thig has the effect that a region iz rejected only
in very smaldl hits. :

The organization of the splitting, and the ‘ast in, first out' treatiment
of -,9,01‘ , are designed to ensure that %, is kept small. This iy essential when
working on a multi-access . computer on which programs which need
a great deal of immediate access store have very low pj?io_rity.
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There is one further complication still to be mentioned. The descrip-
tion above explains how the program works if it ig dealing with a case
or subease completely. This was done for the cases of types AA to AT, BB
and BC. But for most of the other initial eases, a large part of the six-
dimensional region R,XRE,xR; consists of points for which the coire-
sponding forms L, L, Lg have 4> A, = 17, and for the present purpose
these points do not have to be considered. The way in which the con-
dition. 4 < 17 wag used is as follows. We have

4 = a,(fy— fs)+ aa(fs— B+ a3 {fr— ﬁz)

and we can agsume the coordinates so ordered that A > 0. If for example
the triplet of regions R; is such that Min g > Max §,, then to replace
4, by Mina, can only decrease . Replacing in this way s, aa) f2 and B,
by their upper or lower bounds {whichever iz appropriate) we obtain
a linear form A, (ay, #,) such that in B, x Ry X By we have A= A (ay, fi1).
Hence we may impose on IR, the additional condition 4,(e, f1) < 17,
and similarly for R, and Ry. These conditions were used ab the beginning
of each refinement stage.

Ideally, the result of the calculations described in this section would
have heen simply a list of very small regions, each of which could have
been deatt with by the methods of § 4. In practice, becanse of the fairly
crude methods used to produce the list of «, v, w fol the refinement process,
there was one other region which resisted the efforts of the computer.
For this region

—3.461782 > oy > —5.461860,
—0.683282 > a, > —0.683344,
2.935778 > a, > 2.935357,

—0.803853 > #; > —0.803080,
2.885317 > f§, > 2.885243,
0.447989 > f; > 0.447860;

and it was verified by hand that R, is covered by the gtrips given by
(w, v, w) = (1, —9, 40), (7, —14,69), (15, —24,122), (21, —29, 151),
{22, —38,191), (28, —43, 220), (43, —67, 342}, (62,20, —9), (101,385,
—38), (146, 31, —38), (163, B8, —47), (225, 78, —B56), (388, 136, —103),
(417, 146, —110). These values are given explicitly to show the intricacy
of the patchwork that is involved; and the way in which everything
fits together is one of the main reasons for believing the conjecture stated
in the Introduection.

4. The isolation theorem. We have still to show how to deal with
the triplets of small regions which appear in the ligty %, — or in sone
cases were removed from the lists %, becanse the computer was making
heavy weather of them. For each of these triplets it was possible to find
an, agsociated admissible form I,L,T; by invelligent guesswork - luul
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this not been o one would have had to proceed as in the end of § 3 — and
it remains to show that this is the only admigsible form associated with
this triplet. In other words one must show that any admissible form
5,5, L, near L,L,Ly is essentially the same as L,L,L,. This requires
an ‘igolation theorem’; and an isolation theorem of the kind required
is proved as Theorem 2 of [1]. However although the proof ix constructive
the theorem itself is for simplicity not stated in a constructive form;
we therefore reformulate it here in the form in which it is actually used.

Suppose that L, L,L, is admissible, where the IL; are given by (3),
L, is defined over a totally real cubic field, and L, and L; are the con-
jugates of I, over the rationals. These conditions hold for the admissible
forms which we are trying to isolate. Any form near L, L, L, can be given
by linear forms I, such that

f’l = (L4 814) Ly 4 30 Ly - 1514

and &0 on, where the g, are small. For simplicity we congider instead
the linear forms L where

L} = (L4 ey) 'Ly = Ly 80 Lo+ 6,5 Ly

and so on; and the explicit bounds for the regiony B, provide (very small)
explicit upper bounds for the size of the ¢; and #, that have to be con-
sidered. We have therefore to show how to find explicit (not too small)
constants 4§, d,, which will depend on L, L, L,, such that

(8) if 0 <Max |0;] < 8, then there ewist integers w, v, w not all zero such
that |L7 Ly Ij| < 16

Here 6 has to be large enough to ensure

9 (F =8} {L+e11) (L + ean) (L +-&55) < 1.

It is eonvenient to break the problem up into twelve cases, depending
on which is the absolutely largest of the f,; and what is its sign. Thus
for example, having chosen § to ensure (9) we look for 45 such that (8)
holds with 8, = &;; provided that the 8;; also satisty the condition

(10) Max 6] = |65 and 6y, > 0.

It we did not have to worry about the magnitude of &}, we would proceed
as follows. Choose integers w, v, w such that L, L, < 0, and denote by &
the value of L; for these values of u, v, w. Provided ,, > 0 is small enough,
we can find a unit { of the lattice {that is, an integral unimodular trans-
formation on u, v, w which takes each I; into ¢, I;) such that |5, |5l
> 1l and 6,5 &,2,/£, 0y is as close to —1 as we like, The equations Ly = &¢&;
define integers u, v, w; and in view of (10) we have Ly = L,(1+o(1)),
I = Ly(1+0(1)) and '

L = Lyd Lot o{Ly) = Ly {1+ 01,85 Lof &L+ 0 (1)} = o(Ly).

icm
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Thus Li L L3 = o(L, Ly L) == 0(£,£: &), and we can certainly ensure
that this is absolutely less than 1—¢. However, the argument in this
form leads to too small a value of 0f; in some cases. This accounts for
the extra complications below.

Let 5 Le & unit of the lattice, chosen once for all, such that
lal = 19s] = 04l 102 >0

and of course 9,y.9s = +1; and let T be the corresponding integral
unimodnlar transformation on u, v, w. Choose wm integral points F;
= (u;, v;,w;) for j =1,2,...,mandforalln >0 write Py = T"P;.
Choose #n positive constants

Co 2> 61 2% oo 2 Uy g >y = 00711/7]2

and for all # > 0 Write €., = ¢;(n:/n.}". Denote by 4; the value of .L;
at P; and for convenience write

oy = 1403 (A1 1251} [ 1341 5

Ha; = 14 o5 Ayl 1 Ag; 1) /145!

= 1—6 e |41
iz phag | Ay Aoy Aoy |21

Cleaply increasing j by m will decrease py; and py and will increase p;-
Lonima 2. Suppose that for § = 1,2, ..., m we have

(11} Aydyy <0y [Lbodyfdyg| <y, (LA 6idyfhyl < py;

then (8) with the additional condition (10) holds with 8, == & = ¢,. -

Proof. On considering the effect of inareasing j by m, it is clear that
(11} holds for all j > 0. Since ¢; — 0 a8 j — oo, we can choose j so that

(12) G122 O 2 65
and so every 8 is absolutely bounded by ¢, ,. Now consider the values
of the L} at P;; we have
113 fA] == |14 Agy Oy [ A9y Agy Ons [ Ags] S0
EL:/laj‘ = |14 Ay 631//1:13’+ Aot ﬁnafa-sﬂ = My
|L fAgg] = (14 Dy 000f A+ Ay O f |
L Opa Ay f Agsl - | A5 010/ Ay
< pyH Gy gy Ayl == (1 — 8) [ ptgy phay | Ags s Ayl

the last inequality coming from (i1) and {12}, Multiplying these three
results together gives |LYLsLs| < 1—4 as required. Thiz proves the
lemima.
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TABLE Til. List of admissible forms
7]
(5072540 26)/51
(82 —28—5)/8
(824 1503-5)/7

: (2 46-—-1}/3
_3060—-1, 945632 | (11602 3580964-20952)/5491 | (21621 65300+ 3225) /5491

(262--150—3)/3
(205 30— 5)/21
(362—7)[5
(2762 —456—3)/13
(621 128+2)/9
(6021 2580+40)/118
(2674-1270-1-11)/35
(@*426+1)/9

i
1
1

72
92
148
632
132
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72
13% |
1232
9239
2592
39132
251
8192
4312
117
5684

480—1

]
T

F— 86241
12624+90 -1

26262
895043

;200 — 041
PFror-d0-+1
685162

g5 dg2_2650—1
g3 —20°—6-4-1

#2}-16624 4101
gL 025612
63} 4462 4-410—1

03—295-f g+1
S -tE--464-1

$

i

819621601
05 - 862 4-120—1

B —876—1
;0330907

PF—5E—180—1

&

Tield equation
61 6462+ 618 —1

< .
X1
XIr

I
XIIL

111
v
Y
VI
ViI
YVIII
IX !
XY
XVI
XVIT

Xiv
XViII
XiX
XX

Form
number
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The only diffienlty in applying this lemmua is the choice of the points
P,, Ps, ..., P,. If there is a point P for which L, 1,0, = -1 and the L;
have the desired signs, then one can take m = 1 and choose P, to be P
or & transform of it by seme power of 7. This happens in all but four
of the cages listed in § 5. In the remaining four cases the P; were chosen
fronl ameong the triplets (u, v, w) corresponding to the sicles of the regions
R;, and their transforms by powers of 7. Onee the P; have been chosen,
it is easy to choose the ¢; by means of (11), since one knows in advance
that g4 will be approximately [y gy Al

5. The results. In Table III we list the nineteen inequivalent
adrmissible forms L, L, L, with 2 < 17, together with the one other form
which falls within the cases (AA to AH, BB and BC) that were dealt
with, completely. The first column gives a reference number for the form.
The second colamn gives a cubie polynomial whose zeros 6; are used
to define «; and §;, and hence IL; by (3). The third column gives the
discriminant of the totally real cubic field (8), this being written, as
a square when @ (8) is a normal extension of @. The fourth and fifth colnmns
give o, and B; as functions of 6. The sixth column gives the
rational nmumber @42 A-!, thus enabling 4 to be found explicitly, and
the seventh column gives 4 in decimal form. The last column records
whether the Z-module generated by 1, a, § is a (fractional) ideal in @ (0),
and if so whether it is & principal ideal.

Tn lattice language, VXL corresponds to a sublattice of index 2 in I,
and perhaps shonld not really be counted as an independent form. The
forms VIII, X, and XVIII represent 1 in two essentially different ways
and so have two possible deseriptions, only one of which is given here;
and XVI represents 4-1 in three essentially different ways. The forms
which do mnot have units of arbitrary signature are XI, XIV, XVIIL
and XIX; for each of these just half the signatures are poskible.
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